JPH03209435A - Active matrix type electrooptical device - Google Patents
Active matrix type electrooptical deviceInfo
- Publication number
- JPH03209435A JPH03209435A JP2005237A JP523790A JPH03209435A JP H03209435 A JPH03209435 A JP H03209435A JP 2005237 A JP2005237 A JP 2005237A JP 523790 A JP523790 A JP 523790A JP H03209435 A JPH03209435 A JP H03209435A
- Authority
- JP
- Japan
- Prior art keywords
- active matrix
- oxide film
- film
- inorganic metal
- metal oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011159 matrix material Substances 0.000 title claims description 19
- 239000000758 substrate Substances 0.000 claims abstract description 26
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 16
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 16
- 239000004973 liquid crystal related substance Substances 0.000 claims abstract description 13
- 239000002904 solvent Substances 0.000 claims abstract description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- 229910004205 SiNX Inorganic materials 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 150000002894 organic compounds Chemical class 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims 1
- 230000001678 irradiating effect Effects 0.000 claims 1
- 229910052814 silicon oxide Inorganic materials 0.000 claims 1
- 230000006378 damage Effects 0.000 abstract description 6
- 239000011248 coating agent Substances 0.000 abstract description 5
- 238000000576 coating method Methods 0.000 abstract description 5
- 238000007639 printing Methods 0.000 abstract description 3
- 238000009413 insulation Methods 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract 1
- 230000007257 malfunction Effects 0.000 description 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 229910052681 coesite Inorganic materials 0.000 description 4
- 229910052906 cristobalite Inorganic materials 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910052682 stishovite Inorganic materials 0.000 description 4
- 229910052905 tridymite Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- SVTBMSDMJJWYQN-UHFFFAOYSA-N 2-methylpentane-2,4-diol Chemical compound CC(O)CC(C)(C)O SVTBMSDMJJWYQN-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 101000845005 Macrovipera lebetina Disintegrin lebein-2-alpha Proteins 0.000 description 1
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229940051250 hexylene glycol Drugs 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、大型画像表示、コンピュータ端末、光学シャ
ッターなどに利用される液晶とスイッチング素子を使っ
たアクティブマトリックス型電気光学装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an active matrix electro-optical device using a liquid crystal and a switching element, which is used in large image displays, computer terminals, optical shutters, and the like.
本発明は基板上に複数のスイッチング素子が形成されて
いるアクティブマトリックス型電気光学装置において、
基板面をSiO2、TiO2、ZrO2を生成分とする
無機金属酸化膜でコーティングすることにより製造工程
中での素子の静電破壊を防止するとともに、スイッチン
グ素子の非対称性に起因する動作不良が軽減されるよう
にした。The present invention provides an active matrix electro-optical device in which a plurality of switching elements are formed on a substrate.
Coating the substrate surface with an inorganic metal oxide film containing SiO2, TiO2, and ZrO2 prevents electrostatic damage to the device during the manufacturing process, and reduces malfunctions caused by asymmetry of the switching device. It was to so.
時計や電卓などの表示用として登場した液晶表爪装置は
、画質の向上と大型化に伴いコンピュタ端末や光シヤツ
ターなど表示以外の用途も含めた広い分野で電気光学装
置として使われるようになってきた。特に基板表面上の
各画素にスイッチング素子を作り込んだアクティブマト
リックス型電気光学装置はその優れた表示特性により今
後の発展が期待されている。アクティブマトリックス電
気光学装置はMIM(Metal−1nsulator
−Metal)やMS I (Me t a l −3
emi−Insulator)などの二端子型と三端子
型のTFT (Th i n−F i 1m−Tran
sistor)に大別される。Liquid crystal display devices, which first appeared as displays in clocks, calculators, etc., have come to be used as electro-optical devices in a wide range of fields, including applications other than displays, such as computer terminals and optical shutters, as image quality has improved and they have become larger. Ta. In particular, active matrix electro-optical devices in which switching elements are built into each pixel on the surface of a substrate are expected to develop in the future due to their excellent display characteristics. The active matrix electro-optical device is MIM (Metal-1 nsulator).
-Metal) and MS I (Metal -3
Two-terminal type and three-terminal type TFT (Thin-Fi 1m-Tran) such as emi-Insulator)
sister).
代表的な二端子型アクティブマトリックス型電気光学装
置であるMSIパネルの断面図を第2図(a)に、画素
部分の平面図を第2図(b)に、(b)のA−A一部分
の断面拡大図を第2図(C)に示す。第2図(a)(b
)(c)において、1は上基板、2は列電極、3は下基
板、4は行電極、5は画素電極、6は液晶層、7は非線
形膜である。A cross-sectional view of an MSI panel, which is a typical two-terminal active matrix electro-optical device, is shown in FIG. 2(a), a plan view of the pixel portion is shown in FIG. An enlarged cross-sectional view of is shown in FIG. 2(C). Figure 2 (a) (b)
) (c), 1 is an upper substrate, 2 is a column electrode, 3 is a lower substrate, 4 is a row electrode, 5 is a pixel electrode, 6 is a liquid crystal layer, and 7 is a nonlinear film.
行電極4と画素電極5の間にSiNx等の電気的に非線
形な膜7が挟まれた構造となっており全体としてスイッ
チング素子を構成している。行電極4がm本、列電極7
がn本ならばmXn画素のアクティブマトリックス型電
気光学装置となる。It has a structure in which an electrically nonlinear film 7 such as SiNx is sandwiched between a row electrode 4 and a pixel electrode 5, and the entire structure constitutes a switching element. m row electrodes 4, column electrodes 7
If there are n pieces, it becomes an active matrix type electro-optical device with mXn pixels.
次に動作について説明する。非線形膜7は低電圧では抵
抗は高いが高電圧になるにつれて抵抗が低くなる性質を
持っている。従って液晶層6に対してON電圧がかかっ
ているときは非線形膜7は導電性となり画素電極5に電
荷を書き込むことができるが、OFF電圧がかかると非
線形膜7はほとんど絶縁体に近くなり蓄えられた電荷を
保持する。このように液晶層6に加えられる電圧をスイ
ッチング素子でコントロールすることによりマトリック
ス駆動においてもスタティック駆動と同じ良好なコント
ラストや視角特性が得られる。Next, the operation will be explained. The nonlinear film 7 has a property that its resistance is high at low voltages, but its resistance decreases as the voltage increases. Therefore, when an ON voltage is applied to the liquid crystal layer 6, the nonlinear film 7 becomes conductive and can write charges to the pixel electrode 5, but when an OFF voltage is applied, the nonlinear film 7 almost becomes an insulator and stores charges. retains the charged charge. By controlling the voltage applied to the liquid crystal layer 6 with a switching element in this way, the same good contrast and viewing angle characteristics as in static drive can be obtained in matrix drive.
ところが従来のアクティブマトリックス型電気光学装置
には2つの大きな欠点があった。1つは製造工程中で発
生する静電気によりスイッチング素子が破壊し易いこと
、もう1つはスイッチング素子の持つ非対称性による動
作不良が発生してしまうことである。However, conventional active matrix electro-optical devices have two major drawbacks. One is that the switching element is easily destroyed by static electricity generated during the manufacturing process, and the other is that malfunction may occur due to the asymmetry of the switching element.
素子の非対称性による動作不良について簡単に説明する
。第3図はスイッチング素子の電流電圧特性を示す図で
あり、横軸は電圧、縦軸は電流の対数である。SiNx
のような非線形膜を使ったスイッチング素子では印加さ
れる電圧が同じであってもその極性が変わると電流の大
きさは異なる。Malfunctions due to element asymmetry will be briefly explained. FIG. 3 is a diagram showing the current-voltage characteristics of the switching element, where the horizontal axis is the voltage and the vertical axis is the logarithm of the current. SiNx
In a switching element using a nonlinear film such as, even if the applied voltage is the same, the magnitude of the current will differ if the polarity changes.
例えば電圧が同じ2vでもその極性により△Iだけ電流
値が異なることが第3図から理解できる。For example, it can be understood from FIG. 3 that even if the voltage is the same, 2V, the current value differs by ΔI depending on the polarity.
このため第2図の従来のアクティブマトリックス型電気
光学装置では、駆動回路から交流電圧を加えても素子を
通して液晶層に印加される電圧には直流バイアスがかか
ってしまい、これが原因となって応答速度が極端に遅く
なったり異常表示が現れるなどの動作不良を起こす場合
が多かった。For this reason, in the conventional active matrix electro-optical device shown in Figure 2, even if an AC voltage is applied from the drive circuit, a DC bias is applied to the voltage applied to the liquid crystal layer through the element, which causes a decrease in response speed. This often resulted in malfunctions such as extremely slow speeds or abnormal displays.
本発明は上記の欠点を解決するために成されたものであ
り、スイッチング素子が形成された基板面をSiO2、
TlO2、ZrO2を生成分とする無機金属酸化膜でコ
ーティングすることにより素子の静電破壊を防止すると
ともに、素子の非対称性に起因する動作不良を軽減する
。The present invention was made to solve the above-mentioned drawbacks, and the substrate surface on which switching elements are formed is made of SiO2,
Coating with an inorganic metal oxide film containing TlO2 and ZrO2 as components prevents electrostatic damage to the device and reduces malfunctions caused by asymmetry of the device.
基板面を無機金属酸化膜でコーティングすることにより
液晶層とスイッチング素子の間に良好な絶縁膜が形成さ
れるので、印加される電圧の直流成分はほとんどカット
されてしまい交流成分だけが液晶層に加えられる。この
ため素子の非対称性に起因する動作不良はほぼ完全に防
止できる。またスイッチング素子の表面をコーティング
しておけば製造工程中で発生する静電気で素子を破壊す
る危険性もほとんどなくなる。By coating the substrate surface with an inorganic metal oxide film, a good insulating film is formed between the liquid crystal layer and the switching elements, so the direct current component of the applied voltage is almost completely cut off and only the alternating current component is applied to the liquid crystal layer. Added. Therefore, malfunctions caused by element asymmetry can be almost completely prevented. Furthermore, if the surface of the switching element is coated, there is almost no risk of destroying the element due to static electricity generated during the manufacturing process.
以下、実施例により本発明を詳述する。Hereinafter, the present invention will be explained in detail with reference to Examples.
第1図は本発明のアクティブマトリックス型電気光学装
置の断面図である。第1図において、1は上基板、2は
列電極、3は下基板、4は行電極、6は液晶層、8は無
機金属酸化膜である。第1図の電気光学装置は、無機金
属酸化膜8がスイッチング素子の形成された下基板全面
にコーティングされている以外は第2図(b)と全く同
じなので平面図を省略する。FIG. 1 is a sectional view of an active matrix electro-optical device of the present invention. In FIG. 1, 1 is an upper substrate, 2 is a column electrode, 3 is a lower substrate, 4 is a row electrode, 6 is a liquid crystal layer, and 8 is an inorganic metal oxide film. The electro-optical device shown in FIG. 1 is exactly the same as that shown in FIG. 2(b) except that an inorganic metal oxide film 8 is coated on the entire surface of the lower substrate on which switching elements are formed, so a plan view is omitted.
次に無機金属酸化膜8の形成方法について順を追って説
明する。Next, a method for forming the inorganic metal oxide film 8 will be explained step by step.
(1)S102、TiO2、ZrO2の有機化合物を適
当な割合で混合し、ヘキシレングリコール等の溶媒に溶
かす。(1) Organic compounds of S102, TiO2, and ZrO2 are mixed in an appropriate ratio and dissolved in a solvent such as hexylene glycol.
(2)スイッチング素子が形成された基板面に上記の溶
液を印刷により塗布する。(2) The above solution is applied by printing onto the substrate surface on which the switching elements are formed.
(3)約100℃で印刷膜を乾燥させる。(3) Dry the printed film at about 100°C.
(4)高圧水銀ランプでUV光を膜に照射する。(4) Irradiate the film with UV light using a high-pressure mercury lamp.
(5)約300℃で膜を焼成する。高温で焼成すること
によって印刷膜中の有機物はほとんど除去され、良好な
絶縁性を持つ無機金属酸化膜8が形成される。(5) Baking the film at about 300°C. By firing at a high temperature, most of the organic matter in the printed film is removed, and an inorganic metal oxide film 8 with good insulation properties is formed.
上記の形成方法において、SiO2、TiO2、ZrO
2の割合を変えることにより無機金属酸化膜8の屈折率
を変化させることができるので、下基板3や画素電極等
の屈折率も考慮して電気光学装置全体の反射率あるいは
透過率等が最適になるように3つの成分の割合を決める
ことになる。場合によっては3つの内の2成分で最適な
屈折率が得られることもある。また本実施例では、基板
上に溶液を塗布する方法として印刷を用いたが、スピン
ナーで塗布した後不用な部分を除去する等の方法を利用
しても本発明には全く影響がないことは言うまでもない
。以上のような方法で無機金属酸化膜8を形成した下基
板3を、この後上基板1と貼り合わせ更に液晶を封入す
ることにより第1図の電気光学装置が完成する。In the above formation method, SiO2, TiO2, ZrO
By changing the ratio of 2, the refractive index of the inorganic metal oxide film 8 can be changed, so the reflectance or transmittance of the entire electro-optical device can be optimized by taking into consideration the refractive index of the lower substrate 3, pixel electrodes, etc. The proportions of the three ingredients are determined so that In some cases, the optimum refractive index may be obtained with two of the three components. Furthermore, in this example, printing was used as a method of applying the solution onto the substrate, but it is understood that using a method such as removing unnecessary portions after applying the solution with a spinner will not affect the present invention at all. Needless to say. The lower substrate 3 on which the inorganic metal oxide film 8 has been formed in the manner described above is then bonded to the upper substrate 1 and liquid crystal is further encapsulated to complete the electro-optical device shown in FIG.
第1図のアクティブマトリックス型電気光学装置を動作
させたところ、スイッチング素子の非対称性に起因する
と考えられるような動作不良は全く観られず極めて良好
な動作特性を示した。またそれまでの製造工程中でしば
しば発生していたスイッチング素子の静電破壊も全くな
くなり歩留まりが飛躍的に向上した。When the active matrix electro-optical device shown in FIG. 1 was operated, no malfunctions that could be attributed to the asymmetry of the switching elements were observed, and extremely good operating characteristics were exhibited. Furthermore, electrostatic damage to switching elements, which had often occurred during the manufacturing process up to that point, was completely eliminated, and yields were dramatically improved.
以上詳述したように、本発明によれば無機金属酸化膜を
追加するたけてアクティブマトリックス型電気光学装置
の動作不良を軽減できるばかりでなく、工程中でのスイ
ッチング素子の静電破壊も防止することかできる。As detailed above, according to the present invention, by adding an inorganic metal oxide film, it is possible not only to reduce malfunctions of active matrix electro-optical devices, but also to prevent electrostatic damage to switching elements during the process. I can do it.
第1図は本発明のアクティブマトリックス型電気光学装
置の断面図、第2図は代表的なアクティブマトリックス
型電気光学装置であるMSIパネルの図であり、(a)
は断面図、(b)は画素部の平面図、(c)は(b)の
A−A″部の断面拡大図、第3図はスイッチング素子の
電流電圧特性を示す図である。
1・・・上基板
2・・・列電極
3・・・下基板
4・・・行電極
5・・・画素電極
6・・・液晶層
7・・・SiNx層
訃・
・無機金属酸化膜
以
上FIG. 1 is a cross-sectional view of an active matrix electro-optical device of the present invention, and FIG. 2 is a diagram of an MSI panel that is a typical active matrix electro-optical device.
3 is a cross-sectional view, (b) is a plan view of the pixel portion, (c) is an enlarged cross-sectional view of section A-A'' in (b), and FIG. 3 is a diagram showing the current-voltage characteristics of the switching element. 1. ... Upper substrate 2 ... Column electrode 3 ... Lower substrate 4 ... Row electrode 5 ... Pixel electrode 6 ... Liquid crystal layer 7 ... SiNx layer - - Inorganic metal oxide film or more
Claims (3)
基板の内面には複数のスイッチング素子が形成されてい
るアクティブマトリックス型電気光学装置において、ス
イッチング素子が形成されている基板面が無機金属酸化
膜でコーティングされていることを特徴とするアクティ
ブマトリックス型電気光学装置。(1) In an active matrix electro-optical device in which a liquid crystal is sealed between two substrates and a plurality of switching elements are formed on the inner surface of at least one of the substrates, the surface of the substrate on which the switching elements are formed is made of an inorganic metal. An active matrix electro-optical device characterized by being coated with an oxide film.
、ZrO_2を生成分とする有機化合物を溶媒に溶かし
た状態で基板面に塗布した後、UV光を照射し更に加熱
することによって形成された膜である請求項1に記載の
アクティブマトリックス型電気光学装置。(2) The inorganic metal oxide film is SiO_2, TiO_2
The active matrix electro-optic film according to claim 1, which is a film formed by applying an organic compound containing ZrO_2 as a product dissolved in a solvent to the substrate surface, irradiating it with UV light, and further heating it. Device.
iCx等の電気的に非線形な特性を持つ膜を使って構成
された非線形抵抗素子である請求項1に記載のアクティ
ブマトリックス型電気光学装置。(3) The switching element is SiNx, SiOx, S
2. The active matrix electro-optical device according to claim 1, which is a nonlinear resistance element constructed using a film having electrically nonlinear characteristics such as iCx.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005237A JPH03209435A (en) | 1990-01-12 | 1990-01-12 | Active matrix type electrooptical device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005237A JPH03209435A (en) | 1990-01-12 | 1990-01-12 | Active matrix type electrooptical device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03209435A true JPH03209435A (en) | 1991-09-12 |
Family
ID=11605591
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005237A Pending JPH03209435A (en) | 1990-01-12 | 1990-01-12 | Active matrix type electrooptical device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03209435A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100271041B1 (en) * | 1997-11-05 | 2000-11-01 | 구본준, 론 위라하디락사 | Substrate of lcd and its fabrication method |
KR100271043B1 (en) * | 1997-11-28 | 2000-11-01 | 구본준, 론 위라하디락사 | Lcd substrate and its fabrication method |
KR100285126B1 (en) * | 1997-03-27 | 2001-04-02 | 니시무로 타이죠 | Liquid crystal display and method for manufacturing thereof |
KR100323367B1 (en) * | 1997-11-05 | 2002-09-17 | 닛본 덴기 가부시끼가이샤 | Semiconductor device and method of making the same |
KR100313950B1 (en) * | 1998-11-19 | 2002-09-17 | 엘지.필립스 엘시디 주식회사 | Multi-domain liquid crystal display device |
US6529251B2 (en) | 1999-02-23 | 2003-03-04 | Sharp Kabushiki Kaisha | Liquid crystal display device and method of manufacturing the same |
US6654090B1 (en) | 1998-09-18 | 2003-11-25 | Lg. Philips Lcd Co., Ltd. | Multi-domain liquid crystal display device and method of manufacturing thereof |
KR100443828B1 (en) * | 2000-05-25 | 2004-08-09 | 엘지.필립스 엘시디 주식회사 | Liquid Crystal Display Device And Method of Fabricating The Same |
-
1990
- 1990-01-12 JP JP2005237A patent/JPH03209435A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100285126B1 (en) * | 1997-03-27 | 2001-04-02 | 니시무로 타이죠 | Liquid crystal display and method for manufacturing thereof |
KR100271041B1 (en) * | 1997-11-05 | 2000-11-01 | 구본준, 론 위라하디락사 | Substrate of lcd and its fabrication method |
KR100323367B1 (en) * | 1997-11-05 | 2002-09-17 | 닛본 덴기 가부시끼가이샤 | Semiconductor device and method of making the same |
KR100271043B1 (en) * | 1997-11-28 | 2000-11-01 | 구본준, 론 위라하디락사 | Lcd substrate and its fabrication method |
US6344884B1 (en) | 1997-11-28 | 2002-02-05 | Lg.Philips Lcd Co., Ltd. | Liquid crystal display device substrate and method for manufacturing thereof |
US6552759B2 (en) * | 1997-11-28 | 2003-04-22 | Lg Electronics, Inc. | Liquid crystal display device substrate and method for manufacturing thereof |
US6856361B2 (en) | 1997-11-28 | 2005-02-15 | Lg.Philips Lcd Co., Ltd. | Liquid crystal display device substrate and method for manufacturing thereof |
US6654090B1 (en) | 1998-09-18 | 2003-11-25 | Lg. Philips Lcd Co., Ltd. | Multi-domain liquid crystal display device and method of manufacturing thereof |
KR100313950B1 (en) * | 1998-11-19 | 2002-09-17 | 엘지.필립스 엘시디 주식회사 | Multi-domain liquid crystal display device |
US6529251B2 (en) | 1999-02-23 | 2003-03-04 | Sharp Kabushiki Kaisha | Liquid crystal display device and method of manufacturing the same |
KR100443828B1 (en) * | 2000-05-25 | 2004-08-09 | 엘지.필립스 엘시디 주식회사 | Liquid Crystal Display Device And Method of Fabricating The Same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9360730B2 (en) | Display panel, method for manufacturing the same, and display device comprising the same | |
JP2608647B2 (en) | Method of assembling a metal-insulator-metal device array and a display incorporating such an array | |
JPS6280626A (en) | Liquid crystal display element | |
JPH03209435A (en) | Active matrix type electrooptical device | |
JPH043121A (en) | Liquid crystal display and manufacture thereof | |
US5734452A (en) | Two-terminal non-linear resistive device and a method for producing the same in which nickel or iron is an impurity in the zinc sulfide layer | |
JPS6242127A (en) | Liquid crystal display unit with light blocking and cell spacer construction | |
JP2008052912A (en) | Liquid material for transparent conductive film formation, method for forming transparent conductive film, and method for manufacturing electrooptical device | |
JPS61184517A (en) | Thin film element | |
JPS6328308B2 (en) | ||
JPH05203997A (en) | Liquid crystal display device | |
JP3744203B2 (en) | Liquid crystal display | |
JP3210443B2 (en) | Liquid crystal display | |
KR100488941B1 (en) | Apparatus for fringe field switching mode liquid crystal display device | |
JPH04269724A (en) | Electrooptical device | |
JPH05196970A (en) | Liquid crystal display device | |
JPH11271798A (en) | Liquid crystal display device | |
JPH09146123A (en) | Two-terminal nonlinear element and its production | |
CN101796454B (en) | Liquid crystal display device and manufacturing method thereof | |
JPH11337980A (en) | Liquid crystal display device | |
JPH02306221A (en) | Active matlix type electrooptical device | |
JPH0527268A (en) | Liquid crystal display device | |
JPH0416829A (en) | Electro-optical device | |
JPH0534666A (en) | Optical modulation element | |
JPH0566424A (en) | Liquid crystal display device |