JPH03209871A - Solid-state image sensing device - Google Patents

Solid-state image sensing device

Info

Publication number
JPH03209871A
JPH03209871A JP2005181A JP518190A JPH03209871A JP H03209871 A JPH03209871 A JP H03209871A JP 2005181 A JP2005181 A JP 2005181A JP 518190 A JP518190 A JP 518190A JP H03209871 A JPH03209871 A JP H03209871A
Authority
JP
Japan
Prior art keywords
layer
metal layer
melting point
photoelectric conversion
high melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005181A
Other languages
Japanese (ja)
Inventor
Hidekazu Yamamoto
秀和 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005181A priority Critical patent/JPH03209871A/en
Publication of JPH03209871A publication Critical patent/JPH03209871A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To restrain a photoconductive layer formed on a metal electrode from deteriorating by a method wherein a wiring metal layer is fully coated with a high melting point metal layer which serves as a diffusion preventing layer, and the photoconductive layer functioning as a photoelectric conversion film is formed through the intermediary of the high melting point metal layer. CONSTITUTION:A high melting point metal layer 5 functioning as a diffusion preventing layer is formed covering wiring metal layers 3 and 4 respectively formed on a photoelectric conversion section and connected to a signal charge readout section, and a photoconductive layer 2 serving as a photoelectric conversion film is formed through the high melting point metal layer 5. Therefore, the high melting point metal layers 5 formed covering wiring metal layers 3 and 4 respectively serve as diffusion preventing films for the photoconductive layer 2 connected to the wiring metal layers 3 and 4. By this setup, aluminum forming the wiring metal layers 3 and 4 is prevented from diffusing into the photoconductive layer 2 so as to protect the layer 2 against deterioration in performance.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、固体撮像装置に関し、さらに詳しくは、光
電変換部に光電変換素子を用いた固体撮像装置の改良構
造に係るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a solid-state imaging device, and more particularly to an improved structure of a solid-state imaging device using a photoelectric conversion element in a photoelectric conversion section.

[従来の技術] 従来例によるこの種の固体撮像装置として、こ5では、
文献[f’Kazumi Komiya、 IEDM 
Technicaldigest 1981 p30J
のFig、 4に記載されている光電変換部の模式的に
表わした平面および断面を第3図(a) 、 (bl 
に示す。
[Prior Art] As a conventional example of this type of solid-state imaging device, in this 5,
Literature [f'Kazumi Komiya, IEDM
Technical digest 1981 p30J
Figure 3(a) and (bl
Shown below.

すなわち、これらの第3図(a) 、 (b)の従来例
構成において、符号1は絶縁基板であり、2はこの絶縁
基板1上に選択的に並列形成されたアモルファスシリコ
ンなどによる複数の各光導電層、3および4はこれらの
各光導電層2の一端部側にそれぞれ接続された各配線金
属層、および他端部側に共通接続された共通配線金属層
である。
That is, in the conventional configurations shown in FIGS. 3(a) and 3(b), reference numeral 1 is an insulating substrate, and 2 is a plurality of amorphous silicon or the like formed selectively in parallel on this insulating substrate 1. The photoconductive layers 3 and 4 are wiring metal layers connected to one end of each photoconductive layer 2, and a common wiring metal layer commonly connected to the other end.

そして、この従来例による装置構成の場合には、まず、
絶縁基板1上にあって、光電変換膜としてのアモルファ
スシリコンなどを堆積させた後、これを所定のパターン
形状にパターニング加工して、それぞれの各光導電層2
を選択的に形成させ、ついで、これらの各光導電層2上
に、配線金属としてのクロム、アルミニウムなどを堆積
させた後、これを所定のパターン形状にパターニングし
て、それぞれの各光導電層2に所期通りに接続された各
配線金属層3および共通配線金属層4を選択的に形成さ
せ、以上の各工程を経て装置構成を完成するのである。
In the case of the device configuration according to this conventional example, first,
After depositing amorphous silicon or the like as a photoelectric conversion film on an insulating substrate 1, this is patterned into a predetermined pattern shape to form each photoconductive layer 2.
are selectively formed, and then chromium, aluminum, etc. as wiring metals are deposited on each of these photoconductive layers 2, and then patterned into a predetermined pattern shape to form each photoconductive layer. Each interconnection metal layer 3 and common interconnection metal layer 4 are selectively formed and connected to the interconnections 2 and 2 as expected, and the device configuration is completed through the above steps.

次に、このように構成された固体撮像装置の動作につい
て述べる。
Next, the operation of the solid-state imaging device configured as described above will be described.

各配線金属層3,4を通して光導電層2に所定の電圧を
印加させておき、この状態で、外部から光導電層2に光
が入射されると、その入射光量に対応して光導電N2の
抵抗値が低下し、これによって、こSでの光導電層2を
流れる電流値が変化するために、各配線金属層3に接続
された図示しない信号電荷読み出し部から、この電流値
の変化を順次に読み出すことにより、光入射に対応した
画像信号を出力し得るのである。
A predetermined voltage is applied to the photoconductive layer 2 through each wiring metal layer 3, 4, and in this state, when light is incident on the photoconductive layer 2 from the outside, the photoconductive layer N2 increases in accordance with the amount of incident light. The resistance value decreases, and as a result, the current value flowing through the photoconductive layer 2 in this S changes. Therefore, a change in this current value is detected from a signal charge readout section (not shown) connected to each wiring metal layer 3. By sequentially reading out the images, it is possible to output an image signal corresponding to the incident light.

[発明が解決しようとする課題] 従来の光電変換素子を用いた固体撮像装置は以上のよう
に構成されており、シリコン集積化技術とか再結晶化技
術などを適用して、こ\での光電変換部および信号電荷
読み取り部を積層形成させた固体撮像装置を構成する場
合には、シリコン集積化技術により、一般に広(用いら
れているアルミニウム系の金属によってそれ′ぞれの配
線金属層を形成すると、光導電層の堆積時、あるいは装
置完成後の常温放置によって、このアルミニウムが光電
変換膜としての光導電層内に拡散されて装置特性を劣化
させるという不利があり、また一方。
[Problem to be solved by the invention] A solid-state imaging device using a conventional photoelectric conversion element is configured as described above, and by applying silicon integration technology, recrystallization technology, etc. When configuring a solid-state imaging device in which a converting section and a signal charge reading section are formed in layers, silicon integration technology is generally used to form each wiring metal layer using a widely used aluminum-based metal. Then, there is a disadvantage that during deposition of the photoconductive layer or when the device is left at room temperature after completion, this aluminum is diffused into the photoconductive layer as a photoelectric conversion film, degrading device characteristics.

光導電層上に配線金属層を形成して積層構造を得るのに
は、下層の光電変換部からの配線と光電変換素子の電極
とを接続させるために、各光導電層での画素毎のエツチ
ングが必須であって、製造プロセスが複雑化するという
問題点がアル。
To form a wiring metal layer on a photoconductive layer to obtain a laminated structure, it is necessary to connect each pixel in each photoconductive layer to connect the wiring from the photoelectric conversion section in the lower layer to the electrode of the photoelectric conversion element. The problem is that etching is required, which complicates the manufacturing process.

この発明は、従来のこのような問題点を解消するために
なされたもので、その目的とするところは、光電変換膜
としての光導電層に対する金属層からのアルミニウムの
拡散を防止して、金属電極上に形成される光導電層の劣
化を抑制し得るようにした。この種の固体撮像装置を提
供することである。
This invention was made to solve these conventional problems, and its purpose is to prevent the diffusion of aluminum from the metal layer to the photoconductive layer as a photoelectric conversion film, and to prevent the diffusion of aluminum from the metal layer. This makes it possible to suppress deterioration of the photoconductive layer formed on the electrode. An object of the present invention is to provide a solid-state imaging device of this type.

[課題を解決するための手段] 前記目的を達成するために、この発明に係る固体撮像装
置は、拡散阻止膜となる高融点金属層によって配線金属
層を全面被覆させ、この高融点金属層を介して光電変換
膜としての光導電膜を形成させるようにしたものである
[Means for Solving the Problems] In order to achieve the above-mentioned object, the solid-state imaging device according to the present invention includes a wiring metal layer that is entirely covered with a high-melting point metal layer serving as a diffusion prevention film, and a high-melting point metal layer that serves as a diffusion prevention film. A photoconductive film as a photoelectric conversion film is formed through the film.

すなわち、この発明は、少な(とも信号電荷読み出し部
と光電変換部とを備える固体撮像装置において、前記光
電変換部に施されて信号電荷読み出し部に接続される各
配線金属層上に、拡散阻止膜となる高融点金属層をそれ
ぞれに被覆形成させると共に、この高融点金属層を介し
て光電変換膜としての光導電層を形成させたことを特徴
とする固体撮像装置である。
That is, the present invention provides a solid-state imaging device including a signal charge readout section and a photoelectric conversion section, in which a diffusion prevention layer is provided on each wiring metal layer applied to the photoelectric conversion section and connected to the signal charge readout section. This solid-state imaging device is characterized in that a high-melting point metal layer serving as a film is coated on each of the solid-state imaging devices, and a photoconductive layer as a photoelectric conversion film is formed via the high-melting point metal layer.

[作   用] 従って、この発明では、各配線金属層上に被覆形成され
る高融点金属層が、これらの各配線金属層に接続される
光導電層の拡散阻止膜として作用し、各配線金属層を形
成するアルミニウムの光導電層への拡散を防止して、光
導電層の劣化を抑制し得るのである。
[Function] Therefore, in the present invention, the high melting point metal layer coated on each wiring metal layer acts as a diffusion prevention film for the photoconductive layer connected to each wiring metal layer, and By preventing aluminum forming the layer from diffusing into the photoconductive layer, deterioration of the photoconductive layer can be suppressed.

[実 施 例] 以下、この発明に係る固体撮像装置の実施例につき、第
1図および第2図を参照して詳細に説明する。
[Example] Hereinafter, an example of the solid-state imaging device according to the present invention will be described in detail with reference to FIGS. 1 and 2.

第1図はこの発明の一実施例を適用した固体撮像装置に
おける光電変換部の概要を模式的に示す断面構成図であ
り、この第1図実施例構成において、前記第2図従来例
構成と同一符号は同一または相当部分を示している。
FIG. 1 is a cross-sectional configuration diagram schematically showing the outline of a photoelectric conversion section in a solid-state imaging device to which an embodiment of the present invention is applied. The same reference numerals indicate the same or equivalent parts.

すなわち、この第1図実施例構成において、符号1は絶
縁基板を示し、3および4はこの絶縁基板l上に選択的
に形成されたアルミニウム ならびにアルミニウム系合
金による各配線金属層および共通配線金属層であり、ま
た、5はこれらの各配線金属層3,4上を被覆するよう
に選択的に積層形成された拡散阻止膜としてのタングス
テンなどによる高融点金属層、2は前記絶縁基板1上に
選択的に形成されると共に、前記各配線金属層3.4に
高融点金属層5を介して、一端部側、および他端部側を
それぞれに接続させた光電変換膜としてのアモルファス
シリコンなどによる光導電層である。
That is, in the configuration of the embodiment shown in FIG. 1, reference numeral 1 indicates an insulating substrate, and 3 and 4 indicate respective wiring metal layers and common wiring metal layers made of aluminum and aluminum alloy selectively formed on this insulating substrate l. 5 is a high melting point metal layer made of tungsten or the like as a diffusion prevention film which is selectively laminated to cover each wiring metal layer 3 and 4, and 2 is a high melting point metal layer formed on the insulating substrate 1. Amorphous silicon or the like is used as a photoelectric conversion film that is selectively formed and connected to each wiring metal layer 3.4 at one end and the other end through the high melting point metal layer 5. It is a photoconductive layer.

しかして、この第1図実施例による装置構成の場合には
、まず、絶縁基板1上にあって、アルミニウム、ならび
にアルミニウム系合金を堆積させた後、これを所定のパ
ターン形状にパターニング加工して、所期通りに各配線
金属層3および共通配線金属層4を選択的に形成させ、
ついで、これらの各配線金属層3.4上を被覆するよう
にして、選択CVD法などにより拡散阻止膜としてのタ
ングステンなどによる高融点金属層5をそれぞれ選択的
に積層形成させ、さらに、これらを含む絶縁基板1上に
あって、光電変換膜としてのアモルファスシリコンなど
を堆積させた後、これを所定のパターン形状にパターニ
ング加工して、各配線金属層3,4に高融点金属層5を
介して一端部側、他端部側をそれぞれに接続させた光導
電層2を選択的に積層形成させ、以上の各工程を経て装
置構成を完成するのである。
In the case of the apparatus configuration according to the embodiment in FIG. 1, aluminum and aluminum-based alloys are first deposited on the insulating substrate 1, and then patterned into a predetermined pattern shape. , selectively forming each wiring metal layer 3 and common wiring metal layer 4 as expected;
Next, a high melting point metal layer 5 made of tungsten or the like as a diffusion prevention film is selectively laminated by a selective CVD method or the like to cover each wiring metal layer 3.4. After depositing amorphous silicon or the like as a photoelectric conversion film on the insulating substrate 1 containing the film, it is patterned into a predetermined pattern shape, and a high melting point metal layer 5 is formed on each wiring metal layer 3, 4. Then, the photoconductive layers 2 with one end and the other end connected to each other are selectively laminated, and the device configuration is completed through the above steps.

従って、このように構成された第1図実施例での固体撮
像装置についても、前記従来例装置の場合と同様の動作
が得られるが、こ\では、アルミニウム、ならびにアル
ミニウム系合金による各配線金属層3,4を高融点金属
層5によって被覆させであるために、これらの各配線金
属層3.4を形成するアルミニウムの光導電層2への拡
散を防止することができて、この光電変換膜としての光
導電層2の劣化を効果的に抑制し得るほか、同時に、こ
れらの各層の積層化を容易に行ない得るのである。
Therefore, the solid-state imaging device in the embodiment shown in FIG. Since the layers 3 and 4 are coated with the high melting point metal layer 5, it is possible to prevent aluminum forming each wiring metal layer 3, 4 from diffusing into the photoconductive layer 2, and this photoelectric conversion is prevented. In addition to effectively suppressing deterioration of the photoconductive layer 2 as a film, at the same time, these layers can be easily laminated.

また、前記第1図実施例においては、絶縁基板上に形成
する光電変換部の場合について説明したが、第2図に示
すように、光電変換部と信号電荷読み出し部とを積層す
る場合に適用しても同様な作用、効果が得られる。こ\
で、第2図実施例構成において、6は層間絶縁層、7.
8は下層に形成される信号電荷読み出し部から、層間絶
縁層6のスルーホールを通して各配線金属層3,4に接
続させた接続金属層である。なお、この場合、光電変換
膜としての光導電層2については、各画素部分での分離
を特に必要としない。
In addition, in the embodiment shown in FIG. 1, the case of a photoelectric conversion section formed on an insulating substrate was explained, but as shown in FIG. Similar effects and effects can be obtained. child\
In the embodiment configuration shown in FIG. 2, 6 is an interlayer insulating layer, and 7 is an interlayer insulating layer.
Reference numeral 8 denotes a connection metal layer connected to each of the wiring metal layers 3 and 4 from a signal charge readout section formed in the lower layer through a through hole in the interlayer insulating layer 6. Note that in this case, the photoconductive layer 2 as a photoelectric conversion film does not particularly require separation in each pixel portion.

〔発明の効果] 以上詳述したように、この発明によれば、少なくとも信
号電荷読み出し部と光電変換部とを備える固体撮像装置
において、光電変換部に施されて信号電荷読み出し部に
接続される各配線金属層を高融点金属層によって被覆さ
せ、この高融点金属層を介して光電変換膜としての光導
電層を形成させたので、高融点金属層が各配線金属層に
接続される光導電層の拡散阻止膜となって、各配線金属
層を形成するアルミニウムの光導電層への拡散を防止す
ることができ、結果的に光導電層の劣化を効果的かつ良
好に抑制し得るのであり、併せて、これらの各層の積層
化を容易に行ない得るなどの優れた特長がある。
[Effects of the Invention] As detailed above, according to the present invention, in a solid-state imaging device including at least a signal charge readout section and a photoelectric conversion section, Each wiring metal layer is covered with a high melting point metal layer, and a photoconductive layer as a photoelectric conversion film is formed via this high melting point metal layer, so that the high melting point metal layer is connected to each wiring metal layer. It acts as a diffusion prevention film for the layer, and can prevent aluminum forming each wiring metal layer from diffusing into the photoconductive layer, and as a result, deterioration of the photoconductive layer can be effectively and favorably suppressed. In addition, it has excellent features such as the ability to easily laminate these layers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はこの発明の各別の実施例を適用し
た固体撮像装置における光電変換部の概要を模式的に示
す断面構成図であり、また、第3図(a) 、 (b)
は従来例による同上光電変換部の概要を模式的に示す断
面構成図である。 1・・・・絶縁基板、2・・・・光導電層、3,4・・
・・配線金属層、5・・・・高融点金属層、6・・・・
層間絶縁層、 7.8 ・・・・接続金属層。
1 and 2 are cross-sectional configuration diagrams schematically showing the outline of a photoelectric conversion section in a solid-state imaging device to which different embodiments of the present invention are applied, and FIGS. 3(a) and 3(b) are )
FIG. 2 is a cross-sectional configuration diagram schematically showing an outline of the photoelectric conversion unit according to the conventional example. 1... Insulating substrate, 2... Photoconductive layer, 3, 4...
...Wiring metal layer, 5...High melting point metal layer, 6...
Interlayer insulating layer, 7.8... Connection metal layer.

Claims (1)

【特許請求の範囲】[Claims] 少なくとも信号電荷読み出し部と光電変換部とを備える
固体撮像装置において、前記光電変換部に施されて信号
電荷読み出し部に接続される各配線金属層上に、拡散阻
止膜となる高融点金属層をそれぞれに被覆形成させると
共に、この高融点金属層を介して光電変換膜としての光
導電層を形成させたことを特徴とする固体撮像装置。
In a solid-state imaging device including at least a signal charge readout section and a photoelectric conversion section, a high melting point metal layer serving as a diffusion prevention film is provided on each wiring metal layer applied to the photoelectric conversion section and connected to the signal charge readout section. What is claimed is: 1. A solid-state imaging device characterized in that a photoconductive layer is formed as a photoelectric conversion film through the high melting point metal layer.
JP2005181A 1990-01-12 1990-01-12 Solid-state image sensing device Pending JPH03209871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005181A JPH03209871A (en) 1990-01-12 1990-01-12 Solid-state image sensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005181A JPH03209871A (en) 1990-01-12 1990-01-12 Solid-state image sensing device

Publications (1)

Publication Number Publication Date
JPH03209871A true JPH03209871A (en) 1991-09-12

Family

ID=11604063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005181A Pending JPH03209871A (en) 1990-01-12 1990-01-12 Solid-state image sensing device

Country Status (1)

Country Link
JP (1) JPH03209871A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011091236A (en) * 2009-10-23 2011-05-06 Epson Imaging Devices Corp Imaging device and x-ray imaging device
US20160043127A1 (en) * 2014-08-08 2016-02-11 Samsung Electronics Co., Ltd. Radiation detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011091236A (en) * 2009-10-23 2011-05-06 Epson Imaging Devices Corp Imaging device and x-ray imaging device
US20160043127A1 (en) * 2014-08-08 2016-02-11 Samsung Electronics Co., Ltd. Radiation detector
US9691808B2 (en) * 2014-08-08 2017-06-27 Samsung Electronics Co., Ltd. Radiation detector with diffusion stop layer

Similar Documents

Publication Publication Date Title
US5576239A (en) Method of manufacturing solid state image sensing device
JP2007128979A (en) Solid-state imaging device and method of manufacturing same
JPH03209871A (en) Solid-state image sensing device
JP2925444B2 (en) Solid-state imaging device and method of manufacturing the same
JPH1145989A (en) Solid state image pickup device and manufacture thereof
JPH02128468A (en) Solid-state image sensing device and manufacture thereof
JP3160915B2 (en) CCD image sensor
JPH04261282A (en) Ccd solid-state image pickup element
JPH10321828A (en) Manufacture of solid-state image pickup device
JPS61148870A (en) Solid-state image sensor
JPH04240771A (en) Stacked solid-state image sensing element
JPS59163860A (en) Solid-state image pickup element
JPH03222474A (en) Manufacture of infrared solid-state image sensor
JPH11121728A (en) Solid-state image pick-up device
JPS5868377A (en) Solid-state image pickup element
JPH0284768A (en) Manufacture of solid-state image sensing element
JPH06151794A (en) Solid-state image sensing element and manufacture thereof
JPH03284875A (en) Manufacture of solid-state image sensor
JPH0595097A (en) Solid state imaging device
JPH02278873A (en) Manufacture of close contact sensor
JPH03248560A (en) Solid-state image pickup element
JPH0360157A (en) Solid-state image sensing device
JPH03159125A (en) Semiconductor device
JPH10209433A (en) Solid-state image pick up element
JPH10112536A (en) Solid state image pickup element