JPH04318404A - Fine and coarse adjustment interlocking type scanning tunnel microscope - Google Patents

Fine and coarse adjustment interlocking type scanning tunnel microscope

Info

Publication number
JPH04318404A
JPH04318404A JP8528091A JP8528091A JPH04318404A JP H04318404 A JPH04318404 A JP H04318404A JP 8528091 A JP8528091 A JP 8528091A JP 8528091 A JP8528091 A JP 8528091A JP H04318404 A JPH04318404 A JP H04318404A
Authority
JP
Japan
Prior art keywords
movement mechanism
probe
fine movement
coarse
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8528091A
Other languages
Japanese (ja)
Inventor
Yasuhiko Fukuchi
福地 康彦
Akira Hashimoto
昭 橋本
Eiichi Hazaki
栄市 羽崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd, Hitachi Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP8528091A priority Critical patent/JPH04318404A/en
Publication of JPH04318404A publication Critical patent/JPH04318404A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q10/00Scanning or positioning arrangements, i.e. arrangements for actively controlling the movement or position of the probe
    • G01Q10/02Coarse scanning or positioning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q10/00Scanning or positioning arrangements, i.e. arrangements for actively controlling the movement or position of the probe
    • G01Q10/04Fine scanning or positioning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/10STM [Scanning Tunnelling Microscopy] or apparatus therefor, e.g. STM probes
    • G01Q60/16Probes, their manufacture, or their related instrumentation, e.g. holders

Abstract

PURPOSE:To enable a probe to trace the surface of a sample even when the surface is greatly rough by interlockingly moving a fine adjustment mechanism and a coarse adjustment mechanism based on the minute displacement state of the probe in an approaching/separating direction to the sample. CONSTITUTION:A tunnel current detector 6 detects a tunnel current which starts to flow when a probe 1 approaches the surface of a sample 2 with the distance of the atomic level, with feeding the current as a signal to a fine adjustment mechanism control device 7. An instruction signal to control the fine adjustment of the probe 1 is supplied from the device 7 to a fine adjustment mechanism 3. A device 10 for detecting/evaluating the state of the fine adjustment mechanism receives positional data in the Z-axis direction of the probe 1 input from the device 7, compares with a reference data, and activates a coarse adjustment mechanism control device 9 when it judges that the position of the probe 1 cannot be changed as required only by the shift through the fine adjustment. When a coarse adjustment mechanism 4 is to be driven, the device 9 supplies arm instruction signal, upon necessities, to the device 7 so as to execute a required adjustment to the position of the probe 1.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、粗動・微動連動型走査
型トンネル顕微鏡に係り、特に、試料に対する探針の距
離を調節する粗動機構と微動機構を連動させ、試料表面
の凹凸が大きい場合にも測定を可能にした粗動・微動連
動型走査型トンネル顕微鏡に関する。
[Industrial Application Field] The present invention relates to a scanning tunneling microscope with coarse and fine movement, and in particular, a coarse movement mechanism and a fine movement mechanism that adjust the distance of a probe to a sample are linked to eliminate unevenness on the surface of the sample. This article relates to a scanning tunneling microscope with coarse and fine movements that enables measurement even in large cases.

【0002】0002

【従来の技術】走査型トンネル顕微鏡による測定動作で
は、探針を、観察対象である試料の表面に対し原子レベ
ルの距離にて接近させ、探針と試料表面との間にトンネ
ル電流を流した状態において、測定するため試料の表面
上で探針を走査動作させた時、トンネル電流値が常に一
定になるように、試料表面に対する探針の距離を一定に
保持させる。かかる測定動作では、探針が試料の表面を
走査する時、試料表面の凹凸に追従してその位置を微動
状態にて変化させるため、探針の位置のデータに基づい
て、試料表面の原子レベルの凹凸に関するデータを、画
像情報として得ることができる。探針と試料表面との間
が所定距離になった時にトンネル電流が流れるようにす
るためには、探針に対し電圧源から所要電圧を印加させ
ておく必要がある。また、探針から取り出されるトンネ
ル電流は常時観察され、得られたトンネル電流の値の変
化に基づき探針の位置に対しサーボ制御が実行される構
成を有する。信号処理系統では、探針の表面走査のデー
タと、探針と試料表面との距離のデータが記憶され、こ
れらのデータは、試料表面の画像情報を作成するのに使
用される。探針と試料表面の距離を調整するには、探針
の位置を大きい距離で変化させる粗動機構と、微小距離
で変化させる微動機構が用いられる。探針は、例えばト
ライポッドと呼ばれる、直角に配置された3本の微動用
圧電素子からなる微動機構の所定箇所に取り付けられ、
さらに、この微動機構は、探針を試料に対し接近・離反
させる方向のみに移動する粗動機構に配設されている。 このように、探針の位置は、粗動機構と微動機構によっ
て、調整される。粗動機構は、通常、探針をトンネル電
流が流れるまでの距離に移動させることのみのために動
作し、微動機構は試料表面の近傍で探針を走査させ、か
つ探針と試料表面との距離をトンネル電流が一定電流に
なるように調整するために動作する。従って、粗動機構
の動作と微動機構の動作はそれぞれ目的が異なるため、
各動作は独立した制御の下で行われるのが、一般的であ
った。
[Prior Art] In measurement operations using a scanning tunneling microscope, a probe is brought close to the surface of a sample to be observed at an atomic level distance, and a tunneling current is passed between the probe and the sample surface. In this state, when the probe is scanned over the surface of the sample for measurement, the distance of the probe relative to the sample surface is kept constant so that the tunneling current value is always constant. In such measurement operations, when the probe scans the surface of the sample, it follows the unevenness of the sample surface and changes its position in a state of slight movement. Data regarding the unevenness of the image can be obtained as image information. In order to cause a tunnel current to flow when a predetermined distance is reached between the probe and the sample surface, it is necessary to apply a required voltage to the probe from a voltage source. Further, the tunneling current taken out from the probe is constantly observed, and servo control is performed on the position of the probe based on changes in the value of the obtained tunneling current. In the signal processing system, data on the surface scanning of the probe and data on the distance between the probe and the sample surface are stored, and these data are used to create image information of the sample surface. To adjust the distance between the probe and the sample surface, a coarse movement mechanism that changes the position of the probe over large distances and a fine movement mechanism that changes the position of the probe over small distances are used. The probe is attached, for example, to a predetermined location of a fine movement mechanism called a tripod, which consists of three fine movement piezoelectric elements arranged at right angles.
Further, this fine movement mechanism is disposed in a coarse movement mechanism that moves the probe only in the direction of approaching and moving away from the sample. In this way, the position of the probe is adjusted by the coarse movement mechanism and the fine movement mechanism. The coarse movement mechanism normally operates only to move the probe to a distance that allows tunneling current to flow, while the fine movement mechanism moves the probe close to the sample surface and moves the probe to the distance between the probe and the sample surface. It operates to adjust the distance so that the tunnel current becomes a constant current. Therefore, since the operations of the coarse adjustment mechanism and the operations of the fine adjustment mechanism have different purposes,
It was common for each operation to be performed under independent control.

【0003】また粗動機構の動作中に、微動機構をサー
ボ制御するという動作は行われていたが、この動作は見
掛け上連動しているように見えるが、双方の動作状態を
把握した状態で動作させている訳ではないので、実質的
に連動する制御動作とはなっていなかった。
[0003]Also, while the coarse movement mechanism is operating, the fine movement mechanism is servo controlled. Although these operations appear to be linked, it is difficult to understand the operating status of both mechanisms. Since they were not operating, the control operations were not substantially linked.

【0004】0004

【発明が解決しようとする課題】従来の走査型トンネル
顕微鏡では、粗動機構と微動機構の各動作が独立してお
り、各動作が相互に連動するようには構成されていない
ので、微動機構によって試料表面の所定領域を測定する
動作を行っている最中に、試料表面の凹凸が大きいこと
に起因して微動機構の可動範囲が限界に達した場合に、
測定が不可能になったり、あるいは、探針が逃げ切れな
くなり、探針と試料が衝突して双方が損傷するという問
題が生じた。上記の如き試料表面の凹凸に追従不能によ
る衝突は、凹凸が大きい場合には頻繁に発生し、その度
に走査型トンネル顕微鏡を停止させ、再度、測定動作を
行わせなければならず、測定操作が極めて面倒になると
いう不具合を有していた。
[Problems to be Solved by the Invention] In conventional scanning tunneling microscopes, each operation of the coarse movement mechanism and fine movement mechanism is independent, and each movement is not configured to interlock with each other. When the fine movement mechanism reaches its limit due to large irregularities on the sample surface while measuring a predetermined area on the sample surface,
Problems arose in which measurements became impossible, or the probe could no longer escape, causing the probe and sample to collide and damage both. Collisions due to the inability to follow the unevenness of the sample surface as described above occur frequently when the unevenness is large, and each time the scanning tunneling microscope must be stopped and the measurement operation performed again, the measurement operation This has the disadvantage that it becomes extremely troublesome.

【0005】本発明の目的は、上記問題に鑑み、粗動機
構と微動機構の動作を連動させるように制御し、もって
試料表面の凹凸が大きい場合にも、この表面に追従でき
るようにした粗動・微動連動型走査型トンネル顕微鏡を
提供することにある。
[0005] In view of the above problems, an object of the present invention is to control the coarse movement mechanism and fine movement mechanism so that their operations are interlocked, so that even when the surface of a sample has large irregularities, it is possible to follow the surface. The object of the present invention is to provide a scanning tunneling microscope that combines dynamic and fine movements.

【0006】[0006]

【課題を解決するための手段】本発明に係る粗動・微動
連動型走査型トンネル顕微鏡は、探針と、試料の表面に
対する探針の位置を大きく変化させる粗動機構と、試料
の表面の上で探針の位置を小さく変化させる微動機構と
、探針と試料との間にトンネル電流を流すための電圧を
印加する電圧印加手段と、トンネル電流を測定する測定
手段と、測定されるトンネル電流値が一定に保持される
ように微動機構を介して探針と試料との間の距離を制御
すると共に、微動機構を介して探針に試料の表面を走査
する微動機構制御手段と、探針で得られる試料の表面に
関するデータを記録・処理するデータ処理手段と、試料
の表面を画像として表示する表示手段を備える走査型ト
ンネル顕微鏡であって、粗動機構の動作を制御する粗動
機構制御手段と、微動機構によって駆動される探針が微
動機構の可動範囲内でどの位置にあるかを検出し、この
検出情報に基づき粗動機構制御手段に指令を与え、探針
が微動機構による可動範囲内にあるように探針の位置を
変位させる微動機構状態検出・判定手段とを備えるよう
に構成される。前記の構成において、粗動機構制御手段
は、微動機構状態検出・判定手段から指令信号を受けた
ときに微動機構制御手段に指令を出し、探針が微動機構
による可動範囲内の適切な位置に存するように、粗動に
よる変位に依存して探針を微動変位させることを特徴と
する。前記の構成において、微動機構状態検出・判定手
段は、探針の微動による位置情報を、微動機構制御装置
または微動機構から得ることを特徴とする。
[Means for Solving the Problems] A scanning tunneling microscope coupled with coarse and fine movements according to the present invention includes a probe, a coarse movement mechanism that greatly changes the position of the probe with respect to the surface of the sample, and a coarse movement mechanism that greatly changes the position of the probe with respect to the surface of the sample. a fine movement mechanism that changes the position of the probe small at the top, a voltage application means that applies a voltage to cause a tunnel current to flow between the probe and the sample, a measurement means that measures the tunnel current, and a tunnel to be measured. A fine movement mechanism control means that controls the distance between the probe and the sample via the fine movement mechanism so that the current value is held constant, and scans the surface of the sample with the probe via the fine movement mechanism; A scanning tunneling microscope equipped with a data processing means for recording and processing data regarding the surface of a sample obtained with a needle, and a display means for displaying the surface of the sample as an image, the coarse movement mechanism controlling the operation of the coarse movement mechanism. The control means and the position of the probe driven by the fine movement mechanism are detected within the movable range of the fine movement mechanism, and based on this detection information, a command is given to the coarse movement mechanism control means, and the probe is driven by the fine movement mechanism. The probe is configured to include a fine movement mechanism state detection/judgment means for displacing the position of the probe so that it is within the movable range. In the above configuration, the coarse movement mechanism control means issues a command to the fine movement mechanism control means when receiving a command signal from the fine movement mechanism state detection/judgment means, and positions the probe at an appropriate position within the movable range by the fine movement mechanism. As described above, the probe is characterized in that the probe is finely displaced depending on the coarse displacement. In the above configuration, the fine movement mechanism state detection/judgment means is characterized in that the fine movement mechanism state detection/judgment means obtains position information due to fine movement of the probe from the fine movement mechanism control device or the fine movement mechanism.

【0007】[0007]

【作用】本発明による粗動・微動連動型走査型トンネル
顕微鏡では、試料に対する接近・離反方向の探針の変位
について、微動機構による探針の微動変位の状態を監視
しながら、微動機構と粗動機構を連動し得る構成とし、
試料表面の凹凸が大きくて、微動の可動範囲外に移動す
る必要がある時に、微動機構状態検出・判定手段の指令
に基づき粗動機構制御手段および粗動機構を動作させ、
粗動動作により探針を前記の可動範囲外に移動させると
共に、同時に微動機構制御手段と微動機構を動作させ、
微動機構による移動位置を所要の位置に調整する。以上
の一連の動作は自動的に行われる。
[Function] In the scanning tunneling microscope with coarse and fine movements linked according to the present invention, the displacement of the probe in the direction toward and away from the sample is monitored by the fine movement mechanism and the fine movement mechanism. The movement mechanism is configured to be able to interlock,
When the sample surface has large irregularities and needs to be moved outside the fine movement range, the coarse movement mechanism control means and the coarse movement mechanism are operated based on commands from the fine movement mechanism state detection/judgment means;
moving the probe out of the movable range by coarse movement and simultaneously operating the fine movement mechanism control means and the fine movement mechanism;
Adjust the movement position by the fine movement mechanism to the required position. The above series of operations are performed automatically.

【0008】[0008]

【実施例】以下に、本発明の実施例を添付図面に基づい
て詳細に説明する。図1は本発明に係る走査型トンネル
顕微鏡のシステム構成を示すブロック図、図2は試料に
対する探針の移動関係を示す斜視図である。図1におい
て1は探針であり、2は試料である。探針1は、試料2
に対して、先端部が試料2の測定表面に対してほぼ直角
の角度で臨むように配置される。探針1は、通常、トン
ネル電流が流れるように伝導性の部材で作られる。図示
例では、探針1は横置き、試料2は縦置きであるが、こ
られの配置姿勢は任意に選択することができる。探針1
は微動機構3に取り付けられる。微動機構3の構造は、
例えばトライポッド微動素子として既知であるため、詳
細に図示しない。トライポッド微動素子について概説す
れば、探針1の軸方向(Z軸方向とする)とこれに直角
なX軸及びY軸の各方向に関する3つの圧電素子を備え
、Z軸方向圧電素子で、試料2に対する探針1との距離
を調節し、すなわち、試料に対する接近・離反(または
前進・後退)を実行し、X軸およびY軸の各方向の圧電
素子で試料の測定表面の走査を行うように構成されてい
る。各軸方向については、図2に示されている。微動機
構2の各軸方向の変位に関与する圧電素子は、探針1に
数μmから十数μmの変位を行わせるための微動用の圧
電素子である。この微動機構2は、さらに、粗動機構4
の前側端に取り付けられる。粗動機構4は、通称インチ
ワームと呼ばれるもので、探針1を大きな移動距離にて
試料2に対して移動させる機能を有する。粗動機構の構
造を概説すると、伸縮を行う粗動用圧電素子と、その前
後に配設された、当該粗動用圧電素子をクランプまたは
アンクランプするための前後のクランプ部とからなる。 粗動機構4では、圧電素子と前後のクランプ部の動作を
適宜なタイミングでそれぞれ動作させることにより、し
ゃくとり虫運動を行い、探針1を粗動させ、探針1と試
料2の距離を変化させる。一方、試料2は試料台5に固
定されている。実際上、粗動機構4や試料台5を支持す
るための他の構成物が周辺に設けられている。しかし、
ここでは、詳細な説明を省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a block diagram showing the system configuration of a scanning tunneling microscope according to the present invention, and FIG. 2 is a perspective view showing the movement relationship of a probe with respect to a sample. In FIG. 1, 1 is a probe, and 2 is a sample. The probe 1 is the sample 2
In contrast, the tip portion is arranged so as to face the measurement surface of the sample 2 at an angle substantially perpendicular to the measurement surface. The probe 1 is usually made of a conductive material so that tunneling current flows therethrough. In the illustrated example, the probe 1 is placed horizontally and the sample 2 is placed vertically, but the orientation of these can be arbitrarily selected. Probe 1
is attached to the fine movement mechanism 3. The structure of the fine movement mechanism 3 is
For example, since it is known as a tripod fine movement element, it is not shown in detail. To give an overview of the tripod fine movement element, it is equipped with three piezoelectric elements in the axial direction of the probe 1 (referred to as the Z-axis direction) and in the X-axis and Y-axis directions perpendicular to this. The distance between the probe 1 and the sample 2 is adjusted, that is, the probe 1 is moved toward and away from the sample (or moved forward and backward), and the measurement surface of the sample is scanned with the piezoelectric element in each direction of the X and Y axes. It is composed of The directions of each axis are shown in FIG. The piezoelectric elements involved in the displacement of the fine movement mechanism 2 in each axial direction are piezoelectric elements for fine movement that cause the probe 1 to be displaced by several μm to more than ten μm. This fine movement mechanism 2 further includes a coarse movement mechanism 4.
attached to the front end of the The coarse movement mechanism 4 is commonly called an inchworm, and has a function of moving the probe 1 over a large distance relative to the sample 2. To outline the structure of the coarse movement mechanism, it consists of a coarse movement piezoelectric element that expands and contracts, and front and rear clamp parts disposed before and after the coarse movement piezoelectric element for clamping or unclamping the coarse movement piezoelectric element. In the coarse movement mechanism 4, by operating the piezoelectric element and the front and rear clamp parts at appropriate timings, a scooping movement is performed, the probe 1 is coarsely moved, and the distance between the probe 1 and the sample 2 is reduced. change. On the other hand, the sample 2 is fixed to a sample stage 5. In fact, other components for supporting the coarse movement mechanism 4 and the sample stage 5 are provided around it. but,
A detailed explanation will be omitted here.

【0009】探針1と試料2との間には、トンネル電流
検出器6が配設される。トンネル電流検出器6は、内部
にトンネル電流を流すための電源要素を備え、探針1と
試料2との間に比較的に低い所定の電圧を印加している
。かかる状態で、探針1が試料2の表面に対し原子レベ
ルの距離に接近すると、トンネル電流が流れるので、こ
のトンネル電流を検出し、次段の微動機構制御装置7に
信号として与える。微動機構制御装置7は、第1の機能
として、探針1の微動動作を制御するための指令信号を
微動機構3に与え、もって探針1の測定のための微動動
作を制御する機能を有する。前述の通り、微動機構3は
各軸方向のための3つの微動用圧電素子を有し、それぞ
れの微動用圧電素子が微動機構制御装置7によって原則
的に独立して制御される。Z軸方向の微動用圧電素子で
は、微動機構制御装置7内のサーボ回路(図示せず)に
よって、検出されるトンネル電流が常に一定値になるよ
うに、探針1の試料表面に対する距離を一定とするサー
ボ制御が行われる。またX軸及びY軸の各方向の微動用
圧電素子では、微動機構制御装置7内のXY走査部(図
示せず)によって、測定が必要とされる領域を走査する
ように動作制御が行われる。また、微動機構制御装置4
は、内部にさらに信号処理装置(図示せず)を備えてお
り、第2の機能として、信号処理装置で求められた探針
1のX,Y,Zの各軸方向の位置データを用いてデータ
表示装置8に試料2の測定表面に関する画像を表示させ
る機能を有している。
A tunnel current detector 6 is disposed between the probe 1 and the sample 2. The tunnel current detector 6 includes a power supply element for causing a tunnel current to flow therein, and applies a relatively low predetermined voltage between the probe 1 and the sample 2. In this state, when the probe 1 approaches the surface of the sample 2 at an atomic level distance, a tunnel current flows, and this tunnel current is detected and given as a signal to the next-stage fine movement mechanism control device 7. The fine movement mechanism control device 7 has, as a first function, a function of giving a command signal for controlling the fine movement of the probe 1 to the fine movement mechanism 3, thereby controlling the fine movement of the probe 1 for measurement. . As described above, the fine movement mechanism 3 has three piezoelectric elements for fine movement in each axial direction, and each piezoelectric element for fine movement is basically independently controlled by the fine movement mechanism control device 7. In the piezoelectric element for fine movement in the Z-axis direction, the distance of the probe 1 to the sample surface is kept constant by a servo circuit (not shown) in the fine movement mechanism control device 7 so that the detected tunnel current is always a constant value. Servo control is performed. In addition, the piezoelectric elements for fine movement in each direction of the X-axis and Y-axis are controlled by an XY scanning section (not shown) in the fine movement mechanism control device 7 to scan the area where measurement is required. . In addition, the fine movement mechanism control device 4
is further equipped with a signal processing device (not shown) inside, and its second function is to use the position data of the probe 1 in the X, Y, and Z axis directions determined by the signal processing device. It has a function of displaying an image regarding the measurement surface of the sample 2 on the data display device 8.

【0010】次に、9は粗動機構制御装置である。この
粗動機構制御装置9は、前述の粗動機構4による探針1
の粗動による接近・離反動作を制御するための手段であ
る。粗動機構制御装置9は、粗動用圧電素子の伸縮動作
、前後のクランプ部のクランプ・アンクランプの各動作
を適切なタイミングで制御し、粗動機構4にしゃくとり
虫的な運動を行わせ、探針1に粗動移動を行わせる。 この構成および動作は既知であるので、詳細な説明は省
略する。
Next, 9 is a coarse movement mechanism control device. This coarse movement mechanism control device 9 controls the probe 1 by the above-mentioned coarse movement mechanism 4.
This is a means for controlling approach and departure movements due to coarse movement. The coarse movement mechanism control device 9 controls the expansion and contraction operations of the coarse movement piezoelectric element and the clamping and unclamping operations of the front and rear clamp sections at appropriate timings, and causes the coarse movement mechanism 4 to perform a scoop-like movement. , causes the probe 1 to perform coarse movement. Since this configuration and operation are known, detailed explanation will be omitted.

【0011】図2を参照すると、探針1と試料2の測定
表面との位置関係、および探針1の移動方向が明確に理
解される。
Referring to FIG. 2, the positional relationship between the probe 1 and the measurement surface of the sample 2 and the direction of movement of the probe 1 can be clearly understood.

【0012】次に、微動機構制御装置7と粗動機構制御
装置9との間には、さらに微動機構状態検出・判定装置
10が配設される。微動機構状態検出・判定装置10は
、微動機構制御装置7から探針1のZ軸方向の位置デー
タを入力し、この位置データを、微動機構3のZ軸方向
の圧電素子の動作性能に関する基準データと比較し、こ
の微動用圧電素子による変位だけでは、必要とされる位
置変化を探針1に与えることができないと判断されたと
きには、粗動機構制御装置9を動作させるという機能を
有する。また粗動機構制御装置9は、微動機構状態検出
・判定装置10の動作指令に基づき粗動機構4を動作さ
せる時には、必要に応じて、微動機構制御装置7に対し
、探針1の位置に関し所要の位置調整を行うための指令
信号を与えるように、構成されている。微動機構状態検
出・判定装置10の検出動作に伴う微動機構制御装置7
と粗動機構制御装置9の各制御動作の具体例について説
明する。微動機構状態検出・判定装置10は、微動機構
制御装置7および微動機構3の各動作に基づいて探針1
が試料2の所定表面の凹凸に追従して走査を行っている
状態において、次のような条件(1)〜(3)が発生し
たとき、粗動機構制御装置9を動作させ、探針1のZ軸
方向の位置を、微動機構3と粗動機構4の各動作の合成
動作により、制御する。
Next, a fine movement mechanism state detection/determination device 10 is further provided between the fine movement mechanism control device 7 and the coarse movement mechanism control device 9. The fine movement mechanism state detection/judgment device 10 inputs the position data of the probe 1 in the Z-axis direction from the fine movement mechanism control device 7, and uses this position data as a standard regarding the operational performance of the piezoelectric element in the Z-axis direction of the fine movement mechanism 3. It has a function of operating the coarse movement mechanism control device 9 when comparing the data and determining that the required positional change cannot be given to the probe 1 only by the displacement by the fine movement piezoelectric element. Further, when operating the coarse movement mechanism 4 based on the operation command from the fine movement mechanism state detection/judgment device 10, the coarse movement mechanism control device 9 sends information regarding the position of the probe 1 to the fine movement mechanism control device 7 as needed. It is configured to provide command signals for making the required position adjustments. Fine movement mechanism control device 7 accompanying the detection operation of the fine movement mechanism state detection/judgment device 10
A specific example of each control operation of the coarse movement mechanism control device 9 will be explained. The fine movement mechanism state detection/judgment device 10 detects the probe 1 based on each operation of the fine movement mechanism control device 7 and the fine movement mechanism 3.
When the following conditions (1) to (3) occur while the probe is scanning by following the irregularities on the predetermined surface of the sample 2, the coarse movement mechanism control device 9 is operated and the probe 1 is The position in the Z-axis direction is controlled by a composite operation of the respective operations of the fine movement mechanism 3 and the coarse movement mechanism 4.

【0013】(1)  微動機構3のZ軸方向の圧電素
子が、離反動作にてその可動範囲の限界(または任意に
設定されたしきい値の距離)に到達した場合、粗動機構
制御装置9の制御動作を介して、粗動機構4に離反方向
の移動動作を行わせる。その粗動機構4による移動量は
、例えば、微動機構3による前記圧電素子の可動範囲の
1/2である。同時に、粗動機構制御装置9は、微動機
構制御装置7に対して、微動機構3による探針1の位置
を、微動機構3による可動範囲の中心位置に変位させる
制御を行うように指令を出す。これにより、粗動機構4
による所定量の移動の後には、微動機構3による可動範
囲の中心付近で探針1の微動動作が継続できる。 (2)  微動機構3のZ軸方向の圧電素子が、接近動
作にてその可動範囲の限界(または任意に設定されたし
きい値の距離)に到達した場合、粗動機構制御装置9の
制御動作を介して、粗動機構4に接近方向の移動動作を
行わせる。その粗動機構4による移動量は、例えば、微
動機構3による前記圧電素子の可動範囲の1/2である
。 この制御の場合には、粗動機構制御装置9は、微動機構
制御装置7に対して、微動機構3によって駆動される探
針1の位置を、微動機構による可動範囲の離反方向側の
端部に変位させる制御を行うように指令を出す。粗動機
構4による所定量の移動の後には、微動機構制御装置7
により再びトンネル電流が検出されるまでの位置に探針
1を接近動作させ、測定のための微動動作が継続される
。 (3)  微動機構3による探針1の移動が、可動範囲
における接近方向および離反方向の各限界の間を振動し
、安定しない場合には、粗動機構制御装置9により粗動
機構4で可動範囲の接近方向の限界に達しないように探
針1を大きく離反方向に移動させる。このような状況は
、前述した(1)と(2)の状況がほとんど同時に発生
した場合である。この状況は、振動作用によって探針1
と試料2の距離が変動する場合、または表面の凹凸が激
しい試料2を、制御系の応答速度よりも高い速度で測定
しようとする場合に発生する。
(1) When the piezoelectric element in the Z-axis direction of the fine movement mechanism 3 reaches the limit of its movable range (or an arbitrarily set threshold distance) due to the separation operation, the coarse movement mechanism control device Through the control operation 9, the coarse movement mechanism 4 is caused to perform a movement operation in the separating direction. The amount of movement by the coarse movement mechanism 4 is, for example, 1/2 of the movable range of the piezoelectric element by the fine movement mechanism 3. At the same time, the coarse movement mechanism control device 9 issues a command to the fine movement mechanism control device 7 to perform control to displace the position of the probe 1 by the fine movement mechanism 3 to the center position of the movable range by the fine movement mechanism 3. . As a result, the coarse movement mechanism 4
After the predetermined amount of movement by the fine movement mechanism 3, the fine movement of the probe 1 can be continued near the center of the movable range by the fine movement mechanism 3. (2) When the piezoelectric element in the Z-axis direction of the fine movement mechanism 3 reaches the limit of its movable range (or an arbitrarily set threshold distance) during the approach operation, the control of the coarse movement mechanism control device 9 Through the operation, the coarse movement mechanism 4 is caused to perform a movement operation in the approaching direction. The amount of movement by the coarse movement mechanism 4 is, for example, 1/2 of the movable range of the piezoelectric element by the fine movement mechanism 3. In this case, the coarse movement mechanism control device 9 instructs the fine movement mechanism control device 7 to adjust the position of the probe 1 driven by the fine movement mechanism 3 to the end of the movable range of the fine movement mechanism in the direction of separation. A command is issued to control the displacement. After a predetermined amount of movement by the coarse movement mechanism 4, the fine movement mechanism control device 7
The probe 1 is moved closer to the position until the tunneling current is detected again, and the fine movement for measurement is continued. (3) If the movement of the probe 1 by the fine movement mechanism 3 oscillates between the limits of the approach direction and the separation direction in the movable range and is not stable, the coarse movement mechanism control device 9 causes the coarse movement mechanism 4 to move the probe 1. The probe 1 is moved largely in the direction of separation so as not to reach the limit of the range in the direction of approach. This situation is a case where the situations (1) and (2) described above occur almost simultaneously. In this situation, the probe 1 is
This occurs when the distance between the sample 2 and the sample 2 changes, or when trying to measure a sample 2 with a highly uneven surface at a speed higher than the response speed of the control system.

【0014】以上の(1)〜(3)のそれぞれの条件を
判定するにあたって、微動機構状態検出・判定装置10
は、内部に演算処理手段および判定手段を備える。そし
て、これらの手段によって、探針1と試料2の表面との
位置データを取り込み、予め微動機構3のZ軸方向の圧
電素子の可動範囲の限界等を示すデータとを比較し、所
要の条件を満たすときに、前述の各制御を実行するため
の指令を、粗動機構制御装置9に出力する。
In determining each of the conditions (1) to (3) above, the fine movement mechanism state detection/judgment device 10
is internally equipped with arithmetic processing means and determination means. Then, by these means, position data between the probe 1 and the surface of the sample 2 is captured, and compared with data indicating the limit of the movable range of the piezoelectric element in the Z-axis direction of the fine movement mechanism 3, etc., and the required conditions are determined. When the conditions are satisfied, a command for executing each of the above-mentioned controls is output to the coarse movement mechanism control device 9.

【0015】前記実施例では、微動機構状態検出・判定
装置10は、微動機構制御装置7から探針1の位置デー
タを得ていたが、微動機構2から直接的に位置データを
得るように構成することもできる。
In the embodiment described above, the fine movement mechanism state detection/judgment device 10 obtained the position data of the probe 1 from the fine movement mechanism control device 7, but it is configured to obtain the position data directly from the fine movement mechanism 2. You can also.

【0016】[0016]

【発明の効果】以上の説明で明らかなように、本発明に
よれば、探針の移動に関し微動機構による移動動作と粗
動機構による移動動作とを所定条件下で連動できるよう
に構成したため、微動機構による試料表面の測定動作中
に接近・離反方向の可動範囲の限界に達した場合、粗動
機構を動作させることにより実質的に可動範囲を拡大す
ることができ、探針と試料の衝突を防ぎ、その損傷を防
止することができる。またかかる連動動作は自動的に行
えるようにしたため、特別に操作者が監視している必要
もない。さらに従来の走査型トンネル顕微鏡では、試料
表面の凹凸が大きなものでは、衝突が頻繁に起き、1回
の測定動作では完遂できなかったが、本発明による走査
型トンネル顕微鏡では衝突を確実に避けることができる
ので、1回の測定動作で測定を完了することが可能にな
った。
As is clear from the above description, according to the present invention, the movement of the probe is configured such that the movement operation by the fine movement mechanism and the movement movement by the coarse movement mechanism can be linked under predetermined conditions. If the fine movement mechanism reaches the limit of its movable range in the approach and departure directions during measurement of the sample surface, the coarse movement mechanism can be activated to substantially expand the movable range and prevent the probe from colliding with the sample. can be prevented and its damage can be prevented. Moreover, since such interlocking operations can be performed automatically, there is no need for special monitoring by the operator. Furthermore, with conventional scanning tunneling microscopes, when the sample surface has large irregularities, collisions occur frequently and the measurement cannot be completed in one operation, but with the scanning tunneling microscope of the present invention, collisions can be reliably avoided. This makes it possible to complete the measurement in one measurement operation.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明に係る走査型トンネル顕微鏡の構成を示
すブロック図である。
FIG. 1 is a block diagram showing the configuration of a scanning tunneling microscope according to the present invention.

【図2】探針と試料の表面との移動関係を図解するため
の要部斜視図である。
FIG. 2 is a perspective view of essential parts for illustrating the movement relationship between the probe and the surface of the sample.

【符号の説明】[Explanation of symbols]

1          探針 2          試料 3          微動機構 4          粗動機構 5          試料台 1 Probe 2 Sample 3 Fine movement mechanism 4 Coarse movement mechanism 5         Sample stage

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  探針と、試料の表面に対する前記探針
の位置を大きく変化させる粗動機構と、前記試料の表面
の上で前記探針の位置を小さく変化させる微動機構と、
前記探針と前記試料との間にトンネル電流を流すための
電圧を印加する電圧印加手段と、前記トンネル電流を測
定する測定手段と、測定されるトンネル電流値が一定に
保持されるように前記微動機構を介して前記探針と前記
試料との間の距離を制御すると共に、前記微動機構を介
して前記探針に前記試料の表面を走査する微動機構制御
手段と、前記探針で得られる前記試料の表面に関するデ
ータを記録・処理するデータ処理手段と、前記試料の表
面を画像として表示する表示手段を備える走査型トンネ
ル顕微鏡において、前記粗動機構の動作を制御する粗動
機構制御手段と、前記微動機構によって駆動される前記
探針が前記微動機構の可動範囲内にてどの位置にあるか
を検出し、この検出情報に基づき前記粗動機構制御手段
に指令を与え、前記探針が前記微動機構による可動範囲
内にあるように前記探針の位置を変位させる微動機構状
態検出・判定手段とを備えたことを特徴とする粗動・微
動連動型走査型トンネル顕微鏡。
1. A probe, a coarse movement mechanism that greatly changes the position of the probe with respect to the surface of the sample, and a fine movement mechanism that small changes the position of the probe on the surface of the sample.
voltage applying means for applying a voltage for causing a tunnel current to flow between the probe and the sample; a measuring means for measuring the tunnel current; fine movement mechanism control means for controlling the distance between the probe and the sample via a fine movement mechanism and causing the probe to scan the surface of the sample via the fine movement mechanism; A scanning tunneling microscope comprising a data processing means for recording and processing data regarding the surface of the sample, and a display means for displaying the surface of the sample as an image, a coarse movement mechanism control means for controlling the operation of the coarse movement mechanism; , the position of the probe driven by the fine movement mechanism is detected within the movable range of the fine movement mechanism, and based on this detection information, a command is given to the coarse movement mechanism control means, so that the probe is A scanning tunneling microscope coupled with coarse and fine movements, comprising fine movement mechanism state detection/judgment means for displacing the position of the probe so that it is within a movable range of the fine movement mechanism.
【請求項2】  請求項1記載の粗動・微動連動型走査
型トンネル顕微鏡において、前記粗動機構制御手段は、
前記微動機構状態検出・判定手段から指令信号を受けた
ときに前記微動機構制御手段に指令を出し、探針が前記
微動機構による可動範囲内の適切な位置に存するように
、粗動による変位に依存して前記探針を微動変位させる
ことを特徴とする粗動・微動連動型走査型トンネル顕微
鏡。
2. The coarse movement/fine movement interlocking type scanning tunneling microscope according to claim 1, wherein the coarse movement mechanism control means comprises:
When a command signal is received from the fine movement mechanism state detection/judgment means, a command is issued to the fine movement mechanism control means to adjust the displacement due to coarse movement so that the probe is at an appropriate position within the movable range of the fine movement mechanism. A coarse/fine movement interlocking type scanning tunneling microscope characterized in that the probe is finely displaced depending on the movement of the probe.
【請求項3】  請求項1または2記載の粗動・微動連
動型走査型トンネル顕微鏡において、前記微動機構状態
検出・判定手段は、前記探針の微動による位置情報を、
前記微動機構制御装置から得ることを特徴とする粗動・
微動連動型走査型トンネル顕微鏡。
3. In the scanning tunneling microscope coupled with coarse and fine movement according to claim 1, the fine movement mechanism state detection/judgment means detects position information due to fine movement of the probe.
A coarse movement characterized by being obtained from the fine movement mechanism control device.
Micro-motion-linked scanning tunneling microscope.
【請求項4】  請求項1または2記載の粗動・微動連
動型走査型トンネル顕微鏡において、前記微動機構状態
検出・判定手段は、前記探針の微動による位置情報を、
前記微動機構から得ることを特徴とする粗動・微動連動
型走査型トンネル顕微鏡。
4. In the scanning tunneling microscope coupled with coarse and fine movement according to claim 1, the fine movement mechanism state detection/judgment means detects position information due to fine movement of the probe.
A scanning tunneling microscope with coarse and fine movements coupled to the fine movement mechanism.
JP8528091A 1991-04-17 1991-04-17 Fine and coarse adjustment interlocking type scanning tunnel microscope Pending JPH04318404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8528091A JPH04318404A (en) 1991-04-17 1991-04-17 Fine and coarse adjustment interlocking type scanning tunnel microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8528091A JPH04318404A (en) 1991-04-17 1991-04-17 Fine and coarse adjustment interlocking type scanning tunnel microscope

Publications (1)

Publication Number Publication Date
JPH04318404A true JPH04318404A (en) 1992-11-10

Family

ID=13854158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8528091A Pending JPH04318404A (en) 1991-04-17 1991-04-17 Fine and coarse adjustment interlocking type scanning tunnel microscope

Country Status (1)

Country Link
JP (1) JPH04318404A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5773824A (en) * 1997-04-23 1998-06-30 International Business Machines Corporation Method for improving measurement accuracy using active lateral scanning control of a probe
US5801381A (en) * 1997-05-21 1998-09-01 International Business Machines Corporation Method for protecting a probe tip using active lateral scanning control
US5902928A (en) * 1997-06-02 1999-05-11 International Business Machines Corporation Controlling engagement of a scanning microscope probe with a segmented piezoelectric actuator
JP2008304211A (en) * 2007-06-05 2008-12-18 Jeol Ltd Automatic tuning method of cantilever

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5773824A (en) * 1997-04-23 1998-06-30 International Business Machines Corporation Method for improving measurement accuracy using active lateral scanning control of a probe
US5801381A (en) * 1997-05-21 1998-09-01 International Business Machines Corporation Method for protecting a probe tip using active lateral scanning control
US5902928A (en) * 1997-06-02 1999-05-11 International Business Machines Corporation Controlling engagement of a scanning microscope probe with a segmented piezoelectric actuator
JP2008304211A (en) * 2007-06-05 2008-12-18 Jeol Ltd Automatic tuning method of cantilever

Similar Documents

Publication Publication Date Title
US5081353A (en) Combined scanning electron and scanning tunnelling microscope apparatus and method
CA1315898C (en) Scanning tunneling microscope and surface topographic observation method
JP3341933B2 (en) Scanning method and scanning device for workpiece surface
US7391022B2 (en) Scanning probe microscope
US10126325B2 (en) Scanning probe microscope
JP2005069972A (en) Method for controlling travel in probe in scanning probe microscope
JPH04318404A (en) Fine and coarse adjustment interlocking type scanning tunnel microscope
JPH04212001A (en) Scanning tunnel microscope
JP3118108B2 (en) Scanning probe microscope and its measuring method
JPH09166607A (en) Scanning probe microscope and its measuring method
JPH05164511A (en) Scanning type tunnel microscope
JPH03180702A (en) Scan control method
JP2919997B2 (en) Scanning tunnel microscope measurement method
JPH0293304A (en) Microscopic device
JP3325373B2 (en) Probe approach method for probe microscope equipment
JP2003028772A (en) Scanning probe microscope and its measurement setting method
JPH09203740A (en) Scanning type probe microscope
JP2000214175A (en) Measuring method for scanning probe microscope
JPH05203443A (en) Scanning probemicroscope and observation method of sample using the same
JP2002323425A (en) Scanning probe microscope and method of positioning probe
JP3078352B2 (en) Scanning tunnel microscope measurement method
JPH05209713A (en) Scan type electron microscope with scan type tunnel microscope
JPS63281002A (en) Body surface state access system
JPH04320903A (en) Scanning tunneling microscope and controlling method for probe moving mechanism thereof
JPH0650707A (en) Scanning tunnel electron microscope