JPH0320884B2 - - Google Patents

Info

Publication number
JPH0320884B2
JPH0320884B2 JP57204083A JP20408382A JPH0320884B2 JP H0320884 B2 JPH0320884 B2 JP H0320884B2 JP 57204083 A JP57204083 A JP 57204083A JP 20408382 A JP20408382 A JP 20408382A JP H0320884 B2 JPH0320884 B2 JP H0320884B2
Authority
JP
Japan
Prior art keywords
oxide
mol
silica
zinc oxide
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57204083A
Other languages
Japanese (ja)
Other versions
JPS5994402A (en
Inventor
Akihiro Takami
Yoshikazu Kobayashi
Shigeo Konishi
Michio Matsuoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57204083A priority Critical patent/JPS5994402A/en
Publication of JPS5994402A publication Critical patent/JPS5994402A/en
Publication of JPH0320884B2 publication Critical patent/JPH0320884B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は酸化亜鉛バリスタ組成物にガラスフリ
ツトを添加して高温で焼成した焼結体の両面に電
極をつけてなる電圧非直線抵抗器の製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a voltage nonlinear resistor, which comprises adding electrodes to both sides of a sintered body made by adding glass frit to a zinc oxide varistor composition and firing it at a high temperature. It is something.

従来例の構成とその問題点 従来、電圧非直線抵抗器としては炭化珪素を主
体とし、これを磁器質結合剤で固めた、いわゆる
SiCバリスタが広く用いられてきたが、最近酸化
亜鉛を主成分とし、Bi2O3、Co2O3等の金属酸化
物を添加して混合、成形、焼成した焼結体を用い
た、いわゆる酸化亜鉛バリスタが生産され、実用
に供されている。
Conventional structure and its problems Traditionally, voltage nonlinear resistors were made mainly of silicon carbide, which was hardened with a porcelain binder.
SiC varistors have been widely used, but recently SiC varistors have been developed using so-called sintered bodies made of zinc oxide as a main component and metal oxides such as Bi 2 O 3 and Co 2 O 3 added, mixed, molded, and fired. Zinc oxide varistors have been produced and put into practical use.

この種の電圧非直線抵抗器(以降バリスタと呼
ぶ)の電圧−電流特性は一般に次式によつて表わ
される。
The voltage-current characteristics of this type of voltage nonlinear resistor (hereinafter referred to as a varistor) are generally expressed by the following equation.

I=(V/C)〓 ただし、Iは電流、Vは電圧、C、αは定数で
ある。そして、バリスタの特性はCとαの2つの
定数で表わすことができる。Cは電流1アンペア
時における電圧で、一般に固定抵抗器の抵抗値に
相当し、またバリスタとしては電圧非直線指数α
ができるだけ大きい方が望ましい。本発明者らは
Cの代りに電流10μA、100μA、1mA、…、
100Aの時の電圧V10A、V100A、V1mA、…、
V100Aを使用している。
I=(V/C) where I is current, V is voltage, and C and α are constants. The characteristics of the varistor can be expressed by two constants, C and α. C is the voltage when the current is 1 ampere, which generally corresponds to the resistance value of a fixed resistor, and as a varistor, the voltage nonlinearity index α
It is desirable that it be as large as possible. The present inventors replaced C with currents of 10 μA, 100 μA, 1 mA,...
Voltage at 100A V 10A , V 100A , V 1 m A ,...
I am using V 100A .

酸化亜鉛バリスタのαは40〜100と極めて大き
く、電圧安定化、サージ電圧抑制の効果が著し
く、電子機器の保護に広く使われている。最近で
は酸化亜鉛バリスタを避雷器等の高圧、高エネル
ギー分野にも使つていこうとする動きが活発にな
つている。
Zinc oxide varistors have an extremely large α of 40 to 100, and are highly effective in voltage stabilization and surge voltage suppression, and are widely used to protect electronic equipment. Recently, there has been an active movement to use zinc oxide varistors in high voltage, high energy fields such as lightning arresters.

しかしながら、避雷器等に使われる酸化亜鉛バ
リスタは高電圧が常時印加され、雷サージ等の高
エネルギーを吸収しなければならないため、酸化
亜鉛バリスタ素子の形状が大きくなる。電子機器
の保護のために用いられる酸化亜鉛バリスタ素子
の形状が通常直径3mm〜14mm、厚み0.5〜2mmで
あるのに対し、避雷器等に用いられる酸化亜鉛バ
リスタ素子の形状は直径30mm〜80mm、厚み30mm〜
50mmである。
However, the zinc oxide varistor used in lightning arresters and the like is constantly applied with high voltage and must absorb high energy such as lightning surges, so the shape of the zinc oxide varistor element becomes large. Zinc oxide varistor elements used to protect electronic devices usually have a diameter of 3 mm to 14 mm and a thickness of 0.5 to 2 mm, whereas zinc oxide varistor elements used in lightning arresters etc. have a diameter of 30 mm to 80 mm and a thickness of 3 mm to 14 mm. 30mm~
It is 50mm.

このように避雷器等に使われる酸化亜鉛バリス
タには形状が大きいために、通常の小形素子の製
造法では要求性能を満足させることはできない。
要求性能の中でも特に課電寿命特性と放電耐量特
性が重要である。従来の小形の酸化亜鉛バリスタ
素子の課電寿命特性の改善策として、(1)焼結体に
ガラスを塗布した後、500℃〜850℃で熱処理して
ガラスを拡散させる。(2)無水ホウ酸(B2O3)、酸
化バリウム(BaO)等のガラス質添加物を添加
し、焼成する。(3)ホウケイ酸ビスマス系ガラスま
たはホウケイ酸鉛系ガラスを添加し、焼成する。
(4)酸化ビスマス、無水ホウ酸、酸化コバルト、酸
化銀からなるガラスを添加し、焼成する等の方法
が採られている。しかし、上記の方法を大形素子
に適用した場合、(1)の方法では素子が大きいた
め、ガラス素子内部にまで拡散しきらず、安定し
た性能が得られない。(2)の方法は原料混合物のス
ラリーのゲル化が起るのでその対策として仮焼工
程が必要になり、しかも成形性が悪く、素子内部
にクラツクが発生する。
Since the zinc oxide varistors used in lightning arresters and the like are large in size, the required performance cannot be met using normal manufacturing methods for small devices.
Among the required performances, the charging life characteristics and discharge withstand characteristics are particularly important. As a measure to improve the energized life characteristics of conventional small zinc oxide varistor elements, (1) After applying glass to a sintered body, heat treatment is performed at 500°C to 850°C to diffuse the glass. (2) Glassy additives such as boric anhydride (B 2 O 3 ) and barium oxide (BaO) are added and fired. (3) Add bismuth borosilicate glass or lead borosilicate glass and fire.
(4) Methods such as adding glass made of bismuth oxide, boric anhydride, cobalt oxide, and silver oxide and firing the mixture have been adopted. However, when the above method is applied to a large-sized element, the element is large in method (1), so the diffusion does not reach the interior of the glass element, and stable performance cannot be obtained. In method (2), gelation of the slurry of the raw material mixture occurs, so a calcination step is required as a countermeasure, and the moldability is poor and cracks occur inside the device.

さらに、放電耐量が悪くなる。(3)の方法は製造
工程上の問題はないが、課電寿命が少し悪く、放
電耐量も悪くなる。(4)の方法も製造工程上の問題
はないが、課電寿命が十分でなく、放電耐量も弱
い等の問題点があつた。
Furthermore, the discharge withstand capacity deteriorates. Method (3) has no problems with the manufacturing process, but the energized life is a little short and the discharge withstand capacity is also low. Method (4) also has no problems in the manufacturing process, but it has problems such as insufficient energized life and weak discharge capacity.

発明の目的 本発明は上記欠点に鑑み、大形の酸化亜鉛バリ
スタ素子でも課電寿命特性と放電耐量に優れてい
る電圧非直線抵抗器の製造方法を提供しようとす
るものである。
OBJECTS OF THE INVENTION In view of the above-mentioned drawbacks, the present invention seeks to provide a method for manufacturing a voltage non-linear resistor that has excellent charge life characteristics and discharge withstand capacity even when using a large-sized zinc oxide varistor element.

発明の構成 この目的を達成するために本発明の電圧非直線
抵抗器の製造方法として、酸化亜鉛バリスタ組成
物に添加するガラスフリツトの構成材料と添加量
を検討し、特に高圧、高エネルギー分野の酸化亜
鉛バリスタ素子の課電寿命特性、放電耐量を向上
させたものである。具体的には、酸化ビスマス
(Bi2O3)40〜90wt%、シリカ(SiO2)5〜25wt
%、無水ホウ酸(B2O3)10〜30wt%、酸化銀
(Ag2O)5〜30wt%からなるガラス組成物を
1000℃〜1250℃で融解後冷却し微粉砕したガラス
フリツトを酸化亜鉛バリスタ組成物100重量部に
対して0.01〜5重量部添加して混合、成形し、そ
の成形体を850℃〜950℃で仮焼し、その仮焼体の
側面に酸化ビスマスとシリカと酸化アンチモンの
混合ペーストを塗布し、1000℃〜1400℃で焼成し
て得られる焼結体に電極を設けることを特徴とす
る電圧非直線抵抗器の製造方法を提供するもので
ある。
Structure of the Invention In order to achieve this object, as a manufacturing method of the voltage nonlinear resistor of the present invention, the constituent materials and amount of glass frit added to the zinc oxide varistor composition were studied, and the This is a zinc varistor element with improved charge life characteristics and discharge capacity. Specifically, bismuth oxide (Bi 2 O 3 ) 40 to 90 wt%, silica (SiO 2 ) 5 to 25 wt%
%, boric anhydride (B 2 O 3 ) 10-30 wt%, and silver oxide (Ag 2 O) 5-30 wt%.
After melting at 1000°C to 1250°C, cooling and finely pulverizing glass frit is added in an amount of 0.01 to 5 parts by weight to 100 parts by weight of the zinc oxide varistor composition, mixed and molded, and the molded product is temporarily heated at 850°C to 950°C. Voltage non-linearity characterized by providing electrodes on the sintered body obtained by applying a mixed paste of bismuth oxide, silica and antimony oxide to the side surface of the calcined body and firing at 1000°C to 1400°C. A method for manufacturing a resistor is provided.

実施例の説明 以下、実施例に従つて本発明を説明する。Description of examples The present invention will be described below with reference to Examples.

まず、酸化ビスマス(Bi2O3)40〜90wt%、シ
リカ(SiO2)5〜25wt%、無水ホウ酸(B2O3
10〜30wt%、酸化銀(Ag2O)5〜30wt%を配
合、混合し、混合物を白金ルツボに入れ、1000℃
〜1250℃で融解後、水中へ投入し、急冷し、それ
をポツトミルで微粉砕してガラスフリツトを作
る。
First, bismuth oxide (Bi 2 O 3 ) 40-90 wt%, silica (SiO 2 ) 5-25 wt %, boric anhydride (B 2 O 3 )
10 to 30 wt% and 5 to 30 wt% of silver oxide (Ag 2 O) were blended and mixed, the mixture was placed in a platinum crucible, and heated to 1000℃.
After melting at ~1250℃, it is poured into water, rapidly cooled, and pulverized in a pot mill to make glass frit.

一方、酸化亜鉛(ZnO)85〜98.5mol%、酸化
ビスマス(Bi2O3)0.01〜5mol%、酸化コバルト
(Co2O3)0.01〜5mol%、酸化マンガン(MnO2
0.01〜5mol%、酸化アンチモン(Sb2O3)0.02〜
10mol%、酸化クロム(Cr2O3)0.01〜5mol%、
シリカ(SiO2)0.02〜10mol%、酸化ニツケル
(NiO)0.02〜10mol%、酸化アルミニウム
(Al2O3)0.001〜0.05mol%を配合したもの(以下
バリスタ組成物と呼ぶ)を作り、このバリスタ組
成物100重量部に対して、前記ガラスフリツトを
0.01〜5重量部添加し、混合、成形し、その成形
対を850℃〜950℃で仮焼し、その仮焼体の側面に
酸化ビスマス(Bi2O3)5〜20mol%、シリカ
(SiO2)60〜90mol%、酸化アンモチン(Sb2O3
10〜30mol%からなる側面高抵抗剤を塗布し、
1000℃〜1400℃で焼成して得られる円柱形焼結体
の両面に金属溶射によつて電極をつける。
On the other hand, zinc oxide (ZnO) 85-98.5 mol%, bismuth oxide (Bi 2 O 3 ) 0.01-5 mol%, cobalt oxide (Co 2 O 3 ) 0.01-5 mol%, manganese oxide (MnO 2 )
0.01~5mol%, antimony oxide (Sb 2 O 3 ) 0.02~
10mol%, chromium oxide (Cr 2 O 3 ) 0.01-5mol%,
A mixture of 0.02 to 10 mol% of silica (SiO 2 ), 0.02 to 10 mol% of nickel oxide (NiO), and 0.001 to 0.05 mol% of aluminum oxide (Al 2 O 3 ) (hereinafter referred to as a varistor composition) is prepared, and this varistor The glass frit is added to 100 parts by weight of the composition.
0.01 to 5 parts by weight are added, mixed and molded, and the molded pair is calcined at 850 to 950°C. On the side of the calcined body, 5 to 20 mol% of bismuth oxide (Bi 2 O 3 ) and silica (SiO 2 ) 60-90mol% ammothine oxide ( Sb2O3 )
Apply a side high resistance agent consisting of 10 to 30 mol%,
Electrodes are attached to both sides of the cylindrical sintered body obtained by firing at 1000°C to 1400°C by metal spraying.

このようにして作られた本発明例と従来例の特
性比較を直径33mm、厚み30mmの焼結体を用いて第
1図、第2図に示す。第1図は課電寿命特性を、
第2図は放電耐量特性を示す。課電寿命試験は
130℃の恒温槽の中に試料を置き、試料の電極間
に試料のV1mAの95%の電圧に相当するピーク電
圧を有するAC電圧を印加し、その漏れ電流の増
加状態を調べた。一方、放電耐量試験は電流波形
4×10μSのパルス電流を2回印加した時の試料
のV1mAの変化率を調べた。図でイは本発明の特
性、ロは従来品の特性である。
A comparison of the characteristics of the inventive example and the conventional example made in this way is shown in FIGS. 1 and 2 using a sintered body having a diameter of 33 mm and a thickness of 30 mm. Figure 1 shows the charging life characteristics,
FIG. 2 shows the discharge capacity characteristics. The charging life test
The sample was placed in a constant temperature bath at 130°C, and an AC voltage with a peak voltage equivalent to 95% of the sample's V 1 mA was applied between the electrodes of the sample, and the increase in leakage current was investigated. . On the other hand, in the discharge endurance test, the rate of change in V 1 mA of the sample was examined when a pulse current with a current waveform of 4 x 10 μS was applied twice. In the figure, A shows the characteristics of the present invention, and B shows the characteristics of the conventional product.

以上の結果は本発明品が酸化ビスマス
(Bi2O3)50wt%、シリカ(SiO2)10wt%、無水
ホウ酸(B2O3)20wt%、酸化銀(Ag2O)20wt
%を1200℃で融解した後急冷し、微粉砕したガラ
スフリツトをバリスタ組成物(ZnO95.495mol%、
Bi2O30.5mol%、Co2O30.5mol%、MnO20.5mol
%、Sb2O31.0mol%、Cr2O30.5mol%、
SiO20.5mol%、NiO1.0mol%、Al2O30.005mol
%)100重量部に対して0.1重量部を加えて混合、
成形し、その成形体を900℃で仮焼し、その仮焼
体の側面に酸化ビスマス(Bi2O3)10mol%、シ
リカ(SiO2)70mol%、酸化アンチモン
(Sb2O3)20mol%からなる側面高抵抗剤を塗布
し、1200℃で焼成したものである。また、従来品
はBi2O358.4wt%、SiO212.5wt%、B2O312.5wt
%、CoO8.3wt%、Ag2O8.3wt%のガラス組成物
であり、その他の条件は本発明品と同じである。
The above results show that the product of the present invention contains 50wt% bismuth oxide (Bi 2 O 3 ), 10wt% silica (SiO 2 ), 20wt% boric anhydride (B 2 O 3 ), and 20wt% silver oxide (Ag 2 O).
% was melted at 1200℃, then rapidly cooled, and the finely ground glass frit was mixed into a varistor composition (ZnO95.495mol%,
Bi2O3 0.5mol %, Co2O3 0.5mol %, MnO2 0.5mol
%, Sb2O3 1.0mol %, Cr2O3 0.5mol %,
SiO2 0.5mol%, NiO1.0mol%, Al2O3 0.005mol
%) Mix by adding 0.1 part by weight to 100 parts by weight,
The molded body is calcined at 900°C, and on the side of the calcined body, 10 mol% of bismuth oxide (Bi 2 O 3 ), 70 mol% of silica (SiO 2 ), and 20 mol% of antimony oxide (Sb 2 O 3 ) are added. The sides were coated with a high-resistance agent consisting of the following materials and fired at 1200℃. In addition, the conventional product has Bi 2 O 3 58.4wt%, SiO 2 12.5wt%, B 2 O 3 12.5wt%
%, CoO 8.3wt%, and Ag 2 O 8.3wt%, and other conditions are the same as the products of the present invention.

ガラスフリツトの添加量が0.01重量部未満にな
ると課電寿命特性の改善効果がなくなり、一方5
重量部を超えると放電耐量が悪くなる。また、ガ
ラスフリツト中のBi2O3が40wt%未満ではガラス
化が困難になり、90wt%を超えた時は素子の電
圧非直線指数αが悪くなる。次に、SiO2が5wt%
未満では素子の課電寿命が悪くなり、25wt%を
超えた時には放電耐量が悪くなる。さらに、
B2O3は10wt%未満では電圧非直線指数αが悪く
なり、30wt%を超えた時には放電耐量が悪くな
る。そして、Ag2Oが5wt%未満では課電寿命特
性が悪くなり、30wt%を超えた時には放電耐量
が悪くなる。
When the amount of glass frit added is less than 0.01 part by weight, the improvement effect on the charged life characteristics disappears;
If it exceeds 1 part by weight, the discharge withstand capacity will deteriorate. Furthermore, if Bi 2 O 3 in the glass frit is less than 40 wt%, vitrification becomes difficult, and if it exceeds 90 wt%, the voltage nonlinearity index α of the device becomes poor. Next, SiO2 is 5wt%
If it is less than 25 wt%, the life of the device will be shortened, and if it exceeds 25 wt%, the discharge withstand capacity will be poor. moreover,
If B 2 O 3 is less than 10 wt%, the voltage nonlinearity index α will be poor, and if it exceeds 30 wt%, the discharge withstand capacity will be poor. If Ag 2 O is less than 5 wt%, the charging life characteristics will be poor, and if it exceeds 30 wt%, the discharge withstand capacity will be poor.

発明の効果 以上のように本発明は大形の酸化亜鉛バリスタ
素子の課電寿命の特性、放電耐量を大巾に改善で
き、その実用的効果は大なるものがある。
Effects of the Invention As described above, the present invention can greatly improve the charging life characteristics and discharge withstand capacity of large zinc oxide varistor elements, and has great practical effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は課電寿命特性の本発明品と従来品との
比較を示す図、第2図は放電耐量特性の本発明品
と従来品との比較を示す図である。
FIG. 1 is a diagram showing a comparison between a product of the present invention and a conventional product in charge life characteristics, and FIG. 2 is a diagram showing a comparison between a product of the present invention and a conventional product in terms of discharge withstand characteristics.

Claims (1)

【特許請求の範囲】 1 酸化ビスマス(Bi2O3)40〜90wt%、シリカ
(SiO2)5〜25wt%、無水ホウ酸(B2O3)10〜
30wt%、酸化銀(Ag2O)5〜30wt%からなるガ
ラス組成物を1000℃〜1250℃で融解後冷却し微粉
砕したガラスフリツトを、酸化亜鉛バリスタ組成
物100重量部に対して0.01〜5重量部添加して混
合、成形し、その成形体を850℃〜950℃で仮焼
し、その仮焼体の側面に酸化ビスマスとシリカと
酸化アンチモンの混合ペーストを塗布し、1000℃
〜1400℃で焼成して得られる焼結体に電極を設け
ることを特徴とする電圧非直線抵抗器の製造方
法。 2 酸化亜鉛バリスタ組成物の配合組成を酸化亜
鉛(ZnO)85〜98.5mol%、酸化ビスマス
(Bi2O3)0.01〜5mol%、酸化コバルト(Co2O3
0.01〜5mol%、酸化マンガン(MnO2)0.01〜
5mol%、酸化アンチモン(Sb2O3)0.02〜10mol
%、酸化クロム(Cr2O3)0.01〜5mol%、シリカ
(SiO2)0.02〜10mol%、酸化ニツケル(NiO)
0.02〜10mol%、酸化アルミニウム(Al2O3
0.001〜0.05mol%とした特許請求の範囲第1項記
載の電圧非直線抵抗器の製造方法。
[Claims] 1. Bismuth oxide (Bi 2 O 3 ) 40-90 wt%, silica (SiO 2 ) 5-25 wt%, boric anhydride (B 2 O 3 ) 10-90 wt%.
A glass composition consisting of 30wt% of silver oxide (Ag 2 O) and 5 to 30wt% of silver oxide (Ag 2 O) is melted at 1000°C to 1250°C, cooled and finely ground, and the glass frit is added at a concentration of 0.01 to 5% per 100 parts by weight of the zinc oxide varistor composition. Part by weight is added, mixed and molded, the molded body is calcined at 850°C to 950°C, a mixed paste of bismuth oxide, silica and antimony oxide is applied to the side of the calcined body, and the mixture is heated to 1000°C.
A method for manufacturing a voltage nonlinear resistor, comprising providing an electrode on a sintered body obtained by firing at ~1400°C. 2 The composition of the zinc oxide varistor composition is zinc oxide (ZnO) 85 to 98.5 mol%, bismuth oxide (Bi 2 O 3 ) 0.01 to 5 mol %, and cobalt oxide (Co 2 O 3 ).
0.01~5mol%, manganese oxide ( MnO2 ) 0.01~
5mol%, antimony oxide (Sb 2 O 3 ) 0.02-10mol
%, chromium oxide ( Cr2O3 ) 0.01-5mol%, silica ( SiO2 ) 0.02-10mol%, nickel oxide (NiO)
0.02-10mol% aluminum oxide ( Al2O3 )
The method for manufacturing a voltage nonlinear resistor according to claim 1, wherein the content is 0.001 to 0.05 mol%.
JP57204083A 1982-11-19 1982-11-19 Method of producing voltage nonlinear resistor Granted JPS5994402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57204083A JPS5994402A (en) 1982-11-19 1982-11-19 Method of producing voltage nonlinear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57204083A JPS5994402A (en) 1982-11-19 1982-11-19 Method of producing voltage nonlinear resistor

Publications (2)

Publication Number Publication Date
JPS5994402A JPS5994402A (en) 1984-05-31
JPH0320884B2 true JPH0320884B2 (en) 1991-03-20

Family

ID=16484496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57204083A Granted JPS5994402A (en) 1982-11-19 1982-11-19 Method of producing voltage nonlinear resistor

Country Status (1)

Country Link
JP (1) JPS5994402A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182401A (en) * 1984-09-29 1986-04-26 株式会社東芝 Voltage non-linearity resistor and manufacture thereof

Also Published As

Publication number Publication date
JPS5994402A (en) 1984-05-31

Similar Documents

Publication Publication Date Title
JPH0252409B2 (en)
EP0452511B1 (en) Zinc oxide varistor, manufacture thereof, and crystallized glass composition for coating
US4460497A (en) Voltage stable nonlinear resistor containing minor amounts of aluminum and selected alkali metal additives
JPS5941285B2 (en) Voltage nonlinear resistance element and its manufacturing method
JPH0320884B2 (en)
JPH0320883B2 (en)
US4452728A (en) Voltage stable nonlinear resistor containing minor amounts of aluminum, boron and selected alkali metal additives
JPH0136684B2 (en)
JPH0320885B2 (en)
JPH0425681B2 (en)
JPH04253302A (en) Non-linear varistor
JPH0249524B2 (en)
JPH04245602A (en) Nonlinearly voltage-dependent resistor
JPH0249523B2 (en)
JPH04139702A (en) Voltage-dependent nonlinear resistor
JPH0216003B2 (en)
JPH0519802B2 (en)
JPH0249526B2 (en)
JPH0578924B2 (en)
JP2533597B2 (en) Method of manufacturing voltage non-linear resistor
JP2608626B2 (en) Method of manufacturing voltage non-linear resistor
JPS622442B2 (en)
JP3089370B2 (en) Voltage non-linear resistance composition
JPS626323B2 (en)
JPH0519801B2 (en)