JPH0320994B2 - - Google Patents

Info

Publication number
JPH0320994B2
JPH0320994B2 JP59065420A JP6542084A JPH0320994B2 JP H0320994 B2 JPH0320994 B2 JP H0320994B2 JP 59065420 A JP59065420 A JP 59065420A JP 6542084 A JP6542084 A JP 6542084A JP H0320994 B2 JPH0320994 B2 JP H0320994B2
Authority
JP
Japan
Prior art keywords
power supply
control
variable frequency
output
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59065420A
Other languages
Japanese (ja)
Other versions
JPS60210193A (en
Inventor
Shinji Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59065420A priority Critical patent/JPS60210193A/en
Priority to KR1019850000354A priority patent/KR890005315B1/en
Priority to US06/698,850 priority patent/US4691156A/en
Priority to CA000474032A priority patent/CA1235734A/en
Priority to EP85101510A priority patent/EP0160787B1/en
Priority to DE8585101510T priority patent/DE3562963D1/en
Publication of JPS60210193A publication Critical patent/JPS60210193A/en
Publication of JPH0320994B2 publication Critical patent/JPH0320994B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は可変周波数電源(以下VF電源と略
称する)で、電動機に電力を供給し、電動機でフ
アンポンプ等の回転体を駆動する可変周波数電源
の運転装置に関する。
The present invention relates to an operating device for a variable frequency power source (hereinafter abbreviated as VF power source) that supplies power to an electric motor and drives a rotating body such as a fan pump with the electric motor.

【従来の技術】[Conventional technology]

従来この種の装置として第1図に示すものがあ
つた。図に於て、1は商用電源、2BはVF電源、
3は電動機、4は回転体、5Aは制御装置、6は
制御信号、7Aは制御装置5Aの制御出力信号、
8は電動機3と回転体4を機械的に結合するため
の連結器、9は開閉器である。 また、第2図は第1図の説明用タイムチヤート
図で、t1は制御出力信号7Aに断線(接続端子の
はずれ、ゆるみ等を含む)が発生した時のタイミ
ングスタート点、t2は断線発生t1後にシステム出
力が安定する時のタイミングストツプ点、Fは
VF電源2Bの出力周波数、nは電動機3の回転
数、Qは回転体4の出力風量を示す。 次に第1図の動作について以下に説明する。 商用電源1より開閉器9を介してVF電源2B
に電源電圧が印加されている場合、VF電源2B
の出力周波数Fと電動機3の回転数nとの間には
(1)式の関係がある。 n=120×F/P ……(1) 但し、P:電動機3の極数 従つて、回転体4をフアンとして説明すれば、
フアン4の出力風量Qは回転数nにほぼ比例して
変化する。VF電源2Bを発電プラントのボイラ
に適用しているとすれば、電力系統からの要請や
燃料の供給状況の変化に対して出力風量Qの発生
要求に変化があり、この変化信号が制御信号6と
して与えられる。この制御信号6は制御装置5A
で制御に適する制御出力信号7A(例えば、4〜
20mAの電流信号)に変換されてVF電源2Bに
伝達され、出力周波数Fを要求の値に追従させ(1)
式に示した電動機3数nの変化に伴うフアン4の
出力風量Qを変化させる。 従来のVF電源2Bは以上のように構成されて
いるので、第2図のようにt1時点で制御装置5A
とVF電源2Bとの間に信号線の断線等が発生す
ると制御信号6は正常であるにもかかわらず、制
御出力信号7Aが零に変化してVF電源2Bの出
力周波数Fを第2図のように変化させることにな
る。 従つて、出力周波数Fが変化すると(1)式の如く
電動機3の回転数n、及び、フアン4の出力風量
Qが変化する。すなわち回転体4の出力が変化し
てはならない時に出力が大巾に変化してプラント
停止等の事故に波及するという欠点があつた。
A conventional device of this type is shown in FIG. In the figure, 1 is commercial power supply, 2B is VF power supply,
3 is an electric motor, 4 is a rotating body, 5A is a control device, 6 is a control signal, 7A is a control output signal of the control device 5A,
8 is a coupler for mechanically coupling the electric motor 3 and the rotating body 4, and 9 is a switch. In addition, Fig. 2 is a time chart for explaining Fig. 1, where t 1 is the timing start point when a disconnection (including disconnection or loosening of the connection terminal, etc.) occurs in the control output signal 7A, and t 2 is the timing start point when the disconnection occurs in the control output signal 7A. The timing stop point, F, when the system output stabilizes after occurrence t1 is
The output frequency of the VF power supply 2B, n indicates the rotation speed of the electric motor 3, and Q indicates the output air volume of the rotating body 4. Next, the operation shown in FIG. 1 will be explained below. VF power supply 2B from commercial power supply 1 via switch 9
When the power supply voltage is applied to VF power supply 2B
Between the output frequency F and the rotation speed n of the electric motor 3 is
There is a relationship expressed by equation (1). n=120×F/P...(1) However, P: Number of poles of electric motor 3 Therefore, if the rotating body 4 is explained as a fan,
The output air volume Q of the fan 4 changes approximately in proportion to the rotation speed n. If the VF power supply 2B is applied to the boiler of a power generation plant, there will be a change in the generation request for the output air volume Q in response to a request from the power system or a change in the fuel supply situation, and this change signal will be the control signal 6. given as. This control signal 6 is the control device 5A.
Control output signal 7A suitable for control (for example, 4~
20mA current signal) and transmitted to the VF power supply 2B, making the output frequency F follow the required value (1)
The output air volume Q of the fan 4 is changed as the number n of the electric motors 3 shown in the equation changes. Since the conventional VF power supply 2B is configured as described above, the control device 5A is activated at time t1 as shown in FIG.
If a break in the signal line or the like occurs between the VF power supply 2B and the control signal 6, the control output signal 7A changes to zero, causing the output frequency F of the VF power supply 2B to change as shown in Fig. 2. It will be changed like this. Therefore, when the output frequency F changes, the rotation speed n of the electric motor 3 and the output air volume Q of the fan 4 change as shown in equation (1). That is, there is a drawback that the output of the rotating body 4 changes drastically when it should not change, which may lead to accidents such as plant shutdown.

【発明の概要】[Summary of the invention]

この発明は上記のような従来のものの欠点を除
去するためになされたもので、制御信号6を制御
装置内で積分し、その出力信号をVF電源に伝達
し、前記積分された入力信号の変化率を検出する
変化率検出器を前記VF電源内にもうけ、該変化
率検出器が前記積分された制御出力信号が所定の
変化率範囲を外れたことを検知したときに、電動
機3への電力供給電源をVF電源3より商用電源
1に切替えることによりVF電源システムを安全
に継続して運転できる可変周波数電源の運転装置
を提供することを目的としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and it integrates the control signal 6 within the control device, transmits the output signal to the VF power supply, and changes the integrated input signal. A rate of change detector for detecting the rate of change is provided in the VF power supply, and when the rate of change detector detects that the integrated control output signal is out of a predetermined rate of change range, power to the motor 3 is The purpose of the present invention is to provide a variable frequency power supply operating device that can safely and continuously operate a VF power supply system by switching the power supply from the VF power supply 3 to the commercial power supply 1.

【発明の実施例】[Embodiments of the invention]

以下、この発明の一実施例を図について説明す
る。図中、第1図と同一の部分は同一の符号をも
つて図示した第3図に於て、2はVF電源2Bと
変化率検出器2Aにより構成されるVF電源シス
テム、5Bは制御装置、7Bは前記制御装置5B
の出力信号、10及び11は開閉である。 また、第4図は第3図の説明用タイムチヤート
図である。図に於て、t3は開閉器9及び10の開
放完了時点、t4は開閉器11の閉成完了時点、t5
は電動機3が商用電源1の周波数に相当する回転
数に達した時点、t6は回転体4(フアン)の出力
風量Qが定常値に安定する血点を示す。 第5図は変化率異常検出器の構成図を示し、第
6図はその動作を説明する説明図である。 図に於て、IINは入力信号、G1、G2はセレクタ
スイツチ、PGRはパルスジエネレータ、HLD1
HLD2はホールド回路、DTRは差電圧検出器、
COMは大きさ判定器である。 次に第3図の動作を以下に説明する。 まず開閉器9及び10がON、開閉器11が
OFFとすると、第1図と同様に商用電源1でVF
電源2Bに電源電圧が引火され、その出力で電動
機3が駆動され、フアン4が回転される。フアン
4の出力風量Qに対する変化指令は制御信号6と
して制御装置5Bに与えられ、その制御装置5B
の積分回路5Cで積分された制御出力信号7Bを
VF電源システム2に与える。次にVF電源システ
ム2を構成している変化率検出器2Aで前記制御
出力信号7Bの変化率を検出し、所定の変化率範
囲であればその制御出力信号7Bに相当する周波
数にVF電源2Bの出力周波数Fを追従させ、所
定の変化率範囲を外れたことを検知するときは開
閉器9,10をOFFし、ひきつづき開閉器11
をONにさせる。上記変化率検出器2Aの動作は
第5図からも理解できるようにパルスジエネレタ
PGRは一定間隔でパルスを発生しており、セレ
クタ・スイツチG1、G2はこのパルスに交互に応
答して入力信号IINの瞬時値をそれぞれホールド
回路HLD1、HLD2へ送る。 入力信号IINが第6図のように変化するとすれ
ば、ホールド回路HLD1、HLD2は交互のパルス
時点における入力信号IINの瞬時値を図のように
出力する。ホールド回路HLD1、HLD2の出力差
は差電圧検出器DTRで検出し、その差電圧が一
定値以上となつたとき(t2+α時点)に入力信号
IINに異常な変化があつたとして出力信号を送出
する。なおαはパルスジエネレータPGRのパル
ス間隔に相当している。 従つて第4図に示す如くt1時点で制御装置5B
とVF電源システム2との間に信号線の断線等が
生じても、変化率検出器2Aが直ちに異常を検出
し、開閉器9,10を開放(t3時点)、開閉器1
1を閉成(t4時点)する。電動機3の回転数n
は、開閉器9,10の開放で一時無電圧状態とな
つて回転数は多少減少するが、開閉器11の引続
いての閉成動作によつて回転数は再び上昇しt5
点で商用電源1の周波数に相当する回転数に達す
る。また、回転体4がフアンの場合で説明する
と、出力風量Qの制御には回転数nによる制御の
他に機会式の入口ベーン(又はタンパ)制御(図
示せず)がある。回転数nによる出力風量Q制御
の時は出力損失を少くするために入口ベーンはほ
ぼ全開に近い点で運転されている。前記のように
回転数nが商用電源1の周波数に相当する値まで
上昇すれば、出力風量Qは入力ベーンを回転数n
による風量制御の時のままにしておくと変化が大
きくあらられることとなる。従つて変化率検出器
2Aの動作、開閉器9及び10の開放、開閉器1
1の閉成等を条件として前記入口ベーンを出力風
量Qの減少方向にしぼり込むように操作する。 従つて、第4図の出力風量Qは、閉会器9,1
0の開放で1度減少し、開閉器11の閉成で上昇
に転ずる。入口ベーンの応答は回転数n増加によ
る出力風量Qの増加より通常の場合おくれてお
り、従つて出力風量Qは回転数nの上昇中は入口
ベーンの減少作用により若干ゆるやかとなつて上
昇し、回転数nが商用電源1による回転数に達し
た後(時点t5以後)では出力風量Qは入口ベーン
の作用によつて減少してゆき時点t6で元の値にも
どることになる。 このように出力風量Qは変化するが、変化巾は
システムの許容範囲内におさめられ、制御出力信
号7Bに異常が発生しても安全に運転を継続でき
る。 以上は発電プラント、フアンを例に説明した
が、他のプラント等の用途、例えばポンプ等の他
の回転体に適用してよいことは明らかである。 また断線を例に説明したが、短絡等の他の異常
でもよく、信号伝送線の異常ではなく制御装置5
Bの異常で制御出力信号7Bが異常となつた場合
でもよい。
An embodiment of the present invention will be described below with reference to the drawings. In FIG. 3, the same parts as in FIG. 1 are designated by the same reference numerals. In FIG. 7B is the control device 5B
The output signals 10 and 11 are open/close. 4 is an explanatory time chart of FIG. 3. In the figure, t 3 is the time when switches 9 and 10 are completed opening, t 4 is the time when switch 11 is completely closed, and t 5
t6 indicates the point at which the electric motor 3 reaches a rotational speed corresponding to the frequency of the commercial power source 1, and t6 indicates the point at which the output air volume Q of the rotating body 4 (fan) stabilizes at a steady value. FIG. 5 shows a configuration diagram of the rate of change abnormality detector, and FIG. 6 is an explanatory diagram illustrating its operation. In the figure, I IN is the input signal, G 1 and G 2 are the selector switches, PGR is the pulse generator, HLD 1 ,
HLD 2 is a hold circuit, DTR is a differential voltage detector,
COM is a size judger. Next, the operation shown in FIG. 3 will be explained below. First, switches 9 and 10 are ON, and switch 11 is ON.
When set to OFF, VF is turned off at commercial power supply 1 as shown in Figure 1.
A power supply voltage is ignited in the power supply 2B, and the electric motor 3 is driven by its output, and the fan 4 is rotated. A change command for the output air volume Q of the fan 4 is given to the control device 5B as a control signal 6, and the control device 5B
The control output signal 7B integrated by the integrating circuit 5C of
Supply to VF power system 2. Next, the change rate detector 2A constituting the VF power supply system 2 detects the change rate of the control output signal 7B, and if the change rate is within a predetermined change rate range, the VF power supply 2B changes the frequency corresponding to the control output signal 7B. When detecting that the output frequency F is out of the predetermined rate of change range, switches 9 and 10 are turned OFF, and switch 11 is then turned OFF.
Turn on. As can be understood from FIG. 5, the operation of the rate of change detector 2A is based on the pulse generator.
The PGR generates pulses at regular intervals, and the selector switches G 1 and G 2 alternately respond to these pulses and send the instantaneous values of the input signal I IN to the hold circuits HLD 1 and HLD 2 , respectively. If the input signal I IN changes as shown in FIG. 6, the hold circuits HLD 1 and HLD 2 output the instantaneous values of the input signal I IN at alternate pulse times as shown. The output difference between the hold circuits HLD 1 and HLD 2 is detected by the differential voltage detector DTR, and when the differential voltage exceeds a certain value (at time t 2 + α), the input signal is detected.
I Sends an output signal when there is an abnormal change in IN . Note that α corresponds to the pulse interval of the pulse generator PGR. Therefore, as shown in FIG. 4, at time t1 , the control device 5B
Even if a break in the signal line or the like occurs between the VF power supply system 2 and the VF power supply system 2, the rate of change detector 2A immediately detects the abnormality, opens switches 9 and 10 (at time t 3 ), and closes switch 1.
1 is closed (at time t 4 ). Rotation speed n of electric motor 3
When the switches 9 and 10 are opened, there is a temporary no-voltage state and the rotational speed decreases a little, but the rotational speed increases again with the subsequent closing of the switch 11, and at time t5 , the The rotational speed corresponds to the frequency of the power source 1. Further, in the case where the rotary body 4 is a fan, the output air volume Q is controlled by an opportunistic inlet vane (or tamper) control (not shown) in addition to control based on the rotation speed n. When the output air volume Q is controlled by the rotational speed n, the inlet vane is operated at a point close to fully open in order to reduce output loss. As mentioned above, if the rotation speed n increases to a value corresponding to the frequency of the commercial power source 1, the output air volume Q will increase the rotation speed n of the input vane.
If the air volume is left as it was when controlling the air volume, there will be a large change. Therefore, the operation of the rate of change detector 2A, the opening of switches 9 and 10, and the opening of switch 1
1 is closed, etc., the inlet vane is operated so as to be compressed in the direction of decreasing the output air volume Q. Therefore, the output air volume Q in FIG.
When the switch 11 is closed, it decreases by 1 degree, and when the switch 11 is closed, it starts to rise. The response of the inlet vane normally lags behind the increase in the output air volume Q due to an increase in the rotational speed n, and therefore, while the rotational speed n is increasing, the output airflow Q rises somewhat gradually due to the decreasing effect of the inlet vane. After the rotational speed n reaches the rotational speed of the commercial power source 1 (after time t5 ), the output air volume Q decreases due to the action of the inlet vane, and returns to its original value at time t6 . Although the output air volume Q changes in this way, the range of change is kept within the permissible range of the system, and even if an abnormality occurs in the control output signal 7B, operation can be continued safely. Although the above description has been made using a power generation plant and a fan as an example, it is clear that the present invention may be applied to other plants, for example, other rotating bodies such as pumps. Furthermore, although the explanation has been given using a disconnection as an example, other abnormalities such as short circuits may also be considered, and the control device 5 may not be an abnormality in the signal transmission line.
It may also be possible that the control output signal 7B becomes abnormal due to an abnormality in signal B.

【発明の効果】【Effect of the invention】

以上のように、この発明によれば制御装置の中
で制御信号を積分してから制御出力信号として
VF電源システム2に送出し、前記積分された制
御出力信号が所定の変化率範囲であるか否かを変
化率検出器で監視し、前記変化率検出器が所定の
変化率範囲を外れたことを検知したとき、電動機
への印加電源をVF電源から商用電源に切替える
ように回路構成したので、設備を連続して、安全
に運転できる効果がある。
As described above, according to the present invention, the control signal is integrated in the control device and then output as the control output signal.
The integrated control output signal is sent to the VF power supply system 2, and a change rate detector monitors whether or not the integrated control output signal is within a predetermined change rate range. The circuit is configured to switch the power applied to the motor from VF power to commercial power when this is detected, making it possible to operate the equipment continuously and safely.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の可変周波数電源を用いた電動機
速度制御系の系統図、第2図は第1図の説明用タ
イムチヤート図、第3図はこの発明の可変周波数
電源を用いた電動機速度制御系の系統図、第4図
は第3図の説明用タイムチヤート図、第5図は変
化率検出器の構成図、第6図は第5図の説明図で
ある。 1……商用電源、2……VF電源システム、2
A……変化率検出器、2B……可変周波数電源
(VF電源)、3……電動機、4……回転体、5A,
5B……制御装置、5C……積分回路、6……制
御信号、7B……制御出力信号、8……連結器、
9,10,11……開閉器。
Fig. 1 is a system diagram of a motor speed control system using a conventional variable frequency power supply, Fig. 2 is a time chart for explaining Fig. 1, and Fig. 3 is a motor speed control system using a variable frequency power supply according to the present invention. FIG. 4 is an explanatory time chart of FIG. 3, FIG. 5 is a configuration diagram of the rate of change detector, and FIG. 6 is an explanatory diagram of FIG. 5. 1...Commercial power supply, 2...VF power supply system, 2
A... Rate of change detector, 2B... Variable frequency power supply (VF power supply), 3... Electric motor, 4... Rotating body, 5A,
5B...Control device, 5C...Integrator circuit, 6...Control signal, 7B...Control output signal, 8...Coupler,
9, 10, 11... Switch.

Claims (1)

【特許請求の範囲】[Claims] 1 可変周波数電源に接続された電動機と、前記
電動機に結合された回転体の回転数を制御するた
め前記可変周波数電源に与える制御信号を発生す
る制御装置とを有する可変周波数電源の運転装置
において、前記回転体の出力増減を指示する制御
信号を前記制御装置内に設けた積分回路で積分
し、前記積分された出力信号を制御出力信号とし
て可変周波数電源システム内の変化率検出器に伝
達し、前記積分された制御出力信号が所定の変化
率範囲を外れたことを変化率検出器が検知したと
き上記電動機の供給電源を可変周波数電源から商
用電源に切替えるようにしたことを特徴とする可
変周波数電源の運転装置。
1. A variable frequency power supply operating device comprising an electric motor connected to a variable frequency power supply and a control device that generates a control signal to be applied to the variable frequency power supply to control the rotation speed of a rotating body coupled to the motor, integrating a control signal instructing an increase or decrease in the output of the rotating body by an integrating circuit provided in the control device, transmitting the integrated output signal as a control output signal to a rate of change detector in the variable frequency power supply system; Variable frequency, characterized in that when a rate of change detector detects that the integrated control output signal is out of a predetermined rate of change range, the power supply to the motor is switched from the variable frequency power supply to the commercial power supply. Power supply driving device.
JP59065420A 1984-04-02 1984-04-02 Operation system of variable frequency power source Granted JPS60210193A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP59065420A JPS60210193A (en) 1984-04-02 1984-04-02 Operation system of variable frequency power source
KR1019850000354A KR890005315B1 (en) 1984-04-02 1985-01-22 Variable freguency power unit controlling system
US06/698,850 US4691156A (en) 1984-04-02 1985-02-06 Variable frequency power unit controlling system
CA000474032A CA1235734A (en) 1984-04-02 1985-02-11 Variable frequency power unit controlling system
EP85101510A EP0160787B1 (en) 1984-04-02 1985-02-13 Variable frequency power unit controlling system
DE8585101510T DE3562963D1 (en) 1984-04-02 1985-02-13 Variable frequency power unit controlling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59065420A JPS60210193A (en) 1984-04-02 1984-04-02 Operation system of variable frequency power source

Publications (2)

Publication Number Publication Date
JPS60210193A JPS60210193A (en) 1985-10-22
JPH0320994B2 true JPH0320994B2 (en) 1991-03-20

Family

ID=13286544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59065420A Granted JPS60210193A (en) 1984-04-02 1984-04-02 Operation system of variable frequency power source

Country Status (1)

Country Link
JP (1) JPS60210193A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022064977A1 (en) 2020-09-24 2022-03-31 株式会社クリエイティブテクノロジー Dust collector and dust collection method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69714606T9 (en) * 1996-12-31 2004-09-09 Rosemount Inc., Eden Prairie DEVICE FOR CHECKING A CONTROL SIGNAL COMING FROM A PLANT IN A PROCESS CONTROL

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022064977A1 (en) 2020-09-24 2022-03-31 株式会社クリエイティブテクノロジー Dust collector and dust collection method

Also Published As

Publication number Publication date
JPS60210193A (en) 1985-10-22

Similar Documents

Publication Publication Date Title
US4856286A (en) Refrigeration compressor driven by a DC motor
JPH0665926B2 (en) Air volume control method
JP2001524299A (en) Fan cooling device
KR890002532B1 (en) Airflow control apparatus
JPH0320994B2 (en)
US4651072A (en) Variable frequency power source operating system
JPH0320995B2 (en)
KR890005315B1 (en) Variable freguency power unit controlling system
RU2064587C1 (en) Device for controlling venting plant mode of operation
JP2558671B2 (en) Turbine speed limit method for governorless variable speed turbine generator
EP4283860A1 (en) Torque protection mechanism for brushless motors
SU1427478A1 (en) Arrangement for coupling two power systems
JPS62230380A (en) Speed controller for rotary machine
JPH0320993B2 (en)
JPH0353876B2 (en)
JPH0430397Y2 (en)
CN115450940A (en) Air conditioning equipment and control device and control method of air swinging motor of air conditioning equipment
JPS61168741A (en) Remote control device for air conditioner
JPS6069444A (en) Forced driving device of air conditioner
JPH08116676A (en) Variable frequency power supply
SU1376206A1 (en) Multimotor electric drive
JP2576279B2 (en) Control device using relay
JPS60209694A (en) Air flow amount control device
SU1181110A1 (en) Asynchronous rectifier stage
SU1427542A1 (en) Electric drive