JPH02306221A - Active matlix type electrooptical device - Google Patents

Active matlix type electrooptical device

Info

Publication number
JPH02306221A
JPH02306221A JP1128073A JP12807389A JPH02306221A JP H02306221 A JPH02306221 A JP H02306221A JP 1128073 A JP1128073 A JP 1128073A JP 12807389 A JP12807389 A JP 12807389A JP H02306221 A JPH02306221 A JP H02306221A
Authority
JP
Japan
Prior art keywords
switching element
area
active matrix
optical device
drive circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1128073A
Other languages
Japanese (ja)
Inventor
Yukiyoshi Tsunoda
角田 幸義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP1128073A priority Critical patent/JPH02306221A/en
Publication of JPH02306221A publication Critical patent/JPH02306221A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the in-plane uniformity of an action characteristic by changing the area of a switching element according to a distance from a driving circuit. CONSTITUTION:The area of the switching element part, in which a picture element electrode 5 overlaps with a row electrode 4, is made comparatively small at a point C close to a driving circuit connecting part 3 and made succes sively large as it goes away from points B and A and the connecting part 3. As it goes away from the connecting part 3, a voltage given to the switching element by the line resistances of the row electrode and column electrode is made relatively low, and a current to flow in the element is increased to the contrary by the degree to increase the area of the switching element. Both effects offset each other, a charge quantity to flow into a picture element is made approximately fixed, and respective picture elements on a substrate show approximately fixed action characteristics to the voltage impressed from the connecting part 3. Thus, the in-surface uniformity of the action characteristics can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は大型画像表示、コンピュータ端末、光学シャッ
ターなどに利用される液晶とスイッチング素子を使った
アクティブマトリックス型電気光学装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an active matrix electro-optical device using a liquid crystal and a switching element, which is used in large image displays, computer terminals, optical shutters, and the like.

〔発明の1既要〕 本発明は基板上に1M数のスイッチング素子が形成され
ているアクティブマトリックス型電気光学装置において
、スイッチング素子の面積を駆動回路からの距離によっ
て変化させることにより動作特性の面内均一性を向上さ
せるようにしたものである。
[1 Summary of the Invention] The present invention provides an active matrix electro-optical device in which 1M switching elements are formed on a substrate, by changing the area of the switching elements depending on the distance from the drive circuit, thereby improving the operational characteristics. This is to improve internal uniformity.

〔従来の技術〕[Conventional technology]

時計や電卓などの表示用として登場した液晶表示装置は
、画質の向上と大型化に伴いコンピュータ端末や光シヤ
ツターなど表示以外の用途も含めた広い分野で電気光学
袋;lとして使われるようになってきた。特に基板表面
上の各画素にスイッチング素子を作り込んだアクティブ
マトリックス型電気光学装置はその優れた表示′(、Y
性により今後の発展が期待されている。アクティブマト
リックス型電気光学装置はMIM(Metal−1ns
ulator−Metal)やMS I (Me L 
a lSem1−Insulator)などの二端子型
と三端子型のTPT (Th t n−F i 1m−
Transistor)に大別される。
Liquid crystal display devices, which first appeared as displays in clocks and calculators, have come to be used as electro-optic bags in a wide range of fields, including applications other than displays, such as computer terminals and optical shutters, as image quality has improved and they have become larger. It's here. In particular, active matrix electro-optical devices, in which switching elements are built into each pixel on the substrate surface, offer excellent display' (, Y
Future development is expected due to its nature. The active matrix type electro-optical device is MIM (Metal-1ns
ulator-Metal) and MS I (Me L
two-terminal type and three-terminal type TPT (Th t n-F i 1m-
Transistors).

代表的な二端子型アクティブマトリックス型゛工気光学
装置であるMSIパネルの平面図を第2図(alに、平
面拡大図を第2図(blに、(blのD−D ’部分の
断面拡大図を第2図(C1に示す。第2図(at、 (
bl。
A plan view of an MSI panel, which is a typical two-terminal active matrix type optical device, is shown in Figure 2 (al), an enlarged plan view is shown in Figure 2 (bl), and a cross section of the D-D' portion of (bl) is shown in Figure 2 (al). An enlarged view is shown in Figure 2 (C1). Figure 2 (at, (
bl.

[elにおいて、1は上基板、2は下基板、3は駆動回
路接続部、4は行電極、5は画素電極、6は非線形膜、
7は列電極、8は液晶である。但しくblは説明の都合
から下基板面の様子だけを表しており上基板は省略して
いる。行電極4と画素電極5の間にSiNx等の電気的
に非線形な1126が挟まれた構造となっており全体と
してスイッチング素子を構成している。行電極4がm本
、列電極7がn木ならばmxn画素のアクティブマトリ
ックス型電気光学装置となる。第2図の電気光学装置の
製造工程の概略を以下に述べる。
[In el, 1 is the upper substrate, 2 is the lower substrate, 3 is the drive circuit connection part, 4 is the row electrode, 5 is the pixel electrode, 6 is the nonlinear film,
7 is a column electrode, and 8 is a liquid crystal. However, for convenience of explanation, bl shows only the state of the lower substrate surface, and the upper substrate is omitted. It has a structure in which an electrically nonlinear electrode 1126 such as SiNx is sandwiched between the row electrode 4 and the pixel electrode 5, and the entire structure constitutes a switching element. If the number of row electrodes 4 is m and the number of column electrodes 7 is n, an active matrix electro-optical device with m×n pixels is obtained. An outline of the manufacturing process of the electro-optical device shown in FIG. 2 will be described below.

(1)下基板2となるガラス基板上にITO膜をスパッ
タリングあるいは蒸着によって製11りし、バターニン
グして画素電極5を形成する。
(1) An ITO film is formed on a glass substrate that will become the lower substrate 2 by sputtering or vapor deposition, and patterned to form the pixel electrode 5.

(2)  更にその上にSiNx膜と行電極4となるメ
タル層を製膜し、パターニングしてスイッチング素子を
形成する。
(2) Furthermore, a SiNx film and a metal layer that will become the row electrodes 4 are formed thereon and patterned to form switching elements.

(3)  上基板1となるもう一方のガラス基板上にI
TOを製膜し、ストライプ状にバターニングして列電極
7を形成する。
(3) I on the other glass substrate that will become the upper substrate 1
TO is formed into a film and patterned into stripes to form column electrodes 7.

(4)両方のガラス基板を行電極4と列電極7が直交し
、かつ画素電極5と列電極7が対向するように貼り合わ
せる。
(4) Both glass substrates are bonded together so that the row electrodes 4 and column electrodes 7 are perpendicular to each other, and the pixel electrodes 5 and column electrodes 7 are opposite to each other.

f51  両方の基板間に液晶8を封入する。f51 Liquid crystal 8 is sealed between both substrates.

(61駆動回路接続部3に駆動回路を接続する。(61 Connect the drive circuit to the drive circuit connection section 3.

駆動回路の接続は具体的には行電極4および列電極7を
第2図(alに示す駆動回路接続部3まで延長し、そこ
に駆動用ICをFPC(FrexibIe−PrinL
ed−Circuit)COF(Cip−On−FPC
)COG (Cip−On−Grass)などの方法で
接続する。
Specifically, the connection of the drive circuit is to extend the row electrode 4 and the column electrode 7 to the drive circuit connection part 3 shown in FIG.
ed-Circuit) COF (Cip-On-FPC)
) Connect using methods such as COG (Cip-On-Grass).

次に動作について説明する。非線形膜6は低電圧では抵
抗は高いが高電圧になるにつれて抵抗が低くなる性質を
持っている。従って液晶8に対してON電圧がかかって
いるときは非線形膜6は導電性となり画素電極5に電荷
を書き込むことができるが、OFF電圧がかかると非線
形素子6はほとんど絶縁体に近くなり蓄えられた電荷を
保持する。このような液晶8に加えられる電圧をスイッ
チング素子でコントロールすることにより7トす7クス
駆動においてもスタティック駆動と同し良好なコントラ
ストや視角特性が得られる。
Next, the operation will be explained. The nonlinear film 6 has a property that its resistance is high at low voltages, but its resistance decreases as the voltage increases. Therefore, when an ON voltage is applied to the liquid crystal 8, the nonlinear film 6 becomes conductive and charges can be written into the pixel electrode 5, but when an OFF voltage is applied, the nonlinear element 6 becomes almost an insulator and no charge is stored. retains the electric charge. By controlling the voltage applied to the liquid crystal 8 using a switching element, good contrast and viewing angle characteristics can be obtained in 7x7x driving as well as in static driving.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで従来のアクティブマトリックス型電気光学装置
では基板上の各々の場所によって動作特性が異なるとい
う問題があった。第3図に従来のアクティブマトリック
ス型電気光学装置の動作特性の例を示す。第3図におい
て縦軸は電気光学装置の透過率、横軸は印加電圧、■■
◎は第2図(alに示す基板上の各点に対応する動作特
性である。
However, the conventional active matrix electro-optical device has a problem in that its operating characteristics vary depending on the location on the substrate. FIG. 3 shows an example of the operating characteristics of a conventional active matrix electro-optical device. In Figure 3, the vertical axis is the transmittance of the electro-optical device, the horizontal axis is the applied voltage,
◎ indicates the operating characteristics corresponding to each point on the substrate shown in FIG. 2 (al).

第3図かられかるように駆動回路接続部3に近い点のは
比較的低い電圧で透過率が変化しはしめるのに対し、■
◎と接続部3から離れるに従って変化しはしめる電圧が
高くなっていく。これは主に行電極4と列電極7の抵抗
に起因して回路接続部3から離れるほど実際に素子に印
加される電圧が低下し、結果として画素に蓄積される電
荷量も減少してしまうためである。電極の抵抗が高い程
上記の傾向は強くなる。
As can be seen from Fig. 3, the transmittance at the point near the drive circuit connection part 3 changes at a relatively low voltage, whereas
◎ and the voltage that changes as it moves away from the connection part 3 becomes higher. This is mainly due to the resistance of the row electrodes 4 and column electrodes 7, and as the distance from the circuit connection section 3 increases, the voltage actually applied to the element decreases, and as a result, the amount of charge accumulated in the pixel also decreases. It's for a reason. The higher the resistance of the electrode, the stronger the above tendency.

もしこの電気光学装置がON状態とOFF状態の間を切
り替えるだけの機能を目的とするならばあまり問題はな
く、ON状態では電圧[F]、OFF状態では電圧■を
印加すればよい。しかし例えば表示装置に応用する時な
どは中間の透過率状態を表さねばならないことがしばし
ばある。この場合は上記の場所による動作特性の違いは
大きな問題となる。例えば電圧◎を印加すると点のと点
■では△Rの透過率の差が生じることになり見かけ上は
表示むらとなる。
If the purpose of this electro-optical device is to simply switch between an ON state and an OFF state, there will be no problem, and it is sufficient to apply a voltage [F] in the ON state and a voltage 2 in the OFF state. However, in applications such as display devices, it is often necessary to represent intermediate transmittance states. In this case, the above-mentioned difference in operating characteristics depending on location becomes a big problem. For example, when a voltage ◎ is applied, a difference in transmittance of △R occurs between the points and the points ■, resulting in apparent display unevenness.

この対策として電極の材事4をできるだけ抵抗の低いも
のに代えたり各電極の膜厚を厚くして砥抗値を下げるな
どの工夫がなされているが電気光学装置が大型になると
いずれの方法も限界がある。
As a countermeasure to this problem, measures have been taken to reduce the abrasive resistance by replacing the electrode material 4 with one that has as low a resistance as possible, or by increasing the film thickness of each electrode, but as the electro-optical device becomes larger, none of these methods will work. There is a limit.

本発明は上記の問題点を解決するために成されたもので
ある。
The present invention has been made to solve the above problems.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は基板上に複数のスイッチング素子が形成されて
いるアクティブマトリックス型電気光学装置において、
スイッチング素子の面積を駆動回路接続部からの距離に
よって変えることにより動作特性をj!を屋内の各点で
均一になるようにしたものである。
The present invention provides an active matrix electro-optical device in which a plurality of switching elements are formed on a substrate.
By changing the area of the switching element depending on the distance from the drive circuit connection part, the operating characteristics can be improved. is made uniform at each point indoors.

〔作用〕[Effect]

スイッチング素子の面積が大きくなると電流に対する断
面積も大きくなるので素子を通して流れ込む電荷量も多
くなる。この現象を利用して回路接続部から離れるにつ
れてスイッチング素子の面積を大きくしてやれば、電極
の抵抗によって印加電圧が低下する効果と打ち消し合っ
て各画素に流れ込む電r:Ir11を一定にすることが
できる。すなわち各画素の動作特性を基板内の各点でほ
ぼ同しにすることができる。
As the area of the switching element increases, the cross-sectional area for current also increases, and therefore the amount of charge flowing through the element also increases. By taking advantage of this phenomenon and increasing the area of the switching element as it moves away from the circuit connection, it is possible to cancel out the effect of the applied voltage decreasing due to the resistance of the electrodes and keep the current r:Ir11 flowing into each pixel constant. . That is, the operating characteristics of each pixel can be made substantially the same at each point within the substrate.

〔実施例〕〔Example〕

以下実施例に従って本発明を詳述する。 The present invention will be described in detail below according to Examples.

本発明のアクティブマトリックス型電気光学装置の平面
図を第1図(alに、■部の画素の拡大図を第1図(b
lに、0部の画素の拡大図を第1図(C1に、0部の画
素の拡大図を第1図Fdlに示す。第1図(a)。
A plan view of the active matrix electro-optical device of the present invention is shown in Fig. 1 (al), and an enlarged view of the pixel in the
1, an enlarged view of the pixels in the 0th part is shown in FIG. 1 (C1), and an enlarged view of the pixels in the 0th part is shown in FIG. 1Fdl.

ibl、 (C1,(d+において、1は上基板、2は
下基板、3は駆動回路接続部、4は行電極、5は画素電
極である。下基板2の面上に形成された画素電極5と行
電極4の間にSiNxが挟まれスイッチング素子を形成
している。上基板1には列電極(第1図では省略)が行
電極4と直交する方向にストライプ状に形成され、基板
間には液晶が封入されている。このように基本的な構造
と製造工程は前述の第2図の電気光学装置と全く同じで
ある。
ibl, (C1, (d+, 1 is the upper substrate, 2 is the lower substrate, 3 is the drive circuit connection part, 4 is the row electrode, and 5 is the pixel electrode. The pixel electrode formed on the surface of the lower substrate 2 SiNx is sandwiched between 5 and row electrodes 4 to form a switching element.Column electrodes (omitted in FIG. 1) are formed in stripes on the upper substrate 1 in a direction perpendicular to the row electrodes 4. A liquid crystal is sealed in between.As described above, the basic structure and manufacturing process are exactly the same as the electro-optical device shown in FIG. 2 described above.

第1図のアクティブマトリックス型電気光学装置が従来
のものと異なっているのは行電極4と画素電極5の重な
っている部分の面積、すなわちスイッチング素子部分の
面積が場所によって違っている点である。駆動回路接続
部3に近い点◎ではスイッチング素子部の面積が比較的
小さいのに対し、■、■と駆動回路接続部3から離れて
いくに従ってスイッチング素子部の面積が連続的に大き
くなっていく。作用の項で説明したように駆動回路接続
部3から遠くなるに従って行電極および列電極のライン
抵抗によりスイッチング素子に加えられる電圧は相対的
に低くなるが、スイッチング素子の面積が大きくなった
分だけ素子を21iLれる電流は逆に増加する。この両
方の効果が打ち消し合うことによってスイッチング素子
を通して画素に流れ込む電荷量はほぼ一定となるので、
駆動回路接続部から印加される電圧に対して基板面上の
各画素がほぼ一定の動作特性を示すようになる。
The active matrix electro-optical device shown in FIG. 1 differs from conventional devices in that the area of the overlapping portion of the row electrode 4 and pixel electrode 5, that is, the area of the switching element portion, differs depending on the location. . At point ◎, which is close to the drive circuit connection part 3, the area of the switching element part is relatively small, whereas at points ■ and ■, the area of the switching element part increases continuously as you move away from the drive circuit connection part 3. . As explained in the operation section, the voltage applied to the switching element due to the line resistance of the row and column electrodes becomes relatively lower as the distance from the drive circuit connection part 3 increases, but this is due to the increase in the area of the switching element. Conversely, the current flowing through the element increases by 21iL. As both of these effects cancel each other out, the amount of charge flowing into the pixel through the switching element becomes almost constant.
Each pixel on the substrate surface exhibits substantially constant operating characteristics with respect to the voltage applied from the drive circuit connection portion.

スイッチング素子面積の変化率をどのくらいにずべきか
は行電極4および列電極7の抵抗(aから計算によって
求められるが、実際にはスイッチング素子と液晶層の容
量の比率などによっても印加電圧は微妙に変化するので
いくつかの予備実験を行ってから素子面積を設計する必
要がある。第1図のアクティブマトリックス型電気光学
装置を作製して第3図に示したような電圧と透過率の関
係をg4H上の各点で測定したところ、場所による特性
のばらつきはほとんどなく)へめで良好な面内均一性を
示した。また、駆動回路接続部からの距離によって領域
毎に、又は複数個毎にスイッチング素子の面積を変えて
も、従来のものと比べ表示状態の良好なものを得ること
ができる。
The rate of change in the area of the switching element can be determined by calculation from the resistances (a) of the row electrodes 4 and column electrodes 7, but in reality the applied voltage varies depending on the ratio of capacitance between the switching element and the liquid crystal layer. It is necessary to perform some preliminary experiments before designing the element area.The active matrix electro-optical device shown in Fig. 1 was fabricated and the relationship between voltage and transmittance as shown in Fig. 3 was obtained. When measured at each point on g4H, it was found that there was almost no variation in characteristics depending on location) and good in-plane uniformity was observed. Further, even if the area of the switching elements is changed for each area or for each plurality of switching elements depending on the distance from the drive circuit connection part, a display state better than that of the conventional one can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば大型になっても印
加電圧に対する動作特性のばらつきがなく極めて面内均
一性の良いアクティブマトリックス型電気光学装置を得
ることができる。
As described above, according to the present invention, it is possible to obtain an active matrix electro-optical device that has extremely good in-plane uniformity without variations in operating characteristics with respect to applied voltage even when it is large-sized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図+alは本発明のアクティブマトリックス型電気
光学装置の平面図、第1図fblは+alのA部分の画
素部の拡大図、第1図fcIはB部分の画素部の拡大図
、第1図(d)はta+のC部分の画素部の拡大図、第
2図talは従来のアクティブマ;−りンクス型電気光
学装置の平面図、第2図(blは従来のアクティブマト
リックス型電気光学装置の平面拡大図、第2図(C)は
(blのD−D’部分の断面拡大図、第3図は従来のア
クティブマトリックス型電気光学装置の動作特性を示す
図である。 l・・・上基板     2・・・下基板3・・・駆動
回路接続部 4・・・行電極5・・・画素?i1極  
  6・・・非線形膜7・・・列電極     8・・
・液晶以上 出願人 セイコー電子工業株式会社 代理人 弁理士  林   敬 之 助本完明のアクテ
ィブマトリヅ7ス型電気尤学装置の平面図力 1 図(
’d) IQ)exA音pのa素沫大図         IQ
IのB郁の画索槙大口M  I  121(b)   
            [l  m(C)(0)のc
eの山漿槙大ワ 第 1 図(d) 従来のアクティブマ←リッ7ス型宅気た学長室の半面図
82 図(o) ゴ健米のアフティフ′マトリックス型芭気尤・羊装置の
早面徂人図第 21Z(b)
FIG. 1 +al is a plan view of the active matrix electro-optical device of the present invention, FIG. Figure (d) is an enlarged view of the pixel section of the C part of ta+, Figure 2 (tal) is a plan view of a conventional active matrix type electro-optic device, Figure 2 (bl is a plan view of a conventional active matrix type electro-optic FIG. 2(C) is an enlarged plan view of the device; FIG. 2(C) is an enlarged cross-sectional view of the DD' portion of (bl); FIG.・Upper board 2...Lower board 3...Drive circuit connection part 4...Row electrode 5...Pixel?i1 pole
6... Nonlinear film 7... Column electrode 8...
・Liquid crystal and above Applicant Seiko Electronics Industries Co., Ltd. Agent Patent Attorney Takayuki Hayashi Top view of Kanmei Sukemoto's active matrix 7-type electromagnetic device Figure 1 (
'd) IQ) exA sound p's a basic diagram IQ
I no B Iku no Gasaku Maki Oguchi M I 121(b)
[l m(C)(0) c
Figure 1 (d) Half-view of the president's office with conventional active matrix type housing. Hayamen Sojinzu No. 21Z (b)

Claims (4)

【特許請求の範囲】[Claims] (1)2枚の基板間に液晶が封入され少なくとも一方の
基板の内面には複数のスイッチング素子が形成されてい
るアクティブマトリックス型電気光学装置において、ス
イッチング素子の面積が基板上の各場所で異なっている
ことを特徴とするアクティブマトリックス型電気光学装
置。
(1) In an active matrix electro-optical device in which a liquid crystal is sealed between two substrates and a plurality of switching elements are formed on the inner surface of at least one of the substrates, the area of the switching elements is different at each location on the substrate. An active matrix electro-optical device characterized by:
(2)駆動回路に最も近い部分のスイッチング素子の面
積は最も小さく、駆動回路から遠くなるに従って徐々に
スイッチング素子の面積が大きくなり、駆動回路から最
も離れた部分のスイッチング素子の面積が最も大きくな
るように構成された特許請求の範囲第1項記載のアクテ
ィブマトリックス型電気光学装置。
(2) The area of the switching element closest to the drive circuit is the smallest, the area of the switching element gradually increases as the distance from the drive circuit increases, and the area of the switching element farthest from the drive circuit is the largest. An active matrix electro-optical device according to claim 1, configured as follows.
(3)前記スイッチング素子はSiN_x、SiO_x
、SiC_x等の電気的に非線形な特性を持つ膜を使っ
て構成された非線形素子である特許請求の範囲第1項記
載のアクティブマトリックス型電気光学装置。
(3) The switching element is SiN_x, SiO_x
2. The active matrix electro-optical device according to claim 1, which is a nonlinear element constructed using a film having electrically nonlinear characteristics, such as SiC_x.
(4)複数のスイッチング素子が形成されているアクテ
ィブマトリックス型電気光学装置において、駆動回路接
続部からの距離によって、領域毎にスイッチング素子の
面積が異なっているアクティブマトリックス型電気光学
装置。
(4) An active matrix electro-optical device in which a plurality of switching elements are formed, in which the area of the switching elements differs from region to region depending on the distance from the drive circuit connection portion.
JP1128073A 1989-05-22 1989-05-22 Active matlix type electrooptical device Pending JPH02306221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1128073A JPH02306221A (en) 1989-05-22 1989-05-22 Active matlix type electrooptical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1128073A JPH02306221A (en) 1989-05-22 1989-05-22 Active matlix type electrooptical device

Publications (1)

Publication Number Publication Date
JPH02306221A true JPH02306221A (en) 1990-12-19

Family

ID=14975776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1128073A Pending JPH02306221A (en) 1989-05-22 1989-05-22 Active matlix type electrooptical device

Country Status (1)

Country Link
JP (1) JPH02306221A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6028650A (en) * 1996-07-19 2000-02-22 Nec Corporation Liquid crystal display apparatus with uniform feed-through voltage in panel
JP2002072250A (en) * 2000-04-24 2002-03-12 Matsushita Electric Ind Co Ltd Display device and driving method thereof
US7916231B2 (en) * 2007-06-07 2011-03-29 Hitachi Displays, Ltd. Display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6028650A (en) * 1996-07-19 2000-02-22 Nec Corporation Liquid crystal display apparatus with uniform feed-through voltage in panel
JP2002072250A (en) * 2000-04-24 2002-03-12 Matsushita Electric Ind Co Ltd Display device and driving method thereof
US7916231B2 (en) * 2007-06-07 2011-03-29 Hitachi Displays, Ltd. Display device

Similar Documents

Publication Publication Date Title
US11609460B2 (en) Liquid crystal display and panel therefor
KR101186863B1 (en) Multi-domain in plane switching mode liquid crystal display device
JP3567183B2 (en) Liquid crystal display
US6661492B2 (en) In-plane switching LCD device
JP5313373B2 (en) Liquid crystal display
US7821612B2 (en) Color filter array panel and liquid crystal display including the same
KR101247698B1 (en) Liquid crystal display
US7362391B2 (en) In-plane switching LCD device
US6839117B1 (en) Compensating electrode structure of a display device
US20050200793A1 (en) In-plane switching mode liquid crystal display device and method of fabricating the same
US6657694B2 (en) In-plane switching LCD device having slanted corner portions
KR20050107900A (en) In plane switching mode liquid crystal display device having improved contrast ratio
US7385661B2 (en) In-plane switching mode liquid crystal display device and method of manufacturing the same
CN101097366B (en) Thin film transistor substrate for liquid crystal display
US8045079B2 (en) Display device
KR20010105256A (en) Liquid crystal display
KR20040050624A (en) In plane switching mode liquid crystal display device having improved aperture ratio
JPH02306221A (en) Active matlix type electrooptical device
KR100623443B1 (en) Multi-Domain Liquid Crystal Display Device
KR101318247B1 (en) Liquid crystal display device and method for manufacturing of the same
JP2004219827A (en) Liquid crystal display
KR101166578B1 (en) In plane switching mode liquid crystal display device and fabrication method thereof
KR20050025446A (en) Liquid crystal display device
US20090190075A1 (en) Liquid crystal display and manufacturing method thereof
JPH11194323A (en) Liquid crystal display element and driving method therefor