JPH03210406A - Scanning type tunnel microscope instrument - Google Patents

Scanning type tunnel microscope instrument

Info

Publication number
JPH03210406A
JPH03210406A JP569990A JP569990A JPH03210406A JP H03210406 A JPH03210406 A JP H03210406A JP 569990 A JP569990 A JP 569990A JP 569990 A JP569990 A JP 569990A JP H03210406 A JPH03210406 A JP H03210406A
Authority
JP
Japan
Prior art keywords
probe
tunnel current
axis
sample
feedback signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP569990A
Other languages
Japanese (ja)
Other versions
JPH0625643B2 (en
Inventor
Masashi Iwatsuki
岩槻 正志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2005699A priority Critical patent/JPH0625643B2/en
Publication of JPH03210406A publication Critical patent/JPH03210406A/en
Publication of JPH0625643B2 publication Critical patent/JPH0625643B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To safely and surely stop a prove with respect to a specimen by making the probe approach a specimen surface while detecting whether a feedback signal agrees with a set value and stopping a drive when the feedback signal agrees with the set value. CONSTITUTION:Piezoelectric elements 1x, 1y and 1z constitute a three- dimensional scanner for driving X-, Y- and Z-axes, respectively. The piezoelectric elements 1x and 1y are driven by piezoelectric element driving high voltage circuits 12x and 12y, respectively, according to scanning signals generated in a scan generator in a CPU 13, a probe 2 is driven along a specimen surface in X and Y directions, a tunnel current flowing between the probe 2 and a specimen is measured, the tunnel current is fed back to a Z-axis piezoelectric element driving high voltage circuit 11 via a logarithmic amplifier 8, a comparator circuit 9 and an integrating circuit 10 and the Z-axis scanner 1z is controlled so that the tunnel current may be constant. Before beginning a measurement, the piezoelectric elements 1x - 1z are lowered by a moving mechanism 5 and, after the descent of the piezoelectric elements 1x - 1z is stopped in a position wherein the tunnel current takes a prescribed value, the measurement is begun.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、試料に探針を接近させた時に発生するトンネ
ル電流を検出して、試料表面の凹凸像を画像表示装置に
表示する走査型トンネル顕微鏡(STM)装置に関する
Detailed Description of the Invention [Industrial Application Field] The present invention is a scanning type device that detects a tunnel current generated when a probe approaches a sample and displays an uneven image of the sample surface on an image display device. The present invention relates to a tunneling microscope (STM) device.

[従来技術] 探針先端の原子と試料の原子の電子雲とが重なり合う数
nmオーダーの距離まで、探針の先端を試料表面に近付
け、この状態にて、試料と探針との間に一定のバイアス
電圧をかけるとトンネル電流が流れる。このトンネル電
流は、試料と探針との間の距離に応じて対数的に変化す
るため、このトンネル電流の大きさを測定することによ
り、試料と探針との距離を超精密に測定できる。STM
装置は、このトンネル電流が一定になるように、即ち、
試料面と探針の距離が一定になるように探針の高さを制
御しながら、圧電素子により探針をXY力方向水平方向
)に走査したときの探針の高さの軌跡により、試料表面
の凹凸形状を観察するもので、試料表面の原子配列を観
察することができるため注目されている。また、この8
7M装置は、表面原子配列を観察するばかりでなく、ト
ンネル電流の情報に基づいて、試料の深さの方向の情報
や電子状態を分析する分析機能も有している。
[Prior art] The tip of the probe is brought close to the sample surface to a distance on the order of several nanometers where the atoms at the tip of the probe and the electron cloud of the atoms of the sample overlap, and in this state, a constant distance is maintained between the sample and the probe. When a bias voltage of is applied, a tunnel current flows. This tunneling current changes logarithmically according to the distance between the sample and the probe, so by measuring the magnitude of this tunneling current, the distance between the sample and the probe can be measured with extreme precision. STM
The device is configured such that this tunneling current is constant, i.e.
While controlling the height of the probe so that the distance between the sample surface and the probe is constant, the height of the probe is controlled by the locus of the height of the probe when the piezoelectric element scans the probe in the XY force direction (horizontal direction). It is used to observe the uneven shape of the surface, and is attracting attention because it allows the observation of the atomic arrangement on the sample surface. Also, this 8
The 7M device not only observes the surface atomic arrangement, but also has an analysis function that analyzes information on the depth direction of the sample and the electronic state based on information on the tunnel current.

[発明が解決しようとする問題点1 以上のような情報を得るには、探針を試料表面に数nm
オーダーまで近付ける必要がある。そのため、例えば手
動のマニプレータで探針を近付けると、トンネル電流領
域までに持ち込むときに、探針が試料に衝突するという
問題が多く発生している。この衝突により、試料表面が
破損されるだけでなく、探針表面にも試料の一部が付着
するため、試料表面像観察時の像が不安定となる。
[Problem to be solved by the invention 1] In order to obtain the above information, the probe must be placed a few nanometers above the sample surface.
You need to get close to the order. Therefore, when the probe is brought close to the sample using a manual manipulator, for example, there are many problems in which the probe collides with the sample when brought into the tunnel current region. This collision not only damages the sample surface, but also causes part of the sample to adhere to the probe surface, making the sample surface image unstable.

本発明は、かかる点に鑑みてなされたもので、探針を試
料に対して安全、確実に近接させて、安定した試料表面
像を得るための手段を簡単な構成で提供することを主な
目的とするものである。
The present invention has been made in view of the above, and its main purpose is to provide a means for safely and reliably bringing a probe close to a sample and obtaining a stable sample surface image with a simple configuration. This is the purpose.

[問題点を解決するための手段] 前記目的を達成するため、本発明の走査型トンネル顕微
鏡装置は、試料面に沿ってXY力方向探針を移動させる
XY軸方向駆動手段、試料面との高さを変えるZ方向に
探針を移動させるZ軸方向駆動手段、探針と試料との間
にバイアス電圧を印加するための電圧印加手段、探針と
試料との間に流れるトンネル電流を検出する手段、トン
ネル電流が一定になるようにZ軸駆動手段を帰還制御す
るための帰還信号を発生する帰還回路、および帰還信号
が供給される表示手段から構成される走査型トンネル顕
微鏡装置において、前記探針とXY軸方向駆動手段とZ
軸方向駆動手段を一体的に試料面に向けて連続的または
断続的に近付ける第2のZ軸方向駆動手段と、前記帰還
信号が予め設定された値に一致したか否かを検出する一
致検出手段とを設け、一致検出手段の出力信号に基づい
て第2の2軸方向駆動手段を停止させるようにしたこと
を特徴としている。
[Means for Solving the Problems] In order to achieve the above object, the scanning tunneling microscope device of the present invention includes an XY-axis direction driving means for moving an XY force direction probe along the sample surface, and Z-axis driving means for moving the probe in the Z direction to change the height, voltage application means for applying a bias voltage between the probe and the sample, and detecting the tunnel current flowing between the probe and the sample. In the scanning tunneling microscope device, the scanning tunneling microscope device comprises: a feedback circuit that generates a feedback signal for feedback controlling the Z-axis drive means so that the tunneling current is constant; and a display means to which the feedback signal is supplied. Probe, XY axis driving means, and Z
a second Z-axis direction drive unit that integrally brings the axial drive unit toward the sample surface in a continuous or intermittently manner; and a coincidence detection unit that detects whether or not the feedback signal matches a preset value. The invention is characterized in that the second two-axis driving means is stopped based on the output signal of the coincidence detecting means.

[作用] 帰還信号が予め設定された値に一致したか否かを検出し
ながら、探針を試料面に向けて連続的または断続的に近
付けて、帰還信号が設定値に一致したときに駆動を停止
させるようにした。
[Operation] While detecting whether the feedback signal matches a preset value, the probe is brought closer to the sample surface continuously or intermittently, and when the feedback signal matches the set value, the probe is driven. I tried to stop it.

[実施例] 以下本発明の実施例を添附図面に基づいて詳述する。[Example] Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

第1図は本発明の一実施例装置の構成を示した概略図で
ある。第1図において、圧電素子lx。
FIG. 1 is a schematic diagram showing the configuration of an apparatus according to an embodiment of the present invention. In FIG. 1, piezoelectric element lx.

1y、1zは各々X軸、Y軸、Z軸を駆動する三次元ス
キャナを構成するもので、2は探針、3は試料、4は探
針2と試料4間にバイアス電圧を供給する電源、5は探
針2を試料3表面に近接させるための移動機構、6は移
動機構5を駆動する駆動回路、7はI/V変換増幅回路
、8はI/V増幅回路7の出力信号が探針2の高さに対
して線形に対応するように信号変換(線形化)を行う対
数増幅回路、9は対数増幅回路8の出力値をトンネル電
流の設定値に対応する基準電圧■「と比較する比較回路
、10は比較回路9の出力を積分する積分回路、11は
Z軸圧型素子駆動高圧回路。12x、12yは各々X軸
、Y軸圧型素子を駆動させる高圧回路、13はCPU装
置でモニタ、スキャンジェネレータ、フレームメモリと
AD/DAコンバータとを含む装置、14はイメージ増
幅回路である。15はZ軸圧型素子駆動高圧回路11か
らの信号と予め設定された値に一致したか否かを検出す
る一致検出回路である。
1y and 1z constitute a three-dimensional scanner that drives the X-axis, Y-axis, and Z-axis, respectively, 2 is a probe, 3 is a sample, and 4 is a power supply that supplies a bias voltage between the probe 2 and sample 4. , 5 is a moving mechanism for bringing the probe 2 close to the surface of the sample 3, 6 is a drive circuit for driving the moving mechanism 5, 7 is an I/V conversion amplifier circuit, and 8 is an output signal of the I/V amplifier circuit 7. A logarithmic amplifier circuit 9 performs signal conversion (linearization) to linearly correspond to the height of the probe 2, and 9 converts the output value of the logarithmic amplifier circuit 8 to a reference voltage corresponding to the set value of the tunnel current. 10 is an integration circuit for integrating the output of the comparison circuit 9; 11 is a high-voltage circuit for driving a Z-axis pressure type element; 12x and 12y are high-voltage circuits for driving the X-axis and Y-axis pressure elements, respectively; 13 is a CPU device 14 is an image amplification circuit. 15 is a device including a monitor, a scan generator, a frame memory, and an AD/DA converter. 15 is a device that determines whether the signal from the Z-axis pressure type element drive high voltage circuit 11 matches a preset value. This is a coincidence detection circuit that detects whether

CPU装置13内に含まれるスキャンジェネレータはX
軸、Y軸の圧電素子1x、lyおよび画像表示装置の走
査信号を発生するものである。圧電素子駆動高圧回路1
2x、12yは、CPU装置13内のスキャンジェネレ
ータで発生した走査信号にしたがって、三次元スキャナ
の圧電素子1x、lyを駆動し探針2を試料面に沿って
X、 Y方向に走査するためのものである。Z軸圧型素
子駆動高圧回路11は、積分回路10の出力により三次
元スキャナの圧電素子1zを駆動するものであり、例え
ば±150vの範囲にて可変する。試料に接続された初
段のI/V増幅回路7は、電源4から探針2と試料3間
に供給された任意のバイアメ= ’4 jJ:から得ら
れたトイネル電流11を電圧に変換し、さらに増幅する
ものである。そして、対数増幅回路8、比較回路9、積
分回路1oを通してトンネル電流I7をZ軸圧電素子駆
動高圧回路111\フィードバックして、三次元スキャ
ナのZ軸圧電素子1zを制御することによって、探針2
の高さを制御しトンネル電流1.を一定にしている。な
お、移動機構5はZ軸圧型素子駆動高圧回路11からの
信号とCPU装置13からの駆動信号により制御される
駆動回路6により駆動する。
The scan generator included in the CPU device 13 is
It generates scanning signals for the piezoelectric elements 1x, ly on the Y-axis and the Y-axis, and the image display device. Piezoelectric element drive high voltage circuit 1
2x and 12y are for driving the piezoelectric elements 1x and ly of the three-dimensional scanner to scan the probe 2 along the sample surface in the X and Y directions according to the scanning signal generated by the scan generator in the CPU device 13. It is something. The Z-axis pressure type element drive high voltage circuit 11 drives the piezoelectric element 1z of the three-dimensional scanner using the output of the integrating circuit 10, and is variable within a range of, for example, ±150V. The first stage I/V amplifier circuit 7 connected to the sample converts the Teunel current 11 obtained from an arbitrary bias voltage = '4 jJ: supplied between the probe 2 and the sample 3 from the power source 4 into a voltage, This will further amplify it. Then, the tunneling current I7 is fed back to the Z-axis piezoelectric element drive high voltage circuit 111\ through the logarithmic amplifier circuit 8, the comparison circuit 9, and the integration circuit 1o to control the Z-axis piezoelectric element 1z of the three-dimensional scanner.
Tunnel current 1. is kept constant. The moving mechanism 5 is driven by a drive circuit 6 that is controlled by a signal from a Z-axis pressure type element drive high voltage circuit 11 and a drive signal from a CPU device 13.

また、Z軸圧型素子駆動高圧回路11へフィードバック
される信号はイメージ増幅回路14に供給されて輝度変
調され、二次元の試料表面像として画像表示される。
Further, the signal fed back to the Z-axis pressure type element drive high voltage circuit 11 is supplied to the image amplification circuit 14, where it is brightness-modulated and displayed as a two-dimensional sample surface image.

この様な構成において、圧電素子1zは、正電圧が印加
されると、印加しない状態(0ボルト)よりも伸長し、
負電圧が印加されると逆に縮むものとする。また、一致
検出回路15の基準値は0ボルトに設定されている。そ
して、オペレータからスタートが命じられると、駆動回
路6はCPU装gl13からの指令を受けて、第2図(
a)に示すように、時刻t。から移動機構5へ駆動信号
を送る。そのため、探針2は、圧電素子1 x *  
1 y *1zと共に、離れた位置から試料面に向けて
連続的または断続的に移動され、探針2と試料面の距離
は、第2図(b)に示すように徐々に減少して行く。
In such a configuration, when a positive voltage is applied, the piezoelectric element 1z expands more than when no voltage is applied (0 volts),
It is assumed that it contracts when a negative voltage is applied. Further, the reference value of the coincidence detection circuit 15 is set to 0 volts. Then, when the operator issues a start command, the drive circuit 6 receives a command from the CPU module 13 and receives the command as shown in FIG.
As shown in a), time t. A drive signal is sent to the moving mechanism 5 from there. Therefore, the probe 2 has a piezoelectric element 1 x *
1 y * 1z, the probe is moved continuously or intermittently from a distant position toward the sample surface, and the distance between the probe 2 and the sample surface gradually decreases as shown in Figure 2 (b). .

このとき、フィードバックループは動作しているが、距
離が大きくてトンネル電流は流れず!。
At this time, the feedback loop is operating, but the distance is large and no tunnel current flows! .

−〇であるため、帰還信号は最大となる。そのため、Z
軸圧型素子駆動高圧回路11がら圧電素子1zに供給さ
れる電圧Vzは、第2図(c)に示すように+150ボ
ルトとなり、圧電素子1zは鰻も伸長した状態となって
いる。
-〇, so the feedback signal is maximum. Therefore, Z
The voltage Vz supplied from the axial pressure type element drive high voltage circuit 11 to the piezoelectric element 1z is +150 volts as shown in FIG. 2(c), and the piezoelectric element 1z is in an elongated state.

第2図(d)は、対数増幅回路の出力すなわちトンネル
電流ITに対応する電圧信号■(I↑)を示す。時刻t
1になって探針2が試料面に十分接近すると、トンネル
電流が流れ出し、さらに接近するにつれて、トンネル電
流は徐々に増加していく。そして、時刻t2になってV
(I□)が基準電圧■「と一致し、試料面と探針先端と
の距離が基準電圧V「に対応する所定距離になると、圧
電素子1zに供給される電圧Vzは、フィードバックル
ープが働いて第2図(C)に示すように徐々に減少を始
める。この段階では、移動機構5により探針2および圧
電素子lx、ly、lzは依然として試料面へ向けて送
られ続けているが、■2の減少により圧電素子1zが伸
びきった状態から徐々に縮むため、探針2の先端と試料
面との距離は上記所定距離に維持される。そして、時刻
t、になり、電圧Vzh<0ボルトになると、一致検出
器15は、第2図(e)に示すように一致パルスを発生
する。この一致パルスに基づいて駆動回路6は移動機構
5を停止させ、これで所謂自動接近作業が完了する。
FIG. 2(d) shows a voltage signal (I↑) corresponding to the output of the logarithmic amplifier circuit, that is, the tunnel current IT. Time t
1 and the probe 2 approaches the sample surface sufficiently, a tunnel current begins to flow, and as the probe 2 approaches the sample surface, the tunnel current gradually increases. Then, at time t2, V
When (I 2(C). At this stage, the probe 2 and the piezoelectric elements lx, ly, lz are still being sent toward the sample surface by the moving mechanism 5. (2) Since the piezoelectric element 1z gradually contracts from the fully extended state due to the decrease in 2, the distance between the tip of the probe 2 and the sample surface is maintained at the predetermined distance described above.Then, at time t, the voltage Vzh< When the voltage reaches 0 volts, the coincidence detector 15 generates a coincidence pulse as shown in FIG. is completed.

この時点では、トンネル電流が最適状態で得られており
1、圧電素子へ供給される電圧Vzは0ボルトになって
いる。従って、その後、撮像のため圧電素子1x、ly
に走査信号を供給して探針を試料面に沿って2次元走査
を開始したとき、探針は試料面の凹凸に沿って上下どち
らにも等しいダイナミックレンジで対応して動くことが
できる。
At this point, the tunneling current is obtained in an optimal state 1, and the voltage Vz supplied to the piezoelectric element is 0 volts. Therefore, after that, piezoelectric elements 1x, ly are used for imaging.
When the probe starts two-dimensional scanning along the sample surface by supplying a scanning signal to the sample surface, the probe can correspondingly move along the unevenness of the sample surface with an equal dynamic range both upward and downward.

なお、上記実施例では、圧電素子1zへの供給電圧を+
150ボルトに設定したが、基準電圧は圧電素子1zへ
の供給電圧のダイナミックレンジの中央付近であれば必
ずしも0ボルトでなくとも良い。また、上記実施例では
圧電素子1zを伸び方向と縮み方向の双方の状態で使用
したが、場合によっては、どちらか一方だけを利用して
も良い。
In addition, in the above embodiment, the supply voltage to the piezoelectric element 1z is +
Although it is set to 150 volts, the reference voltage may not necessarily be 0 volts as long as it is near the center of the dynamic range of the voltage supplied to the piezoelectric element 1z. Further, in the above embodiment, the piezoelectric element 1z is used in both the elongated direction and the contracted direction, but depending on the case, only one of the piezoelectric elements 1z may be used.

その場合にも、一致検出回路の基準地を圧電素子に供給
される電圧Vzのダイナミックレンジの中央付近の値に
設定すれば良い。
In that case as well, the reference point of the coincidence detection circuit may be set to a value near the center of the dynamic range of the voltage Vz supplied to the piezoelectric element.

[効果] 以上詳述したように本発明によれば、帰還信号が予め設
定された値に一致したか否かを検出しながら、探針を試
料面に向けて近付けて、帰還信号が設定値に一致したと
きに駆動を停止させるようにしたため、探針を試料に対
して安全、確実に近接させることができ、かつ、安定し
た試料表面像を得ることができる。
[Effect] As detailed above, according to the present invention, the probe is brought closer to the sample surface while detecting whether or not the feedback signal matches a preset value, so that the feedback signal matches the preset value. Since the driving is stopped when the value coincides with , the probe can be brought close to the sample safely and reliably, and a stable image of the sample surface can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例装置の構成を示した概略図、
第2図は本発明の一実施例装置の動作を説明するための
図である。 lx、ly、lzl:圧電素子 2:探針       3:試料 4ria源       5:移動機構6:駆動回路 7:I/V変換増幅回路 8:対数増幅回路   9:比較回路 10:a分目路 11:Z軸圧型素子駆動高圧回路 12x、12y:圧電素子駆動高圧回路13 : CP
U装置 14:イメージ増幅回路 15ニ一致検出回路
FIG. 1 is a schematic diagram showing the configuration of an apparatus according to an embodiment of the present invention;
FIG. 2 is a diagram for explaining the operation of an apparatus according to an embodiment of the present invention. lx, ly, lzl: Piezoelectric element 2: Probe 3: Sample 4ria source 5: Moving mechanism 6: Drive circuit 7: I/V conversion amplifier circuit 8: Logarithmic amplifier circuit 9: Comparison circuit 10: A minute path 11: Z-axis pressure type element drive high voltage circuit 12x, 12y: Piezoelectric element drive high voltage circuit 13: CP
U device 14: Image amplification circuit 15 - coincidence detection circuit

Claims (1)

【特許請求の範囲】[Claims] 試料面に沿ってXY方向に探針を移動させるXY軸方向
駆動手段、試料面との高さを変えるZ方向に探針を移動
させるZ軸方向駆動手段、探針と試料との間にバイアス
電圧を印加するための電圧印加手段、探針と試料との間
に流れるトンネル電流を検出する手段、トンネル電流が
一定になるようにZ軸駆動手段を帰還制御するための帰
還信号を発生する帰還回路、および帰還信号が供給され
る表示手段から構成される走査型トンネル顕微鏡装置に
おいて、前記探針とXY軸方向駆動手段とZ軸方向駆動
手段を一体的に試料面に向けて連続的または断続的に近
付ける第2のZ軸方向駆動手段と、前記帰還信号が予め
設定された値に一致したか否かを検出する一致検出手段
とを設け、一致検出手段の出力信号に基づいて第2のZ
軸方向駆動手段を停止させるようにしたことを特徴とす
る走査型トンネル顕微鏡装置。
An XY-axis drive means that moves the probe in the XY directions along the sample surface, a Z-axis drive means that moves the probe in the Z direction to change the height with respect to the sample surface, and a bias between the probe and the sample. Voltage application means for applying a voltage, means for detecting the tunnel current flowing between the probe and the sample, and feedback for generating a feedback signal for feedback controlling the Z-axis driving means so that the tunnel current is constant. In a scanning tunneling microscope device comprising a circuit and a display means to which a feedback signal is supplied, the probe, the XY-axis direction drive means, and the Z-axis direction drive means are integrally directed toward the sample surface continuously or intermittently. a second Z-axis direction driving means for moving the feedback signal closer to the target; and a coincidence detection means for detecting whether or not the feedback signal matches a preset value. Z
A scanning tunneling microscope device characterized in that an axial drive means is stopped.
JP2005699A 1990-01-12 1990-01-12 Scanning tunnel microscope device Expired - Fee Related JPH0625643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005699A JPH0625643B2 (en) 1990-01-12 1990-01-12 Scanning tunnel microscope device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005699A JPH0625643B2 (en) 1990-01-12 1990-01-12 Scanning tunnel microscope device

Publications (2)

Publication Number Publication Date
JPH03210406A true JPH03210406A (en) 1991-09-13
JPH0625643B2 JPH0625643B2 (en) 1994-04-06

Family

ID=11618352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005699A Expired - Fee Related JPH0625643B2 (en) 1990-01-12 1990-01-12 Scanning tunnel microscope device

Country Status (1)

Country Link
JP (1) JPH0625643B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415601A (en) * 1987-07-10 1989-01-19 Hitachi Ltd Scan-type tunnel electron microscope

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415601A (en) * 1987-07-10 1989-01-19 Hitachi Ltd Scan-type tunnel electron microscope

Also Published As

Publication number Publication date
JPH0625643B2 (en) 1994-04-06

Similar Documents

Publication Publication Date Title
JPH01169304A (en) Measuring method of scanning type tunnel microscope
JPH0682248A (en) Method and apparatus for inspecting surface profile using interatomic-force scanning microscope
JPH03210406A (en) Scanning type tunnel microscope instrument
JP2003014605A (en) Scanning type probe microscope
JPH04359104A (en) Scanning tunnelling microscope
JP2556591B2 (en) Scanning tunneling microscope
JPH03180702A (en) Scan control method
JP2571625B2 (en) Scanning tunnel microscope
JP3548972B2 (en) Probe moving method and moving mechanism for scanning probe microscope
JPH1010140A (en) Scanning probe microscope
JP2002372488A (en) Method for bringing closer probe of scanning-type probe microscope
JP3377918B2 (en) Scanning probe microscope
JP2002323425A (en) Scanning probe microscope and method of positioning probe
JP3325373B2 (en) Probe approach method for probe microscope equipment
JP3588701B2 (en) Scanning probe microscope and its measuring method
JPH10288619A (en) Scanning probe microscope
JPH0293304A (en) Microscopic device
JPH04318404A (en) Fine and coarse adjustment interlocking type scanning tunnel microscope
JP2001133381A (en) Scanning probe microscope
JP2691460B2 (en) Tunnel current detector
JPH04249704A (en) Apparatus and method for fine processing
JPS63281002A (en) Body surface state access system
JP3219258B2 (en) Preparation method for scanning probe microscope measurement
JPH06281445A (en) Scanner system
JPH09281119A (en) Probe-sample approach mechanism of scanning type probe microscope

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080406

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees