JPH0320883B2 - - Google Patents
Info
- Publication number
- JPH0320883B2 JPH0320883B2 JP57204082A JP20408282A JPH0320883B2 JP H0320883 B2 JPH0320883 B2 JP H0320883B2 JP 57204082 A JP57204082 A JP 57204082A JP 20408282 A JP20408282 A JP 20408282A JP H0320883 B2 JPH0320883 B2 JP H0320883B2
- Authority
- JP
- Japan
- Prior art keywords
- oxide
- mol
- silica
- composition
- zinc oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 38
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 18
- 239000011787 zinc oxide Substances 0.000 claims description 18
- 239000011521 glass Substances 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 15
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 claims description 11
- 229910000416 bismuth oxide Inorganic materials 0.000 claims description 11
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 9
- GHPGOEFPKIHBNM-UHFFFAOYSA-N antimony(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Sb+3].[Sb+3] GHPGOEFPKIHBNM-UHFFFAOYSA-N 0.000 claims description 7
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 claims description 7
- 238000010304 firing Methods 0.000 claims description 5
- 229910000480 nickel oxide Inorganic materials 0.000 claims description 5
- 239000000377 silicon dioxide Substances 0.000 claims description 5
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 claims description 4
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 claims description 4
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 claims description 4
- VFWRGKJLLYDFBY-UHFFFAOYSA-N silver;hydrate Chemical compound O.[Ag].[Ag] VFWRGKJLLYDFBY-UHFFFAOYSA-N 0.000 claims description 4
- 229910000410 antimony oxide Inorganic materials 0.000 claims description 2
- KAGOZRSGIYZEKW-UHFFFAOYSA-N cobalt(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Co+3].[Co+3] KAGOZRSGIYZEKW-UHFFFAOYSA-N 0.000 claims description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 2
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 claims description 2
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 claims description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims 1
- 229910052593 corundum Inorganic materials 0.000 claims 1
- 229910001845 yogo sapphire Inorganic materials 0.000 claims 1
- 229910052681 coesite Inorganic materials 0.000 description 3
- 229910052906 cristobalite Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- 229910010271 silicon carbide Inorganic materials 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 229910052682 stishovite Inorganic materials 0.000 description 3
- 229910052905 tridymite Inorganic materials 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Inorganic materials O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 2
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(iii) oxide Chemical compound O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 description 2
- 239000005388 borosilicate glass Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- UPWOEMHINGJHOB-UHFFFAOYSA-N oxo(oxocobaltiooxy)cobalt Chemical compound O=[Co]O[Co]=O UPWOEMHINGJHOB-UHFFFAOYSA-N 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 2
- YEAUATLBSVJFOY-UHFFFAOYSA-N tetraantimony hexaoxide Chemical compound O1[Sb](O2)O[Sb]3O[Sb]1O[Sb]2O3 YEAUATLBSVJFOY-UHFFFAOYSA-N 0.000 description 2
- 238000004017 vitrification Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 239000005337 ground glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910001923 silver oxide Inorganic materials 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Thermistors And Varistors (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
本発明は酸化亜鉛バリスタ組成物にガラスフリ
ツトを添加して高温で焼成した焼結体の両面に電
極をつけてなる電圧非直線抵抗器の製造方法に関
するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a voltage nonlinear resistor, which comprises adding electrodes to both sides of a sintered body made by adding glass frit to a zinc oxide varistor composition and firing it at a high temperature. It is something.
従来例の構成とその問題点
従来、電圧非直線抵抗器としては炭化珪素を主
体とし、これを磁器質結合剤で固めた、いわゆる
SiCバリスタが広く用いられてきたが、最近酸化
亜鉛を主成分とし、Bi2O3、Co2O3等の金属酸化
物を添加して混合、成形、焼成した焼結体を用い
た、いわゆる酸化亜鉛バリスタが生産され、実用
に供されている。Conventional structure and its problems Traditionally, voltage nonlinear resistors were made mainly of silicon carbide, which was hardened with a porcelain binder.
SiC varistors have been widely used, but recently SiC varistors have been developed using so-called sintered bodies made of zinc oxide as a main component and metal oxides such as Bi 2 O 3 and Co 2 O 3 added, mixed, molded, and fired. Zinc oxide varistors have been produced and put into practical use.
この種の電圧非直線抵抗器(以降バリスタと呼
ぶ)の電圧−電流特性は一般に次式によつて表わ
されている。 The voltage-current characteristics of this type of voltage nonlinear resistor (hereinafter referred to as a varistor) are generally expressed by the following equation.
I=(V/C)〓
ただし、Iは電流、Vは電圧、C、αは定数で
ある。そして、バリスタの特性はCとαの2つの
定数で表わすことができる。Cは電流1アンペア
時における電圧で、一般に固定抵抗器の抵抗値に
相当し、またバリスタとしては電圧非直線指数α
ができるだけ大きい方が望ましい。本発明者らは
Cの代りに電流10μA、100μA、1mA、……、
100Aの時の電圧V10〓A、V100〓A、V1nA、……、
V100Aを使用している。 I=(V/C) where I is current, V is voltage, and C and α are constants. The characteristics of the varistor can be expressed by two constants, C and α. C is the voltage when the current is 1 ampere, which generally corresponds to the resistance value of a fixed resistor, and as a varistor, the voltage nonlinearity index α
It is desirable that it be as large as possible. The present inventors replaced C with currents of 10μA, 100μA, 1mA,...
Voltage at 100A V 10 〓 A , V 100 〓 A , V 1nA ,...
I am using V 100A .
酸化亜鉛バリスタのαは40〜100と極めて大き
く、電圧安定化、サージ電圧抑制の効果が著し
く、電子機器の保護に広く使われている。最近で
は酸化亜鉛バリスタを避雷器等の高圧、高エネル
ギー分野にも使つていこうとする動きが活発にな
つている。 Zinc oxide varistors have an extremely large α of 40 to 100, and are highly effective in voltage stabilization and surge voltage suppression, and are widely used to protect electronic devices. Recently, there has been an active movement to use zinc oxide varistors in high voltage, high energy fields such as lightning arresters.
しかしながら、避雷器等に使われる酸化亜鉛バ
リスタは高電圧が常時印加され、雷サージ等の高
エネルギーを吸収しなければならないため、酸化
亜鉛バリスタ素子の形状が大きくなる。電子機器
の保護のために用いられる酸化亜鉛バリスタ素子
の形状が通常直径3mm〜14mm、厚み0.5〜2mmで
あるのに対し、避雷器等に用いられる酸化亜鉛バ
リスタ素子の形状は直径30mm〜80mm、厚み30mm〜
50mmである。 However, the zinc oxide varistor used in lightning arresters and the like is constantly applied with high voltage and must absorb high energy such as lightning surges, so the shape of the zinc oxide varistor element becomes large. Zinc oxide varistor elements used to protect electronic devices usually have a diameter of 3 mm to 14 mm and a thickness of 0.5 to 2 mm, whereas zinc oxide varistor elements used in lightning arresters etc. have a diameter of 30 mm to 80 mm and a thickness of 3 mm to 14 mm. 30mm~
It is 50mm.
このように避雷器等に使われる酸化亜鉛バリス
タには形状が大きいために、通常の小形素子の製
造法では要求性能を満足させることはできない。
要求性能の中でも特に課電寿命特性とパルス寿命
特性と放電耐量特性が重要である。従来の小形の
酸化亜鉛バリスタ素子の課電寿命特性の改善策と
して、(1)焼結体にガラスを塗布した後、500℃〜
850℃で熱処理してガラスを拡散させる。(2)無水
ホウ酸(B2O3)、酸化バリウム(BaO)等のガラ
ス質添加物を添加し、焼成する。(3)ホウケイ酸ビ
スマス系ガラスまたはホウケイ酸鉛系ガラスを添
加し、焼成する。(4)酸化ビスマス、無水ホウ酸、
酸化コバルト、酸化銀からなるガラスを添加し、
焼成する等の方法が採られている。しかし、上記
の方法を大形素子に適用した場合、(1)の方法では
素子が大きいため、ガラス素子内部にまで拡散し
きらず、安定した性能が得られない。(2)の方法は
原料混合物のスラリーのゲル化が起るのでその対
策として仮焼工程が必要になり、しかも成形性が
悪く、素子内部にクラツクが発生する。さらに、
放電耐量、パルス寿命が悪くなる。(3)の方法は製
造工程上の問題はないが、課電寿命が少し悪く、
放電耐量、パルス寿命も悪くなる。(4)の方法も製
造工程上の問題はないが、課電寿命が十分ではな
く、放電耐量、パルス寿命も弱い等の問題点があ
つた。 Since the zinc oxide varistors used in lightning arresters and the like are large in size, the required performance cannot be met using normal manufacturing methods for small devices.
Among the required performances, the charging life characteristics, pulse life characteristics, and discharge withstand characteristics are particularly important. As a measure to improve the energized life characteristics of conventional small zinc oxide varistor elements, (1) After applying glass to the sintered body,
The glass is diffused by heat treatment at 850℃. (2) Glassy additives such as boric anhydride (B 2 O 3 ) and barium oxide (BaO) are added and fired. (3) Add bismuth borosilicate glass or lead borosilicate glass and fire. (4) Bismuth oxide, boric anhydride,
Adding glass made of cobalt oxide and silver oxide,
Methods such as firing are used. However, when the above method is applied to a large-sized element, the element is large in method (1), so the diffusion does not reach the interior of the glass element, and stable performance cannot be obtained. In method (2), gelation of the slurry of the raw material mixture occurs, so a calcination step is required as a countermeasure, and the moldability is poor and cracks occur inside the device. moreover,
Discharge withstand capacity and pulse life deteriorate. Method (3) does not have any problems with the manufacturing process, but the lifespan of charging is a little poor.
The discharge withstand capacity and pulse life will also deteriorate. Method (4) also has no problems in the manufacturing process, but it has problems such as insufficient energization life, weak discharge capacity, and weak pulse life.
発明の目的
本発明は上記欠点に鑑み、大形の酸化亜鉛バリ
スタ素子でも課電寿命特性とパルス寿命特性と放
電耐量に優れている電圧非直線抵抗器の製造方法
を提供しようとするものである。Purpose of the Invention In view of the above-mentioned drawbacks, the present invention seeks to provide a method for manufacturing a voltage nonlinear resistor that has excellent charge life characteristics, pulse life characteristics, and discharge withstand capacity even with large zinc oxide varistor elements. .
発明の構成
この目的を達成するために本発明の電圧非直線
抵抗器の製造方法として、酸化バリスタ組成物に
添加するガラスフリツトの構成材料と添加量を検
討し、特に高圧、高エネルギー分野の酸化亜鉛バ
リスタ素子の課電寿命特性、パルス寿命特性、放
電耐量を向上させたものである。具体的には、酸
化ビスマス(Bi2O3)40〜90wt%、シリカ
(SiO2)5〜25wt%、無水ホウ酸(B2O3)10〜
30wt%、酸化銀(Ag2O)5〜30wt%、酸化アン
チモン(Sb2O3)2〜30wt%からなるガラス組成
物を1000℃〜1250℃で融解後冷却し、微粉砕した
ガラスフリツトを、酸化亜鉛バリスタ組成物100
重量部に対して0.01〜5重量部添加して混合、成
形し、その成形体を850℃〜950℃で仮焼し、その
仮焼体の側面に酸化ビスマスとシリカと酸化アン
チモンの混合ペーストを塗布し、1000℃〜1400℃
で焼成して得られる焼結体に電極を設けることを
特徴とする電圧非直線抵抗器の製造方法を提供す
るものである。Structure of the Invention In order to achieve this object, as a manufacturing method of the voltage nonlinear resistor of the present invention, the constituent materials and amount of glass frit added to the oxide varistor composition were studied, and zinc oxide, which is particularly suitable for high voltage and high energy fields, was studied. The varistor element has improved charging life characteristics, pulse life characteristics, and discharge withstand capacity. Specifically, bismuth oxide (Bi 2 O 3 ) 40-90 wt%, silica (SiO 2 ) 5-25 wt%, boric anhydride (B 2 O 3 ) 10-90 wt%.
A glass composition consisting of 30 wt%, silver oxide (Ag 2 O) 5 to 30 wt%, and antimony oxide (Sb 2 O 3 ) 2 to 30 wt% was melted at 1000°C to 1250°C, cooled, and finely pulverized glass frit was obtained. Zinc oxide barista composition 100
0.01 to 5 parts by weight are added to the parts by weight, mixed and molded, the molded body is calcined at 850°C to 950°C, and a mixed paste of bismuth oxide, silica, and antimony oxide is applied to the side of the calcined body. Coated, 1000℃~1400℃
The present invention provides a method for manufacturing a voltage nonlinear resistor, characterized in that an electrode is provided on a sintered body obtained by firing the resistor.
実施例の説明 以下、実施例に従つて本発明を説明する。Description of examples The present invention will be described below with reference to Examples.
まず、酸化ビスマス(Bi2O3)40〜90wt%、シ
リカ(SiO2)5〜25wt%、無水ホウ酸(B2O3)
10〜30wt%、酸化銀(Ag2O)5〜30wt%、酸化
アンチモン(Sb2O3)2〜30wt%を配合、混合
し、混合物を白金ルツボに入れ、1000℃〜1250℃
で融解後、水中へ投入し、急冷し、それをポツト
ミルで微粉砕してガラスフリツトを作る。 First, bismuth oxide (Bi 2 O 3 ) 40-90 wt%, silica (SiO 2 ) 5-25 wt %, boric anhydride (B 2 O 3 )
10 to 30 wt%, silver oxide (Ag 2 O) 5 to 30 wt%, and antimony oxide (Sb 2 O 3 ) 2 to 30 wt% are blended and mixed, and the mixture is placed in a platinum crucible and heated at 1000°C to 1250°C.
After melting, it is poured into water, rapidly cooled, and pulverized in a pot mill to make glass frit.
一方、酸化亜鉛(ZnO)85〜98.5mol%、酸化
ビスマス(Bi2O3)0.01〜5mol%、酸化コバルト
(Co2O3)0.01〜5mol%、酸化マンガン(MnO2)
0.01〜5mol%、酸化アンチモン(Sb2O3)0.02〜
10mol%、酸化クロム(Cr2O3)0.01〜5mol%、
シリカ(SiO2)0.02〜10mol%、酸化ニツケル
(NiO)0.02〜10mol%、酸化アルミニウム
(Al2O3)0.001〜0.05mol%を配合したもの(以下
バリスタ組成物と呼ぶ)を作り、このバリスタ組
成物100重量部に対して、前記ガラスフリツトを
0.01〜5重量部添加し、混合、成形し、その成形
体を850℃〜950℃で仮焼し、その仮焼体の側面に
酸化ビスマス(Bi2O3)5〜20mol%、シリカ
(SiO2)60〜90mol%、酸化アンモチン(Sb2O3)
10〜30mol%からなる側面高抵抗剤を塗布し、
1000℃〜1400℃で焼成して得られる円柱形焼結体
の両面に金属溶射によつて電極をつける。 On the other hand, zinc oxide (ZnO) 85-98.5 mol%, bismuth oxide (Bi 2 O 3 ) 0.01-5 mol%, cobalt oxide (Co 2 O 3 ) 0.01-5 mol%, manganese oxide (MnO 2 )
0.01~5mol%, antimony oxide (Sb 2 O 3 ) 0.02~
10mol%, chromium oxide (Cr 2 O 3 ) 0.01-5mol%,
A mixture of 0.02 to 10 mol% of silica (SiO 2 ), 0.02 to 10 mol% of nickel oxide (NiO), and 0.001 to 0.05 mol% of aluminum oxide (Al 2 O 3 ) (hereinafter referred to as a varistor composition) is prepared, and this varistor The glass frit is added to 100 parts by weight of the composition.
0.01 to 5 parts by weight are added, mixed and molded, and the molded body is calcined at 850°C to 950°C. On the side of the calcined body, 5 to 20 mol% of bismuth oxide (Bi 2 O 3 ) and silica (SiO 2 ) 60-90mol% ammothine oxide ( Sb2O3 )
Apply a side high resistance agent consisting of 10 to 30 mol%,
Electrodes are attached to both sides of the cylindrical sintered body obtained by firing at 1000°C to 1400°C by metal spraying.
このようにして作られた本発明例と従来例の特
性比較を直径33mm、厚み30mmの焼結体を用いて第
1図、第2図、第3図に示す。第1図は課電寿命
特性を、第2図はパルス寿命特性を、第3図は放
電耐量特性を示す。課電寿命試験は130℃の恆温
槽の中に試料を置き、試料の電極間に試料の
V1nAの95%の電圧に相当するピーク電圧を有す
るAC電圧を印加し、その漏れ電流の増加状態を
調べた。パルス寿命特性は試料に電流波形8×
20μS、電流波高値5000Aのパルスを繰返し印加
し、試料のV1nAの変化率を調べた。一方、放電
耐量試験は電流波形4×10μSのパルス電流を2
回印加した時の試料のV1nAの変化率を調べた。
図でイは本発明の特性、ロは従来品の特性であ
る。 A comparison of the characteristics of the inventive example and the conventional example made in this manner is shown in FIGS. 1, 2, and 3 using a sintered body having a diameter of 33 mm and a thickness of 30 mm. FIG. 1 shows the charging life characteristics, FIG. 2 shows the pulse life characteristics, and FIG. 3 shows the discharge endurance characteristics. In the energized life test, the sample is placed in a constant temperature bath at 130°C, and the sample is placed between the electrodes of the sample.
An AC voltage having a peak voltage corresponding to 95% of V 1 nA was applied, and the increase in leakage current was investigated. The pulse life characteristics are determined by applying a current waveform of 8× to the sample.
Pulses of 20 μS and a current peak value of 5000 A were repeatedly applied to examine the rate of change in V 1 nA of the sample. On the other hand, in the discharge withstand test, a pulse current with a current waveform of 4 x 10 μS is
The rate of change in V 1nA of the sample when the voltage was applied twice was investigated.
In the figure, A shows the characteristics of the present invention, and B shows the characteristics of the conventional product.
以上の結果は本発明品が酸化ビスマス
(Bi2O3)50wt%、シリカ(SiO2)10wt%、無水
ホウ酸(B2O3)20wt%、酸化銀(Ag2O)20wt
%、酸化アンチモン(Sb2O3)15wt%を1200℃で
融解した後急冷し、微粉砕したガラスフリツトを
バリスタ組成物(ZnO95.495mol%、
Bi2O30.5mol%、Co2O30.5mol%、MnO20.5mol
%、Sb2O31.0mol、Cr2O30.5mol%、SiO20.5mol
%、NiO1.0mol%、Al2O30.005mol%)100重量
部に対して0.1重量部を加えて混合、成形し、そ
の成形体を900℃で仮焼し、その仮焼体の側面に
酸化ビスマス(Bi2O3)10mol%、シリカ(SiO2)
70mol%、酸化アンチモン(Sb2O3)20mol%か
らなる側面高抵抗剤を塗布し、1200℃で焼成した
ものである。また、従来品はBi2O358.4wt%、
SiO212.5wt%、B2O312.5wt%、CoO8.3wt%、
Ag2O8.3wt%のガラス組成物であり、その他の条
件は本発明品と同じである。 The above results show that the product of the present invention contains 50wt% bismuth oxide (Bi 2 O 3 ), 10wt% silica (SiO 2 ), 20wt% boric anhydride (B 2 O 3 ), and 20wt% silver oxide (Ag 2 O).
%, antimony oxide (Sb 2 O 3 ) 15wt% was melted at 1200℃ and then rapidly cooled, and the finely ground glass frit was mixed into a varistor composition (ZnO 95.495mol%,
Bi2O3 0.5mol %, Co2O3 0.5mol %, MnO2 0.5mol
%, Sb2O3 1.0mol , Cr2O3 0.5mol %, SiO2 0.5mol
%, NiO 1.0 mol%, Al 2 O 3 0.005 mol%), 0.1 part by weight is added to 100 parts by weight, mixed and molded, the molded body is calcined at 900℃, and the side surface of the calcined body is Bismuth oxide (Bi 2 O 3 ) 10mol%, silica (SiO 2 )
The side surfaces were coated with a high resistance agent consisting of 70 mol% and 20 mol% of antimony oxide (Sb 2 O 3 ) and fired at 1200°C. In addition, the conventional product has Bi 2 O 3 58.4wt%,
SiO2 12.5wt%, B2O3 12.5wt %, CoO8.3wt%,
It is a glass composition containing 8.3 wt% of Ag 2 O, and the other conditions are the same as the products of the present invention.
ガラスフリツトの添加量が0.01重量部未満にな
ると課電寿命特性の改善効果がなくなり、一方5
重量部を超えると放電耐量が悪くなる。また、ガ
ラスフリツト中のBi2O3が40wt%未満ではガラス
化が困難になり、90wt%を超えた時は素子の電
圧非直線指数αが悪くなる。次に、SiO2が5wt%
未満では素子の課電寿命が悪くなり、25wt%を
超えた時には放電耐量が悪くなる。さらに、
B2O3は10wt%未満では電圧非直線指数αが悪く
なり、30wt%を超えた時には放電耐量が悪くな
る。そして、Ag2Oが5wt%未満では課電寿命特
性が悪くなり、30wt%を超えた時には放電耐量
が悪くなる。また、Sb2O3が2wt%未満ではパル
ス寿命特性が悪くなり、30wt%を超えた時には
ガラス化が困難となつた。 When the amount of glass frit added is less than 0.01 part by weight, the improvement effect on the charged life characteristics disappears;
If it exceeds 1 part by weight, the discharge withstand capacity will deteriorate. Furthermore, if Bi 2 O 3 in the glass frit is less than 40 wt%, vitrification becomes difficult, and if it exceeds 90 wt%, the voltage nonlinearity index α of the device becomes poor. Next, SiO2 is 5wt%
If it is less than 25 wt%, the life of the device will be shortened, and if it exceeds 25 wt%, the discharge withstand capacity will be poor. moreover,
If B 2 O 3 is less than 10 wt%, the voltage nonlinearity index α will be poor, and if it exceeds 30 wt%, the discharge withstand capacity will be poor. If Ag 2 O is less than 5 wt%, the charging life characteristics will be poor, and if it exceeds 30 wt%, the discharge withstand capacity will be poor. Further, when Sb 2 O 3 was less than 2 wt%, the pulse life characteristics deteriorated, and when it exceeded 30 wt%, vitrification became difficult.
発明の効果
以上のように本発明は大形の酸化亜鉛バリスタ
素子の課電寿命特性、パルス寿命特性、放電耐量
特性を大巾に改善でき、その実用的効果は大なる
ものがある。Effects of the Invention As described above, the present invention can greatly improve the charge life characteristics, pulse life characteristics, and discharge withstand characteristics of large-sized zinc oxide varistor elements, and has great practical effects.
第1図は課電寿命特性の本発明品と従来品との
比較を示す図、第2図はパルス寿命特性の本発明
品と従来品との比較を示す図、第3図は放電耐量
特性の本発明品と従来品との比較を示す図であ
る。
Figure 1 is a diagram showing a comparison between the inventive product and the conventional product in terms of energization life characteristics, Figure 2 is a diagram showing the comparison between the inventive product and the conventional product in terms of pulse life characteristics, and Figure 3 is the discharge withstand characteristic. FIG. 2 is a diagram showing a comparison between a product of the present invention and a conventional product.
Claims (1)
(SiO2)5〜25wt%、無水ホウ酸(B2O3)10〜
30wt%、酸化銀(Ag2O)5〜30wt%、酸化アン
チモン(Sb2O3)2〜30wt%からなるガラス組成
物を1000℃〜1250℃で融解後冷却し、微粉砕した
ガラスフリツトを、酸化亜鉛バリスタ組成物100
重量部に対して0.01〜5重量部添加して混合、成
形し、その成形体を850℃〜950℃で仮焼し、その
仮焼体の側面に酸化ビスマスとシリカと酸化アン
チモンの混合ペーストを塗布し、1000℃〜1400℃
で焼成して得られる焼結体に電極を設けることを
特徴とする電圧非直線抵抗器の製造方法。 2 酸化亜鉛バリスタ組成物の配合組成を酸化亜
鉛(ZnO)85〜98.5mol%、酸化ビスマス
(Bi2O3)0.01〜5mol%、酸化コバルト(Co2O3)
0.01〜5mol%、酸化マンガン(MnO2)0.01〜
5mol%、酸化アンチモン(Sb2O3)0.02〜10mol
%、酸化クロム(Cr2O3)0.01〜5mol%、シリカ
(SiO2)0.02〜10mol%、酸化ニツケル(NiO)
0.02〜10mol%、酸化アルミニウム(Al2O3)
0.001〜0.05mol%とした特許請求の範囲第1項記
載の電圧非直線抵抗器の製造方法。[Claims] 1. Bismuth oxide (Bi 2 O 3 ) 40-90 wt%, silica (SiO 2 ) 5-25 wt%, boric anhydride (B 2 O 3 ) 10-90 wt%.
A glass composition consisting of 30 wt%, silver oxide (Ag 2 O) 5 to 30 wt%, and antimony oxide (Sb 2 O 3 ) 2 to 30 wt% was melted at 1000°C to 1250°C, cooled, and finely pulverized glass frit was obtained. Zinc oxide barista composition 100
0.01 to 5 parts by weight are added to the parts by weight, mixed and molded, the molded body is calcined at 850°C to 950°C, and a mixed paste of bismuth oxide, silica, and antimony oxide is applied to the side of the calcined body. Coated, 1000℃~1400℃
1. A method for manufacturing a voltage nonlinear resistor, which comprises providing an electrode on a sintered body obtained by firing the resistor. 2 The composition of the zinc oxide varistor composition is zinc oxide (ZnO) 85 to 98.5 mol%, bismuth oxide (Bi 2 O 3 ) 0.01 to 5 mol %, and cobalt oxide (Co 2 O 3 ).
0.01~5mol%, manganese oxide ( MnO2 ) 0.01~
5mol%, antimony oxide (Sb 2 O 3 ) 0.02-10mol
%, chromium oxide ( Cr2O3 ) 0.01-5mol%, silica ( SiO2 ) 0.02-10mol%, nickel oxide (NiO)
0.02-10mol% aluminum oxide ( Al2O3 )
The method for manufacturing a voltage nonlinear resistor according to claim 1, wherein the content is 0.001 to 0.05 mol%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57204082A JPS5994401A (en) | 1982-11-19 | 1982-11-19 | Method of producing voltage nonlinear resistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57204082A JPS5994401A (en) | 1982-11-19 | 1982-11-19 | Method of producing voltage nonlinear resistor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5994401A JPS5994401A (en) | 1984-05-31 |
JPH0320883B2 true JPH0320883B2 (en) | 1991-03-20 |
Family
ID=16484477
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57204082A Granted JPS5994401A (en) | 1982-11-19 | 1982-11-19 | Method of producing voltage nonlinear resistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5994401A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63117402A (en) * | 1986-11-06 | 1988-05-21 | 株式会社東芝 | Manufacture of nonlinear resistor |
JP6355360B2 (en) * | 2014-02-26 | 2018-07-11 | Koa株式会社 | Manufacturing method of zinc oxide varistor |
-
1982
- 1982-11-19 JP JP57204082A patent/JPS5994401A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5994401A (en) | 1984-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0252409B2 (en) | ||
EP0452511B1 (en) | Zinc oxide varistor, manufacture thereof, and crystallized glass composition for coating | |
US4420737A (en) | Potentially non-linear resistor and process for producing the same | |
JPS5941285B2 (en) | Voltage nonlinear resistance element and its manufacturing method | |
JPH0320883B2 (en) | ||
JPH0249525B2 (en) | ||
JPH0320885B2 (en) | ||
JPH0425681B2 (en) | ||
JPH0320884B2 (en) | ||
JPH0249524B2 (en) | ||
JPH04253302A (en) | Non-linear varistor | |
JPH0249523B2 (en) | ||
JPS6221242B2 (en) | ||
JPH04245602A (en) | Nonlinearly voltage-dependent resistor | |
JPH04139702A (en) | Voltage-dependent nonlinear resistor | |
JPS6033282B2 (en) | Voltage nonlinear resistor | |
JPH0578924B2 (en) | ||
JPH0249526B2 (en) | ||
JPS622442B2 (en) | ||
JPH0216003B2 (en) | ||
JPS626323B2 (en) | ||
JPH0519802B2 (en) | ||
JP3089370B2 (en) | Voltage non-linear resistance composition | |
JP2608626B2 (en) | Method of manufacturing voltage non-linear resistor | |
JPS5941286B2 (en) | Voltage nonlinear resistance element and its manufacturing method |