JPH0710475Y2 - 2-wire transmitter - Google Patents

2-wire transmitter

Info

Publication number
JPH0710475Y2
JPH0710475Y2 JP973290U JP973290U JPH0710475Y2 JP H0710475 Y2 JPH0710475 Y2 JP H0710475Y2 JP 973290 U JP973290 U JP 973290U JP 973290 U JP973290 U JP 973290U JP H0710475 Y2 JPH0710475 Y2 JP H0710475Y2
Authority
JP
Japan
Prior art keywords
power supply
voltage
supply voltage
current signal
internal power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP973290U
Other languages
Japanese (ja)
Other versions
JPH03100998U (en
Inventor
敏夫 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP973290U priority Critical patent/JPH0710475Y2/en
Publication of JPH03100998U publication Critical patent/JPH03100998U/ja
Application granted granted Critical
Publication of JPH0710475Y2 publication Critical patent/JPH0710475Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Arrangements For Transmission Of Measured Signals (AREA)

Description

【考案の詳細な説明】 〈産業上の利用分野〉 本考案は、負荷側から2本の伝送線を介して外部電源の
供給を受けて測定すべき物理量を電気信号に変換しこれ
を信号処理して伝送線を介して負荷に電流信号として伝
送する2線式伝送器に係り、特に2線式伝送器の回路の
動作上で必要な最小動作電圧と負荷抵抗及び伝送線の電
圧降下の和の電圧に対して外部電源電圧が小さくなった
ときでも出力電流のハンチングとか発振などのような異
常動作を引き起こさないように改良した2線式伝送器に
関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention receives a supply of an external power source from a load side through two transmission lines, converts a physical quantity to be measured into an electric signal, and processes the signal. The present invention relates to a two-wire transmitter that transmits a current signal to a load via a transmission line, and in particular, it is the sum of the minimum operating voltage required for the operation of the circuit of the two-wire transmitter, the load resistance, and the voltage drop of the transmission line. The present invention relates to a two-wire type transmitter improved so as not to cause an abnormal operation such as hunting of output current or oscillation even when the external power supply voltage becomes smaller than the above voltage.

〈従来の技術〉 第3図は2線式伝送器の全体構成を示す構成図である。<Prior Art> FIG. 3 is a configuration diagram showing an overall configuration of a two-wire transmitter.

2線式伝送器TSRは外部電源Esから負荷RLと2本の伝送
線1、l2を介してその端子T1、T2に電源が供給されて
いる。そして、伝送器TSRはセンサで電気信号として検
出したプロセス変量を信号処理して端子T1、T2を介して
プロセス変量の変動に応じて電流信号ILを制御し、負荷
RLの電圧降下を受信することによりプロセス変量を検出
している。
The two-wire transmitter TSR is supplied with power from an external power supply Es to its terminals T1 and T2 via a load RL and two transmission lines 1 and 12. Then, the transmitter TSR processes the process variable detected as an electric signal by the sensor and controls the current signal IL according to the fluctuation of the process variable via the terminals T1 and T2 to load the load.
The process variable is detected by receiving the voltage drop of RL.

つまりプロセス変量の負荷への伝送と2線式伝送器の電
源供給とに対して2本の伝送線を共用するシステムが採
用されている。
That is, a system in which two transmission lines are shared for transmission of a process variable to a load and power supply of a two-wire type transmitter is adopted.

第4図はこの2線式伝送器の内部のうち特に出力部分の
回路構成を示している。
FIG. 4 shows the circuit structure of the output part of the inside of the two-wire type transmitter.

端子T1、T2の間には出力トランジスタTR1と帰還抵抗RO
とが直列に接続されており、さらに出力トランジスタTR
1のエミッタと帰還抵抗ROとの接続点は共通電位点COMに
接続されている。
Output transistor TR1 and feedback resistor RO are connected between terminals T1 and T2.
And are connected in series, and the output transistor TR
The connection point between the emitter of 1 and the feedback resistor RO is connected to the common potential point COM.

また、端子T1と共通電位点COMとの間には定電流回路CC
とツエナダイオードVRとが直列に接続されている。
The constant current circuit CC is connected between the terminal T1 and the common potential point COM.
And Zener diode VR are connected in series.

誤差増幅器Q1の反転入力端(−)にはツエナダイオード
VRの両端の電圧が抵抗R1とR2で分圧された分圧電圧V1 -
が印加され、その非反転入力端(+)にはプロセス変量
がセンサにより電気信号に変換されたプロセス電圧Vsが
抵抗R3を介して、また帰還抵抗R0の両端に発生する帰還
電圧が抵抗R4を介してそれぞれ加算接続されている。そ
して、誤差増幅器Q1の出力端はトランジスタTR1のベー
スに接続されている。
A Zener diode is connected to the inverting input terminal (-) of the error amplifier Q1.
Voltage across VR is divided by the resistors R1 and R2 divided voltage V 1 -
Is applied to the non-inverting input terminal (+) of which the process voltage Vs, which is the process variable converted into an electric signal by the sensor, is applied via the resistor R3 and the feedback voltage generated across the feedback resistor R0 to the resistor R4. Are connected via addition. The output terminal of the error amplifier Q1 is connected to the base of the transistor TR1.

以上の構成において、電流信号ILは端子T1とT2の間に流
れこれ等の端子間に端子電圧VCを発生させる。
In the above configuration, the current signal IL flows between the terminals T1 and T2 and generates the terminal voltage VC between these terminals.

この電流信号ILのうちの一部は定電流回路CCを介してツ
エナダイオードVRに流れこの両端に定電圧VKを発生させ
る。この定電圧VKを抵抗R1とR2で分圧した分圧電圧V1 -
は誤差増幅器Q1の反転入力端(−)に印加される。した
がって、 V1 -=VK・R2/(R1+R2) …(1) となる。
A part of this current signal IL flows to the Zener diode VR via the constant current circuit CC, and a constant voltage VK is generated across the Zener diode VR. The constant voltage VK was divided by resistors R1 and R2 divided voltage V 1 -
Is applied to the inverting input terminal (-) of the error amplifier Q1. Therefore, V 1 - = VK · R2 / (R1 + R2) ... is (1).

また、誤差増幅器Q1の非反転入力端(+)に発生する電
圧V1 +は (Vs−V1 +)/R3 =V1 ++IL・R0)/R4 であるから、V1 +は V1 +=(Vs/R3−IL・R0/R4) /(1/R3+1/R4) =(Vs・R4−IL・R0・R3) /(R3+R4) …(2) となる。定常状態ではV1 +=V1 -となるように誤差増幅器
Q1が制御するので、 IL=[Vs・R4−VK・R2・(R3+R4) /(R1+R2)]/R0・R3) …(3) となり、プロセス電圧Vsに比例する電流信号ILが出力さ
れる。
Further, the voltage V 1 + generated at the non-inverting input terminal (+) of the error amplifier Q1 is (Vs−V 1 + ) / R3 = V 1 + + IL ・ R0) / R4, so V 1 + is V 1 + = (Vs / R3-IL ・ R0 / R4) / (1 / R3 + 1 / R4) = (Vs ・ R4-IL ・ R0 ・ R3) / (R3 + R4) (2) In the steady state V 1 + = V 1 - and so as to the error amplifier
Since Q1 controls, IL = [Vs-R4-VK-R2- (R3 + R4) / (R1 + R2)] / R0-R3) (3), and the current signal IL proportional to the process voltage Vs is output.

一方、2線式伝送器TSRの内部電源電圧ECは EC=Es−IL・RL+IL・R0 …(4) で与えられる。On the other hand, the internal power supply voltage EC of the 2-wire type transmitter TSR is given by EC = Es-IL.RL + IL.R0 (4).

〈考案が解決しようとする課題〉 しかしながら、この様な2線式伝送器は以下に説明する
ような問題がある。
<Problems to be Solved by the Invention> However, such a two-wire transmitter has the following problems.

外部電源電圧Esが低く、負荷抵抗RLが大きく、そして電
流信号ILが大きい場合、例えばEs=24V、RL=1KΩ、R0
=50Ω、IL=20mAのような場合は内部電源電圧ECは4Vに
なる。
When the external power supply voltage Es is low, the load resistance RL is high, and the current signal IL is high, for example, Es = 24V, RL = 1KΩ, R0
= 50Ω, IL = 20mA, the internal power supply voltage EC becomes 4V.

したがって、回路が動作するのに必要な最小動作電圧E
m、例えば10Vを確保することができない。しかし、この
場合であっても電流信号ILが4mAに低下すればEC=19Vと
なって回路は正常な動作が可能となる。
Therefore, the minimum operating voltage E required for the circuit to operate is
It is not possible to secure m, eg 10V. However, even in this case, if the current signal IL drops to 4 mA, EC = 19V and the circuit can operate normally.

つまり、内部電源電圧ECは外部電源電圧Es、負荷抵抗R
L、帰還抵抗R0、及び電流信号ILによって変化し、外部
電源電圧Esが小さく負荷抵抗RLが大きい場合でも電流信
号ILが小さいときは正常動作が可能であるが、電流信号
ILが大きくなると動作不能になるといった不安定な動作
を示すこととなる。
In other words, the internal power supply voltage EC is the external power supply voltage Es, the load resistance R
Depending on L, feedback resistor R0, and current signal IL, normal operation is possible when current signal IL is small even when external power supply voltage Es is small and load resistance RL is large.
If IL becomes large, it will show unstable behavior such as inoperability.

ところで、最近の2線式伝送器のようにマイクロプロセ
ッサを搭載している場合は、信号処理に異常をきたさな
いように内部電源電圧ECが監視されており、この内部電
源電圧ECが最小動作電圧Emより低下したときにはプロセ
ッサにリセット信号が送られ、リセットされるようにな
っている。
By the way, when a microprocessor is installed like a recent two-wire transmitter, the internal power supply voltage EC is monitored so as not to cause an abnormality in signal processing, and this internal power supply voltage EC is the minimum operating voltage. When it drops below Em, a reset signal is sent to the processor to reset it.

この様な場合で上記の条件が満たされるときには、マイ
クロプロセッサが起動された当初は電流信号LLが4mAで
小さいので、内部電源電圧ECは最小動作電圧Emより大き
く、このため正常に動作してダンピング時定数にしたが
って電流信号ILは上昇するが、電流信号ILが大きくなる
と内部電源電圧ECが小さくなりマイクロコンピュータが
リセットされる。
In such a case, when the above condition is satisfied, the current signal LL is small at 4 mA when the microprocessor is started, so the internal power supply voltage EC is larger than the minimum operating voltage Em, and therefore the normal operation and damping are performed. The current signal IL rises according to the time constant, but when the current signal IL increases, the internal power supply voltage EC decreases and the microcomputer is reset.

このため、マイクロコンピュータは再起動されることと
なり、再度4mAから上昇することとなるが、電流信号IL
が大きくなると同じようにしてリセットされる。
Therefore, the microcomputer will be restarted and it will rise from 4mA again.
Will be reset in the same way as becomes larger.

これを繰り返して発振状態のリミットサイクルを示す不
具合が発生する。
By repeating this, a problem occurs that indicates the limit cycle of the oscillation state.

〈課題を解決するための手段〉 本考案は、以上の課題を解決するために、負荷側から2
本の伝送線を介して外部電源の供給を受けて測定すべき
物理量を電気信号に変換しこれを信号処理して伝送線を
介して負荷に電流信号として伝送する2線式伝送器にお
いて、電流信号から作られる内部電源電圧が最小動作電
圧以上のときに電気信号と電流信号が比例するように出
力トランジスタを制御する第1誤差増幅器と、内部電源
電圧を監視しこの内部電源電圧が最小動作電圧以下にな
ったときに電流信号を減少させるように出力トランジス
タに接続された第2誤差増幅器とを具備するようにした
ものである。
<Means for Solving the Problems> In order to solve the above-mentioned problems, the present invention provides a method of
A two-wire transmitter that receives the supply of an external power source through a book transmission line, converts the physical quantity to be measured into an electric signal, processes the signal, and transmits it as a current signal to the load through the transmission line. A first error amplifier that controls the output transistor so that the electric signal and the current signal are proportional to each other when the internal power supply voltage generated from the signal is equal to or higher than the minimum operating voltage; and the internal power supply voltage is monitored and this internal power supply voltage is the minimum operating voltage. And a second error amplifier connected to the output transistor to reduce the current signal when:

〈作用〉 第1誤差増幅器により電流信号から作られる内部電源電
圧が最小動作電圧以上のときに電気信号と電流信号が比
例するように出力トランジスタを制御し、第2誤差増幅
器により内部電源電圧を監視してこの内部電源電圧が最
小動作電圧以下になったときに負荷への電流信号を減少
させて内部電源電圧を上昇させる。
<Operation> When the internal power supply voltage generated from the current signal by the first error amplifier is equal to or higher than the minimum operating voltage, the output transistor is controlled so that the electric signal and the current signal are proportional, and the second error amplifier monitors the internal power supply voltage. Then, when the internal power supply voltage becomes equal to or lower than the minimum operating voltage, the current signal to the load is decreased to raise the internal power supply voltage.

この様にして内部電源電圧を一定に保つことにより回路
の動作を安定化する。
In this way, the operation of the circuit is stabilized by keeping the internal power supply voltage constant.

〈実施例〉 以下、本考案の1実施例について図を用いて説明する。
第1図は本考案の1実施例を示す要部回路図である。な
お、第3図、第4図に示す回路と同一の機能を有する部
分には同一の符号を付して適宜にその説明を省略する。
<Embodiment> An embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 is a circuit diagram of essential parts showing one embodiment of the present invention. The parts having the same functions as those of the circuits shown in FIGS. 3 and 4 are designated by the same reference numerals, and the description thereof will be appropriately omitted.

誤差増幅器Q2の反転入力端(−)は定電圧VKを抵抗R7と
R8で分圧した分圧電圧V2 -が印加され、その非反転入力
端(+)は内部電源電圧ECを抵抗R5とR6で分圧した分圧
電圧V2 +が印加されている。その出力端は端子T1に一端
が接続された抵抗R9を介してダイオードD2のカソードに
接続され、このダイオードD2のアノードは出力トランジ
スタTR1のベースに接続されている。また、この出力ト
ランジスタTR1のベースはダイオードD1のアノードに、
そのカソードは誤差増幅器Q1の出力端にそれぞれ接続さ
れている。
The inverting input terminal (-) of the error amplifier Q2 connects the constant voltage VK to the resistor R7.
A divided voltage V 2 divided by R8 is applied, and a divided voltage V 2 + obtained by dividing the internal power supply voltage EC by resistors R5 and R6 is applied to its non-inverting input terminal (+). Its output is connected through a resistor R9 to one end to the terminal T1 is connected to the cathode of the diode D 2, the anode of the diode D2 is connected to the base of the output transistor TR1. The base of the output transistor TR1 is the anode of the diode D1.
The cathodes are respectively connected to the output terminals of the error amplifier Q1.

そして、誤差増幅器Q1とQ2の出力はダイオードスイッチ
として機能するダイオードD1とD2によって選択され、い
ずれか出力電圧の小さいほうの誤差増幅器Q1、Q2の出力
がトランジスタTR1に印加される。
Then, the outputs of the error amplifiers Q1 and Q2 are selected by the diodes D1 and D2 that function as diode switches, and the outputs of the error amplifiers Q1 and Q2 having the smaller output voltage are applied to the transistor TR1.

誤差増幅器Q2の非反転入力端(+)に印加される分圧電
圧V2 +は V2 +=EC・R6/(R5+R6) …(5) であり、その反転入力端(−)に印加される分圧電圧V2
-は V2 -=VK・R8/(R7+R8) …(6) である。
The divided voltage V 2 + applied to the non-inverting input terminal (+) of the error amplifier Q2 is V 2 + = ECR6 / (R5 + R6) (5) and is applied to its inverting input terminal (-). Divided voltage V 2
- The V 2 - = a VK · R8 / (R7 + R8 ) ... (6).

したがって、内部電源電圧ECに関連する分圧電圧V2 +
最小動作電圧Emに対応する分圧電圧V2 -より大きい場合
(V2 +>V2 -)は誤差増幅器Q2の出力は正側に振り切れて
おり、ダイオードD2がオフの状態となるので、出力には
影響しない。
Therefore, when the divided voltage V 2 + related to the internal power supply voltage EC is larger than the divided voltage V 2 corresponding to the minimum operating voltage Em (V 2 + > V 2 ), the output of the error amplifier Q2 is the positive side. The output is not affected because the diode D2 is turned off and the diode D2 is turned off.

しかし、内部電源電圧ECに関連する分圧電圧V2 +が最小
動作電圧Emに対応する分圧電圧V2 -より小さい場合(V2 +
<V2 -)は誤差増幅器Q2の出力は負側に振り切れ、ダイ
オードD2がオンの状態となり、誤差増幅器Q1の出力は正
側に振れ切れた状態となりダイオードD1がオフ状態とな
る。
However, if the divided voltage V 2 + related to the internal power supply voltage EC is smaller than the divided voltage V 2 corresponding to the minimum operating voltage Em (V 2 +
<V 2 -) is the output of the error amplifier Q2 is scaled out to the negative side, the diode D2 are turned on, the output of the error amplifier Q1 is diode D1 in a state in which fully swings positive side is turned off.

この場合に、内部電源電圧ECは EC=VK・[R8・(R5+R6)] /[R6・(R7+R8)] …(7) の一定値となるように電流信号ILが制御され、このとき
の電流信号ILは IL=(Es−EC)/(RL+R0) …(8) で与えられる。
In this case, the current signal IL is controlled so that the internal power supply voltage EC becomes a constant value of EC = VK. [R8. (R5 + R6)] / [R6. (R7 + R8)] (7). The signal IL is given by IL = (Es-EC) / (RL + R0) (8).

第2図は以上の動作状況を特性図で示したものである。FIG. 2 is a characteristic diagram showing the above operating conditions.

外部電源電圧Esが小さい直線A1で示す範囲で、直線B1で
示す内部電源電圧ECが直線Cで示す最小動作電圧Emより
大きい間では、プロセス電圧Vsと直線D1で示す電流信号
ILは比例しているが、プロセス電圧Vsが増大して電流信
号ILが大きくなり内部電源電圧ECが最小動作電圧Emにな
ると、直線D2で示すように電流信号ILは一定になる。
In the range shown by the straight line A1 where the external power supply voltage Es is small, while the internal power supply voltage EC shown by the straight line B1 is higher than the minimum operating voltage Em shown by the straight line C, the process voltage Vs and the current signal shown by the straight line D1.
Although IL is proportional, when the process voltage Vs increases and the current signal IL increases and the internal power supply voltage EC reaches the minimum operating voltage Em, the current signal IL becomes constant as indicated by the straight line D2.

この場合に、外部電源電圧Esが直線A2に示すように大き
ければ、電流信号ILは点線D2で示すように比例範囲が増
大して一定電流の状態が現れず正常動作となる。
In this case, if the external power supply voltage Es is large as shown by the straight line A2, the current signal IL has a proportional range expanded as shown by the dotted line D2, and a constant current state does not appear, and normal operation is performed.

〈考案の効果〉 以上、実施例と共に具体的に説明したように本考案によ
れば、外部電源電圧と電流信号の大きさの関係によらず
内部回路の内部電源電圧を一定に保つように構成したの
で、回路の動作が安定となり、マイクロプロセッサを搭
載する2線式伝送器出もリミットサイクルなどの発振動
作を示すことがない。
<Effects of the Invention> As described above in detail with the embodiments, according to the present invention, the internal power supply voltage of the internal circuit is kept constant regardless of the relationship between the external power supply voltage and the magnitude of the current signal. Therefore, the operation of the circuit becomes stable, and the output of the 2-wire type transmitter equipped with the microprocessor does not exhibit oscillation operation such as limit cycle.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の1実施例の構成を示す回路図、第2図
は第1図に示す実施例の動作を説明する特性、第3図は
従来の2線式伝送器のシステム構成を示すブロック図、
第4図は第3図に示す2線式伝送器の内部の出力部分の
構成を示す回路図である。 Es…外部電源電圧、TSR…2線式伝送器、RL…負荷抵
抗、EC…内部電源電圧、CC…定電流回路、VK…定電圧、
Vs…プロセス電圧、Q1、Q2…誤差増幅器、IL…電流信
号、Em…最小動作電圧。
FIG. 1 is a circuit diagram showing a configuration of one embodiment of the present invention, FIG. 2 is a characteristic for explaining the operation of the embodiment shown in FIG. 1, and FIG. 3 is a system configuration of a conventional two-wire transmitter. Block diagram showing,
FIG. 4 is a circuit diagram showing a configuration of an output part inside the two-wire type transmitter shown in FIG. Es ... External power supply voltage, TSR ... Two-wire transmitter, RL ... Load resistance, EC ... Internal power supply voltage, CC ... Constant current circuit, VK ... Constant voltage,
Vs ... Process voltage, Q1, Q2 ... Error amplifier, IL ... Current signal, Em ... Minimum operating voltage.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】負荷側から2本の伝送線を介して外部電源
の供給を受けて測定すべき物理量を電気信号に変換しこ
れを信号処理して前記伝送線を介して前記負荷に電流信
号として伝送する2線式伝送器において、前記電流信号
から作られる内部電源電圧が最小動作電圧以上のときに
前記電気信号と前記電流信号が比例するように出力トラ
ンジスタを制御する第1誤差増幅器と、前記内部電源電
圧を監視しこの内部電源電圧が前記最小動作電圧以下に
なったときに前記電流信号を減少させるように前記出力
トランジスタに接続された第2誤差増幅器とを具備する
ことを特徴とする2線式伝送器。
1. A physical quantity to be measured is converted into an electric signal by receiving an external power supply from the load side through two transmission lines, and the electric signal is processed by the electric signal to a current signal to the load via the transmission line. A two-wire transmitter for transmitting as a signal, the first error amplifier controlling an output transistor so that the electric signal and the current signal are proportional to each other when an internal power supply voltage generated from the current signal is equal to or higher than a minimum operating voltage, A second error amplifier connected to the output transistor to monitor the internal power supply voltage and reduce the current signal when the internal power supply voltage falls below the minimum operating voltage. 2-wire transmitter.
JP973290U 1990-02-02 1990-02-02 2-wire transmitter Expired - Lifetime JPH0710475Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP973290U JPH0710475Y2 (en) 1990-02-02 1990-02-02 2-wire transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP973290U JPH0710475Y2 (en) 1990-02-02 1990-02-02 2-wire transmitter

Publications (2)

Publication Number Publication Date
JPH03100998U JPH03100998U (en) 1991-10-22
JPH0710475Y2 true JPH0710475Y2 (en) 1995-03-08

Family

ID=31513320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP973290U Expired - Lifetime JPH0710475Y2 (en) 1990-02-02 1990-02-02 2-wire transmitter

Country Status (1)

Country Link
JP (1) JPH0710475Y2 (en)

Also Published As

Publication number Publication date
JPH03100998U (en) 1991-10-22

Similar Documents

Publication Publication Date Title
EP0071525B2 (en) A power processing reset system for a microprocessor responding to sudden deregulation of a voltage
EP0337396A2 (en) Two-wire detection system having self-diagnosis means
JPH0710475Y2 (en) 2-wire transmitter
US4541389A (en) Current regulator for an electromagnetic load utilized in conjunction with an internal combustion engine
US5042065A (en) Resetting circuit in a key-telephone system
US4262220A (en) Optical current isolator circuit
US5502416A (en) Adjustable reset threshold for an integrated regulator
JP3205263B2 (en) Power supply for slave unit
US5079506A (en) Checking circuit for checking the normal operation of a sensor
JP3982463B2 (en) Terminal device for fieldbus signal transmission system
JPH0710474Y2 (en) 2-wire transmitter
JP2935386B2 (en) Cordless telephone circuit
KR960003740Y1 (en) Reset circuit
JP2952901B2 (en) Two-wire signal transmission device
JPS61229638A (en) Electronic control device for car
JPH01223360A (en) Voltage monitoring circuit
JP3094663B2 (en) Two-wire transmitter
US5336987A (en) Voltage stabilizing circuit of switching power supply circuit
KR940008411B1 (en) Battery type automatic control device
JP3448873B2 (en) Reset circuit
JPH0719917Y2 (en) Automotive power supply IC
JPH0224934A (en) Cathode current stabilizer circuit
JPS5833582Y2 (en) DC output circuit
KR940002333Y1 (en) Control circuit of power supply
JPH0686110U (en) Constant voltage power supply