JPH0320993B2 - - Google Patents

Info

Publication number
JPH0320993B2
JPH0320993B2 JP59065419A JP6541984A JPH0320993B2 JP H0320993 B2 JPH0320993 B2 JP H0320993B2 JP 59065419 A JP59065419 A JP 59065419A JP 6541984 A JP6541984 A JP 6541984A JP H0320993 B2 JPH0320993 B2 JP H0320993B2
Authority
JP
Japan
Prior art keywords
power supply
change
output
rate
variable frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59065419A
Other languages
Japanese (ja)
Other versions
JPS60210192A (en
Inventor
Shinji Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59065419A priority Critical patent/JPS60210192A/en
Priority to KR1019850000354A priority patent/KR890005315B1/en
Priority to US06/698,850 priority patent/US4691156A/en
Priority to CA000474032A priority patent/CA1235734A/en
Priority to EP85101510A priority patent/EP0160787B1/en
Priority to DE8585101510T priority patent/DE3562963D1/en
Publication of JPS60210192A publication Critical patent/JPS60210192A/en
Publication of JPH0320993B2 publication Critical patent/JPH0320993B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Control Of Ac Motors In General (AREA)
  • Dc Digital Transmission (AREA)

Description

【発明の詳細な説明】 【発明の技術分野】 この発明は可変周波数電源(以下V電源と略
称する)でフア、ポンプ等の回転体を駆動するV
F電源システムに係り、特にV電源への制御信
号が断線、短絡等の異常状態となつた時に対する
電源の運転装置に関するものである。 【従来の技術】 従来のこの種装置として第1図に示すものがあ
つた。図において、1は商用電源、2は開閉器、
3はV電源で電動機4を速度制御する。6はフ
アン、ポンプ等の回転体、5は前記電動機4と回
転体6との連結器、7はV電源3に周波数制御
信号を送出する制御装置、8は制御装置7に入力
される制御信号、9は前記制御装置7とV電源
3とを結ぶ信号線、また第2図及び第3図におい
てt1及びt3は制御信号8のそれぞれ増加及び減少
指令のタイミングスタート点、t2及びt4はV電源
3の出力がそれぞれ増加または減少を完了したタ
イミングストツプ点、t5は信号線9の異常発生時
点、t6は異常発生後にV電源3の出力が変化を
完了する時点を示す。 次に動作について説明する。以下説明を具体化
するために、回転体6をフアンに見立て、その出
力(風量)ボイラ(図示せず)に与えられる発電
プラントの例について説明する。 すなわち、第1図においてV電源3は商用電
源1より開閉器を介して電力を受け、V電源
3の出力によつて電動機4を駆動する。そこで電
動機4の回転数nは(1)式で与えられる。 n=120×F/P ……(1) 但し、F:印加電源周波数 P:電動機の極数 従つて、回転数nと印加電源周波数Fとは比例
関係にある。即ち、VF電源3の出力周波数Fが
変化すれば電動機4の回転数nが変化する。 電動機4は連結器5によつてフアン6に直結さ
れフアン6は電動機4の回転数nにほぼ比例した
出力風量Qをボイラーへ供給する。 また、発電プラントの例で、電力系統からの要
求電力が変化したり、燃料の供給状態が変化すれ
ばボイラが必要とする風量Qも変化するので、こ
のには時風量Qの変化指令が制御指令8となつて
制御装置7に与えられる。そして、風量Qの変化
指令は信号線9を介してV電源3に与えられ、
VF電源3は要求する風量Qに対応した周波数F
を出力する。 第2図は第1図に示した従来のV電源システ
ムが正常動作をする時の説明用タイムチヤート図
である。すなわち、制御指令8がt1時点で風量Q
の増加を要求し、t3時点で元の値にもどる減少要
求をした時に、制御装置7の出力は第2図の信号
線9となつてV電源3に与えられる。通常V
電源3は変化の要求に対して一定の増・減率で出
力を変化するように設計されており、従つてV
電源3の出力周波数Fは変化の要求時点t1,t3
対し若干のおくれをもちそれぞれ、t2,t4時点で
作動を完了する。すなわち、フアン6の出力風量
Qを変えたい場合にはV電源3の出力周波数F
を変え電動機4の回転数nを変化させることによ
つて対処する。 また、第3図は第1図の信号線9に異常が発生
した時のタイムチヤート図で、異常の例として前
記信号線9が断線(制御端子のゆるみ、又ははず
れ等も含む)した場合を示している。ここでは制
御信号8には当然変化なく、一定の風量Qを要求
している。そこでt5時点で断線するとV電源3
への入力信号が零となるので、第2図で説明した
ようにV電源3の出力周波数Fは若干遅延して
下限値まで減少し、結果的に電動機4の回転数n
も低下して、フアン6の出力風量Qも減少する。 従来のV電源を用いた電動機の運転方式は以
上のように成されていたのでV電源3の信号線
9に断線等の異常が発生すると不必要にV電源
3の出力周波数が変動し、結果として電動機4、
回転体6の運転状態を不安定なものにしシステム
事故に発展させる等の欠点があつた。 【発明の概要】 この発明は上記のような従来のものの欠点を除
去するためになされたもので、V電源3の側に
信号線9の異常検出器をもうけ、その異常検出器
が動作したときにV電源3の出力変化を阻止す
ることにより、V電源3の出力変化を不要なと
きに変動させない可変周波数電源の運転装置を提
供することを目的としている。 【発明の実施例】 以下この発明の一実施例を図について説明す
る。図中第1図ないし第3図と同一の部分は同一
の符号をもつて図示した第4図、第5図及び第6
図において、この発明の場合には、第1図に示し
た制御装置7の出力信号を積分回路7Aで積分形
としている。すなわち、V電源システムが正常
な時には制御信号8が段関数的な入力信号であつ
ても制御装置7からの出力信号は所定の匂配で増
減するようにし、他方V電源3側には前記制御
装置7からの出力信号の変化率が所定の範囲にあ
ることをチエツクする変化率検出器3Aを設け
る。従つて変化率検出器3Aが前記の変化率が所
定の範囲にある時には制御装置7の出力はV
源3に正常に伝達されており、変化率検出器3A
が所定の変化率範囲を逸脱したことを検知した時
は信号線9の断線等によつて異常が発生したと判
断し、変化率検出器3Aの出力でV電源3の出
力変化を阻止し現状を維持せしめるようにする。 第4図及び第5図はこの発明によるV電源シ
ステムの動作説明図でt12及びt34は制御装置7の
出力信号を積分形としたとき制御装置7の出力変
化が夫々完了した時点を示しており増加時と減少
時である。t5は信号線9に断線等の異常が発生す
た時点を示している。第6図はこの発明の一実施
例を示す構成図である。第7図は変化率検出器
Aの構成図を示し、第8図はその動作を説明する
説明図である。図に於てIINは入力信号、G1,G2
はセレクタスイツチ、PGRはパルスジエネレー
タ、HLD1、HLD2はホールド回路、DTRは差電
圧検出器、COMは大きさ判定器である。 次にこの発明の動作を以下に説明する。 まず、第4図はこの発明によるV電源システ
ムが正常に作動している時のタイムチヤート図
で、制御信号8はt1時点で一定振巾の大きさとな
り、t3時点で減少して元の値にもどる例を示して
いる。よつて、制御装置7は積分特性を与えられ
ているので、その出力は第4図の信号線9に図示
した特性を示す。この積分変化率の特性はV
源3では正常と判断されV電源3の出力を入力
信号に追従させて変化させる。従つて、電動機4
の出力回転数nbとフアン6の出力風量QもV
電源3の出力に追従して変化する。 第5図は信号線9が断線等の異常になつた場合
の例で制御信号8に特別の変化はないが、信号線
がt5時点で断線等の異常になると信号線9の信号
が急変しV電源3に設けられた変化率検出器
Aが作動して、V電源3の出力周波数Fの変化
を阻止する。従つてV電源3の出力周波数Fに
は変化が生じないため電動機4の出力回転数n及
びフアン6の出力風量Qにも変化はなく、現状維
持となる。 上記変化率検出器3Aの動作を第8図を参照し
て説明する。パルスジエネレータPGRは一定間
隔でパルスを発生しており、セレクタ・スイツチ
G1,G2はこのパルスに交互に応答して入力信号
IINの瞬時値をそれぞれホールド回路HLD1、
HLD2へ送る。 入力信号IINが第8図のように変化するとすれ
ば、ホールド回路HUD1、HLD2は交互のパルス
時点における入力信号IINの瞬時値を第8図のよ
うに出力する。上記ホールド回路HLD1、HLD2
の出力差は差電圧検出機DTRで検出され、その
差電圧が一定値以上となつたとき(t2+α時点)
に入力信号IINに異常な変化があつたと判定して
出力信号を送出す。なおαはパルスジエネレータ
PGRのパルス間隔に相当している。 なお、以上の説明は発電プランド等のフアン速
度制御を例に説明したが、フアン以外のポンプ等
の回転体、発電プラント以外のシステム等に適用
しても同様の効果を奏する。 また上述は信号線9の断線を例にして説明した
が、短絡等他の異常であつてもよく、制御装置7
が異常となつて出力が増加又は減少する場合でも
よい。従つて、前記の変化率検出器は所定の変化
率以上又は所定の変化率以上を検出可能に設定で
きるものとする。 【発明の効果】 以上のように、この発明によれば制御装置
出力信号を所定の変化率で積分してV電源に送
出する一方、V電源側に前記の入力信号が所定
の変化率の範囲をはずれたことを検知する変化率
検出器3Aを設けその変化率検出器3Aが所定の
変化率の範囲を逸脱したことを検知すると、V
電源の出力変化を阻止して現状維持とするように
回路構成したので、V電源への制御信号が異常
となつた場合にも正常の動作を継続できる効果が
ある。
Detailed Description of the Invention [Technical Field of the Invention] This invention relates to a variable frequency power supply (hereinafter abbreviated as VF power supply) that drives rotating bodies such as fans and pumps.
The present invention relates to a VF power supply system, and particularly relates to a VF power supply operating device for when a control signal to the VF power supply is in an abnormal state such as disconnection or short circuit. 2. Description of the Related Art A conventional device of this type is shown in FIG. In the figure, 1 is a commercial power supply, 2 is a switch,
3 controls the speed of the electric motor 4 using a VF power source. 6 is a rotating body such as a fan or pump; 5 is a connector between the electric motor 4 and the rotating body 6; 7 is a control device that sends a frequency control signal to the VF power source 3; and 8 is a control input to the control device 7. 9 is a signal line connecting the control device 7 and the VF power supply 3, and in FIGS. 2 and 3, t 1 and t 3 are the timing start points of the increase and decrease commands of the control signal 8, respectively, and t 2 and t 4 are the timing stop points when the output of the V power supply 3 has completed increasing or decreasing, respectively, t 5 is the point at which an abnormality occurs in the signal line 9, and t 6 is the timing stop point when the output of the V F power supply 3 has completed changing after the abnormality has occurred. Indicates the point in time. Next, the operation will be explained. In order to make the description more concrete, an example of a power generation plant will be described in which the rotating body 6 is assumed to be a fan, and its output (air volume) is given to a boiler (not shown). That is, in FIG. 1, a VF power supply 3 receives power from a commercial power supply 1 via a switch 2 , and drives a motor 4 by the output of the VF power supply 3. Therefore, the rotation speed n of the electric motor 4 is given by equation (1). n=120×F/P...(1) However, F: Applied power frequency P: Number of poles of the motor Therefore, the rotation speed n and the applied power frequency F are in a proportional relationship. That is, if the output frequency F of the VF power supply 3 changes, the rotation speed n of the electric motor 4 changes. The electric motor 4 is directly connected to a fan 6 by a coupler 5, and the fan 6 supplies an output air volume Q approximately proportional to the rotational speed n of the electric motor 4 to the boiler. In addition, in the example of a power generation plant, if the power required from the power grid changes or the fuel supply status changes, the air volume Q required by the boiler will also change, so the hourly air volume Q change command is used to control this. The command 8 is given to the control device 7. Then, a command to change the air volume Q is given to the VF power supply 3 via the signal line 9,
VF power supply 3 has a frequency F corresponding to the required air volume Q
Output. FIG. 2 is an explanatory time chart when the conventional VF power supply system shown in FIG. 1 operates normally. In other words, the control command 8 changes the air volume Q at time t1 .
When an increase is requested and a decrease is requested to return to the original value at time t3 , the output of the control device 7 becomes the signal line 9 in FIG. 2 and is applied to the VF power supply 3. Normal VF
The power supply 3 is designed to change its output at a constant increase/decrease rate in response to changing demands, and therefore V F
The output frequency F of the power source 3 has a slight delay with respect to the change request times t 1 and t 3 and completes its operation at t 2 and t 4 , respectively. In other words, if you want to change the output air volume Q of the fan 6, the output frequency F of the VF power supply 3
This is dealt with by changing the rotation speed n of the electric motor 4. Furthermore, Fig. 3 is a time chart when an abnormality occurs in the signal line 9 shown in Fig. 1, and an example of the abnormality is a case where the signal line 9 is disconnected (including loose or disconnected control terminals, etc.). It shows. Here, the control signal 8 naturally does not change, and a constant air volume Q is requested. Therefore, if the wire is disconnected at t 5 , V F power supply 3
Since the input signal to becomes zero, the output frequency F of the VF power supply 3 is slightly delayed and decreases to the lower limit value as explained in FIG.
and the output air volume Q of the fan 6 also decreases. The conventional operating method of a motor using a VF power supply is as described above, so if an abnormality such as a disconnection occurs in the signal line 9 of the VF power supply 3, the output frequency of the VF power supply 3 will fluctuate unnecessarily. As a result, the electric motor 4,
This has disadvantages such as making the operating state of the rotating body 6 unstable and leading to system accidents. [Summary of the Invention] This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and includes an abnormality detector of the signal line 9 on the side of the VF power supply 3, and when the abnormality detector is activated. It is an object of the present invention to provide an operating device for a variable frequency power supply that prevents the output of the VF power supply 3 from changing when it is not necessary by blocking the output change of the VF power supply 3 from time to time. Embodiments of the Invention An embodiment of the present invention will be described below with reference to the drawings. In the figures, the same parts as in Figures 1 to 3 are designated by the same reference numerals as in Figures 4, 5, and 6.
In the figure, in the case of the present invention, the output signal of the control device 7 shown in FIG. 1 is made into an integral type by an integrating circuit 7A. That is, when the VF power supply system is normal, even if the control signal 8 is a step function input signal, the output signal from the control device 7 increases or decreases at a predetermined ratio. A change rate detector 3A is provided to check whether the change rate of the output signal from the control device 7 is within a predetermined range. Therefore, when the rate of change detector 3A detects that the rate of change is within a predetermined range, the output of the control device 7 is normally transmitted to the VF power supply 3, and the rate of change detector 3A
When it is detected that the change rate has deviated from the predetermined rate of change range, it is determined that an abnormality has occurred due to a disconnection of the signal line 9, etc., and the output change of the VF power supply 3 is blocked by the output of the change rate detector 3A . Try to maintain the status quo. 4 and 5 are explanatory diagrams of the operation of the VF power supply system according to the present invention, and t 12 and t 34 indicate the points at which the output changes of the control device 7 are completed, respectively, when the output signal of the control device 7 is made into an integral type. It shows when it increases and when it decreases. t5 indicates the point in time when an abnormality such as a disconnection occurs in the signal line 9. FIG. 6 is a block diagram showing an embodiment of the present invention. Figure 7 shows change rate detector 3
FIG. 8 is an explanatory diagram illustrating its operation. In the figure, I IN is the input signal, G 1 , G 2
is a selector switch, PGR is a pulse generator, HLD1 and HLD2 are hold circuits, DTR is a differential voltage detector, and COM is a magnitude judger. Next, the operation of this invention will be explained below. First, FIG. 4 is a time chart when the VF power supply system according to the present invention is operating normally. The control signal 8 has a constant amplitude at time t1 , and decreases at time t3 . An example of returning to the original value is shown. Therefore, since the control device 7 is given an integral characteristic, its output exhibits the characteristic shown in the signal line 9 of FIG. This characteristic of the integral rate of change is determined to be normal in the VF power supply 3, and the output of the VF power supply 3 is changed to follow the input signal. Therefore, electric motor 4
The output rotation speed nb and the output air volume Q of fan 6 are also V F
It changes according to the output of the power supply 3. Figure 5 is an example of a case where the signal line 9 becomes abnormal, such as a disconnection, and there is no particular change in the control signal 8, but if the signal line becomes abnormal, such as a disconnection, at time t5 , the signal on the signal line 9 suddenly changes. The rate of change detector 3 provided in the VF power supply 3
A is activated to prevent the output frequency F of the VF power supply 3 from changing. Therefore, since there is no change in the output frequency F of the VF power source 3, there is no change in the output rotation speed n of the electric motor 4 and the output air volume Q of the fan 6, and the status quo is maintained. The operation of the rate of change detector 3A will be explained with reference to FIG. The pulse generator PGR generates pulses at regular intervals, and the selector switch
G 1 and G 2 alternately respond to this pulse and convert the input signal
Hold circuit HLD1, which holds the instantaneous value of I IN , respectively.
Send to HLD2. If the input signal I IN changes as shown in FIG. 8, the hold circuits HUD1 and HLD2 output instantaneous values of the input signal I IN at alternate pulse times as shown in FIG. Above hold circuit HLD1, HLD2
The output difference is detected by the differential voltage detector DTR, and when the differential voltage exceeds a certain value (at time t 2 + α)
It determines that there is an abnormal change in the input signal I IN and sends an output signal. Note that α is the pulse generator
This corresponds to the PGR pulse interval. Although the above description has been made using fan speed control in a power generation plant as an example, the same effect can be achieved even if the present invention is applied to a rotating body other than a fan, such as a pump, or a system other than a power generation plant. Further, although the above description has been made using the disconnection of the signal line 9 as an example, other abnormalities such as a short circuit may also occur, and the control device 7
may become abnormal and the output may increase or decrease. Therefore, the rate of change detector described above can be set to be able to detect a rate of change greater than or equal to a predetermined rate of change. As described above, according to the present invention, the output signal of the control device 7 is integrated at a predetermined rate of change and sent to the VF power supply, while the input signal is integrated at a predetermined rate of change on the VF power supply side. A rate-of-change detector 3A is provided to detect when the rate of change is out of a range, and when the rate-of-change detector 3A detects that the rate of change is out of a predetermined range, V F
Since the circuit is configured to prevent changes in the output of the power supply and maintain the current state, there is an effect that normal operation can be continued even if the control signal to the VF power supply becomes abnormal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は可変周波数電源を用いた電動機速度制
御系の概略系統図、第2図及び第3図は従来の可
変周波数電源運転装置の動作を説明するタイムチ
ヤート図、第4図及び第5図はこの発明による可
変周波数電源運転装置の動作を説明するタイムチ
ヤート図、第6図はこの発明の一実施例を示す構
成図、第7図は変化率検出器の構成図、第8図は
第7図の動作を説明する説明図である。 1……商用電源、2……開閉器、3……V
源、3A……変化率検出器、4……電動機、5…
…連結器、6……回転体、7……制御装置、7A
……積分回路、8……制御信号、9……信号線。
Figure 1 is a schematic system diagram of a motor speed control system using a variable frequency power supply, Figures 2 and 3 are time charts explaining the operation of a conventional variable frequency power supply operating device, and Figures 4 and 5. is a time chart explaining the operation of the variable frequency power supply operating device according to the present invention, FIG. 6 is a block diagram showing an embodiment of the present invention, FIG. 7 is a block diagram of a rate of change detector, and FIG. FIG. 7 is an explanatory diagram illustrating the operation of FIG. 7; 1... Commercial power supply, 2... Switch, 3... VF power supply, 3A... Rate of change detector, 4... Electric motor, 5...
...Coupler, 6...Rotating body, 7...Control device, 7A
...Integrator circuit, 8...Control signal, 9...Signal line.

Claims (1)

【特許請求の範囲】[Claims] 1 可変周波数電源に接続された電動機と、前記
電動機に結合された回転体の回転数を制御するた
め前記可変周波数電源に与える制御信号を発生す
る制御装置とを有する可変周波数電源の運転装置
において、前記回転体の出力エネルギーの増減を
指令する周波数制御信号を前記制御装置内に設け
た積分回路で積分し、前記積分した信号を変化率
検出器を内蔵した可変周波数電源に伝達し、前記
周波数制御信号の積分した信号が所定の変化率範
囲を逸脱したかどうかを前記変化率検出器で検出
し、前記変化率検出器が上記逸脱を検知したとき
前記可変周波数電源の出力変化を阻止するように
したことを特徴とする可変周波数電源の運転装
置。
1. A variable frequency power supply operating device comprising an electric motor connected to a variable frequency power supply and a control device that generates a control signal to be applied to the variable frequency power supply to control the rotation speed of a rotating body coupled to the motor, A frequency control signal that instructs an increase or decrease in the output energy of the rotating body is integrated by an integrating circuit provided in the control device, and the integrated signal is transmitted to a variable frequency power supply having a built-in change rate detector to control the frequency. The rate of change detector detects whether the integrated signal deviates from a predetermined rate of change range, and when the rate of change detector detects the deviation, the change in the output of the variable frequency power supply is prevented. An operating device for a variable frequency power supply characterized by the following.
JP59065419A 1984-04-02 1984-04-02 Operation system of variable frequency power source Granted JPS60210192A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP59065419A JPS60210192A (en) 1984-04-02 1984-04-02 Operation system of variable frequency power source
KR1019850000354A KR890005315B1 (en) 1984-04-02 1985-01-22 Variable freguency power unit controlling system
US06/698,850 US4691156A (en) 1984-04-02 1985-02-06 Variable frequency power unit controlling system
CA000474032A CA1235734A (en) 1984-04-02 1985-02-11 Variable frequency power unit controlling system
EP85101510A EP0160787B1 (en) 1984-04-02 1985-02-13 Variable frequency power unit controlling system
DE8585101510T DE3562963D1 (en) 1984-04-02 1985-02-13 Variable frequency power unit controlling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59065419A JPS60210192A (en) 1984-04-02 1984-04-02 Operation system of variable frequency power source

Publications (2)

Publication Number Publication Date
JPS60210192A JPS60210192A (en) 1985-10-22
JPH0320993B2 true JPH0320993B2 (en) 1991-03-20

Family

ID=13286513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59065419A Granted JPS60210192A (en) 1984-04-02 1984-04-02 Operation system of variable frequency power source

Country Status (1)

Country Link
JP (1) JPS60210192A (en)

Also Published As

Publication number Publication date
JPS60210192A (en) 1985-10-22

Similar Documents

Publication Publication Date Title
US4442394A (en) Inverter circuit for operating a speed-controllable asynchronous motor
JPH0320993B2 (en)
US4651072A (en) Variable frequency power source operating system
US4031447A (en) Improved control system for energizing a stepping motor
JPS60210193A (en) Operation system of variable frequency power source
JPH0314960Y2 (en)
JPS60210194A (en) Operation system of variable frequency power source
US4691156A (en) Variable frequency power unit controlling system
JP3215336B2 (en) Sensorless pump controller
JPH08116676A (en) Variable frequency power supply
SU1280158A1 (en) Multidimensional control system of power plant
JPH0219841Y2 (en)
JPH0353876B2 (en)
JPH0710475Y2 (en) 2-wire transmitter
JPH11346440A (en) Received power leveling device
JP2692961B2 (en) Load selection cutoff device
JPH0159822B2 (en)
JPH0327793A (en) Controller for motor
JPS60210195A (en) Operation system for variable frequency power source
EP0279428A2 (en) Electric motor control system
JPS62230380A (en) Speed controller for rotary machine
JPH01318587A (en) Operation accelerating circuit for power controller
JPS62279416A (en) Constant voltage power source unit
JPH0350517B2 (en)
JPH0443175B2 (en)