JPH03208409A - Self-hold type semiconductor device and self-hold type semiconductor relay - Google Patents

Self-hold type semiconductor device and self-hold type semiconductor relay

Info

Publication number
JPH03208409A
JPH03208409A JP2004093A JP409390A JPH03208409A JP H03208409 A JPH03208409 A JP H03208409A JP 2004093 A JP2004093 A JP 2004093A JP 409390 A JP409390 A JP 409390A JP H03208409 A JPH03208409 A JP H03208409A
Authority
JP
Japan
Prior art keywords
electrode
self
film
gate
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004093A
Other languages
Japanese (ja)
Inventor
Toshiaki Miyajima
利明 宮嶋
Masayoshi Koba
木場 正義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2004093A priority Critical patent/JPH03208409A/en
Publication of JPH03208409A publication Critical patent/JPH03208409A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a self-hold function without a peripheral circuit by providing a 1st electrode forming a floating gate provided on a 1st insulation film, a 2nd insulation film coating the 1st electrode and a 2nd electrode forming a control gate injecting electrons to the 1st electrode provided on the 2nd insulation film. CONSTITUTION:When a positive high voltage (e.g. +10-50V) is applied to a polycrystalline silicon film (2nd electrode) 6 being a control gate, electrons are injected from a substrate through a silicon oxide film (1st insulation film) 3 and stored in a poly crystal silicon film (1st electrode) 4 being a floating gate. On the other hand, when ultraviolet rays irradiate the film 6, the electrons having injected in the polycrystalline silicon film 4 being the floating gate are emitted, a threshold voltage is shifted negatively and the transistor(TR) is in the normally-on state. The control of the threshold voltage causing normally-off and normally-on state through the injection and emission of electrons is easily implemented by making the surface impurity concentration of a p-channel region 7 proper.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は半導体装置に関し、特に自己保持型リレー機能
を有する絶縁ゲート型半導体装置及びそれを利用した半
導体リレー装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to a semiconductor device, and more particularly to an insulated gate semiconductor device having a self-holding relay function and a semiconductor relay device using the same.

(ロ)従来の技術 従来から、大電流用あるいは低オン抵抗用の絶縁ゲート
型半導体装置として、縦型構造の半導体装置が知られて
おり、これらの半導体装置を半導体リレーに適用するこ
とも行われている。
(b) Conventional technology Vertical structure semiconductor devices have been known as insulated gate semiconductor devices for large current or low on-resistance, and these semiconductor devices have also been applied to semiconductor relays. It is being said.

かかる従来の縦型構造の半導体装置の代表例として、第
5図に縦型の絶縁ゲート型トランジスタ(MrS−FE
T)を、第6図に絶縁ケート型ハイポーラトランジスタ
(I GBT)を各々示した。
As a typical example of such a conventional vertical structure semiconductor device, FIG. 5 shows a vertical insulated gate transistor (MrS-FE).
T) and an insulated gate type hyperpolar transistor (IGBT) are shown in FIG.

第5図のMrS−FETにおいて、1は高濃度n型車結
晶ンリコン基板、2はn型単結晶シリコン膜、7はp型
領域、8は高濃度n!M@域、9゜27は各々酸化ンリ
コン膜、!0はソース電極、11は表面保護膜、12は
ドレイン電極、28はゲート電極を各々示すものであり
、ゲート電極の下方に位置するP型頭域7の端部でチャ
ンネルが形成される。一方、第6図のrGBTにおいて
は、基板が高濃度p型巣結晶基板13てあり、基板表面
側にエミッタ電極14が設けられており、裏面側にコレ
クタ電極15が設けられている以外、第5図と同様に構
成されている。
In the MrS-FET shown in FIG. 5, 1 is a high concentration n-type silicon silicon substrate, 2 is an n-type single crystal silicon film, 7 is a p-type region, and 8 is a high concentration n! M@ area, 9°27 are each oxidized silicon film,! 0 indicates a source electrode, 11 a surface protective film, 12 a drain electrode, and 28 a gate electrode, and a channel is formed at the end of the P-type head region 7 located below the gate electrode. On the other hand, in the rGBT shown in FIG. 6, the substrate is a high-concentration p-type nested crystal substrate 13, an emitter electrode 14 is provided on the front side of the substrate, and a collector electrode 15 is provided on the back side. The configuration is similar to that shown in Figure 5.

(ハ)発明が解決しようとする課題 しかしながら、上記のごとき従来の縦型構造の絶縁ゲー
ト型半導体装置を用いて半導体リレーを構成した際には
、これらの半導体装置がそれ自体リレーとしての自己保
持機能(リレー信号の記憶機能)を有しないために以下
の問題点が生じていた。即ち、自己保持機能がないため
、オン状態あるいはオフ状態に保っておくfこめに周辺
回路によって常にゲートにある電圧を印加しておくか、
アースレベルに保持しておく必要があっ1為本発明はか
かる問題点を解決するfこめになされたしのであり、そ
の目的は周辺回路なしで自己保持機能を有する半導体装
置および半導体リレー装置を提供することである。
(c) Problems to be Solved by the Invention However, when a semiconductor relay is constructed using the conventional vertically structured insulated gate type semiconductor devices as described above, these semiconductor devices themselves cannot maintain themselves as a relay. Since it does not have a function (relay signal storage function), the following problems have arisen. In other words, since there is no self-holding function, a certain voltage is always applied to the gate by the peripheral circuit to keep it in the on or off state, or
Since it is necessary to maintain the device at the ground level, the present invention has been made to solve this problem, and its purpose is to provide a semiconductor device and a semiconductor relay device that have a self-holding function without a peripheral circuit. It is to be.

(ニ)課題を解決するための手段 かくしてこの発明によれば、縦構造の絶縁ゲート型トラ
ンジスタの絶縁ゲート部が、ゲート絶縁膜を構成する第
1絶縁膜と、第1絶縁膜上に設けられフローティングゲ
ートを構成する第1電極と、第1電極を被覆する第2絶
縁膜と、第2絶縁膜上に設けられ第1電極へ電子を注入
しうるコントロールゲートを構成する第21!極、から
なる自己保持型半導体装置、並びに、それをリレー素子
として用いた半導体リレー装置が提供される。
(d) Means for Solving the Problems Thus, according to the present invention, the insulated gate portion of the vertically structured insulated gate transistor is provided on the first insulating film and the first insulating film constituting the gate insulating film. A first electrode constituting a floating gate, a second insulating film covering the first electrode, and a 21st! A self-holding semiconductor device comprising a pole, and a semiconductor relay device using the self-holding semiconductor device as a relay element are provided.

本発明は半導体リレーに用いられるMIS・PETやt
 GBTの絶縁ゲート部をフローティングゲートとコン
トロールゲートの2層ゲート構造にすることにより、こ
れらの素子自身に自己保持機能を持几山ることを可能と
したものであり、かつその素子を用いることにより半導
体リレーに自己保持機能を持たせることを可能としfこ
乙のである。
The present invention is applicable to MIS/PET and t-shirts used in semiconductor relays.
By making the insulated gate part of the GBT have a two-layer gate structure consisting of a floating gate and a control gate, it is possible for these elements themselves to have a self-holding function, and by using this element, This makes it possible to provide a self-holding function to a semiconductor relay.

本発明における絶縁ゲート部におけろ竿1絶縁膜として
は、従来の縦型絶縁ゲート型トランジスタに適用されて
いるものと同様な厚み、材質の絶縁膜が適用でき、例え
ば、約5〜5Qnmの酸化シリコン、窒化シリコン又は
酸化アルミニウム膜が好適に用いられる。フローティン
グゲートを構成する第1電極及びコントロールゲートを
構成する第2111ffiとしては、いわゆるフローテ
ィングゲート構造の不揮発性メモリに採用されている乙
のと同様な導電材を適用することができ、厚みは約20
0〜2000nmとすることが好ましい。また、第1電
極と第2電極とを隔離する第2絶縁膜としては、第1!
!縁膜と同様なものを適用できるが、第1絶縁膜よりも
厚い膜を用いるのが適しており、通常、約100〜IO
00nmとするのが適している。ことに、こイーらのゲ
ート部構成、腎の材質や膜厚は、第2電極を正電圧を印
加した際に基板から電子が第1電極に効率良く蓄積され
、かつ紫外線照射によりこの電子が効率良く放出されろ
ように最適化されているのが好ましい。
In the insulated gate portion of the present invention, an insulating film having the same thickness and material as those used in conventional vertical insulated gate transistors can be used, for example, a film with a thickness of about 5 to 5 Qnm. A silicon oxide, silicon nitride, or aluminum oxide film is preferably used. As the first electrode constituting the floating gate and the 2111ffi constituting the control gate, a conductive material similar to that used in non-volatile memory with a so-called floating gate structure can be used, and the thickness is approximately 20 mm.
It is preferable to set it as 0-2000 nm. Moreover, as the second insulating film that isolates the first electrode and the second electrode, the first!
! The same film as the edge film can be applied, but it is suitable to use a film thicker than the first insulating film, and usually about 100 to IO
A suitable value is 00 nm. In particular, the gate structure, kidney material, and film thickness of these devices allow electrons to be efficiently accumulated from the substrate to the first electrode when a positive voltage is applied to the second electrode, and these electrons can be accumulated by ultraviolet irradiation. Preferably, it is optimized for efficient release.

(ホ)作用 第2電極(コントロールゲート)に正の高い電圧を印加
すると、第1絶縁膜を介して電子が基板から第1t’s
(フローティングゲート)に注入されて蓄積され、第2
電極への電圧印加を停止しても、この蓄積状態が保たれ
る。一方、ゲート部に紫外線を照射すると上記蓄積電子
が放出される。
(e) When a high positive voltage is applied to the working second electrode (control gate), electrons are transferred from the substrate through the first insulating film to the first t's
(floating gate) and accumulates in the second
This accumulation state is maintained even if the voltage application to the electrodes is stopped. On the other hand, when the gate portion is irradiated with ultraviolet rays, the accumulated electrons are released.

そして、この電子蓄積及び電子放出状態の制御によって
縦型構造の絶縁ゲート型半導体装置、ことにリレー素子
のON10 F F制御を自己保持的に行うことか可能
となる。
By controlling the electron accumulation and electron emission states, it becomes possible to perform ON10FF control of a vertically structured insulated gate semiconductor device, particularly of a relay element, in a self-maintaining manner.

(へ)実施例 以下に本発明を実施例に基づいて説明する。(f) Example The present invention will be explained below based on examples.

第1図に本発明の一実施例である自己保持機能を持った
MIS−FETの製造工程を示す。まず、n型不純物を
高濃度にトープしf二車結晶シリコン基板l上にn型巣
結晶ンリコン膜2を所望の耐圧に必要な厚さ(例えば耐
圧100Vの時、約10μmの厚さ)だけエビタキノヤ
ル成長さけろ。次に全面に酸化シリコン膜(第1絶縁膜
)3を20nm、フローティングゲートとなるリンドー
プの多結晶シリコン膜(第ti掻)4を500nm、酸
化ノリコン膜(第2絶縁膜)5を500 nm、コント
ロールゲートとなるリンドープの多結晶ノリコン膜(第
2電極)6を500nmそれぞれ形成しfコ後、第1図
(a)に示すように通常のバターニノグ工程を用いて多
結晶シリコン膜6、酸化シリコン膜5、多結晶ノリコン
膜4、酸化ンリコン膜3を所望の形状にパターニングす
る。このパターニングされた多結晶ノリコン膜6をマス
クとして第1図(b)に示すように自己整合的にボロン
をイオン注入して91M領域7を形成する。次に多結晶
シリコン膜6とレジスト(図示せず)をマスクとして第
1図(c)に示すように一部自己整合的にリンをイオン
注入して高濃度n型領域8を形成する。全面に酸化ノリ
コン膜9を形成しf二後、1100°C125時間熱処
理を行うとポロンとリンの拡散係数の差によりn型領域
7の方が高濃度n型領域8よりも広がり、その広がりの
差がチャネル長となる。次いて、高濃度n型領域8ては
さまれたn型領域7の表面と、高濃度n型領域8の表面
が一部が露出するように酸化シリコン膜9を窓開けし後
、ソース電極となるアルミニウム膜IOを形成し、パタ
ーニングした後、表面保護膜11を形成し、裏面にドレ
イン電極となる金膜12を形成することにより、この発
明のMis−FETが得られろ。
FIG. 1 shows the manufacturing process of a MIS-FET with a self-holding function, which is an embodiment of the present invention. First, n-type impurities are doped at a high concentration and an n-type nested crystalline silicon film 2 is formed on the f-wheel crystal silicon substrate l to a thickness necessary for a desired breakdown voltage (for example, about 10 μm thick when the breakdown voltage is 100V). Evitakinoyaru, grow up! Next, a 20 nm thick silicon oxide film (first insulating film) 3 was formed on the entire surface, a 500 nm thick phosphorus-doped polycrystalline silicon film (first insulating film) 4 that would become a floating gate, a 500 nm thick oxidized silicon film (second insulating film) 5, After forming a 500-nm thick phosphorus-doped polycrystalline silicon film (second electrode) 6 that will serve as a control gate, a polycrystalline silicon film 6 and a silicon oxide film are formed using a normal battering process as shown in FIG. 1(a). The film 5, polycrystalline silicon film 4, and silicon oxide film 3 are patterned into desired shapes. Using this patterned polycrystalline Noricon film 6 as a mask, boron ions are implanted in a self-aligned manner to form a 91M region 7, as shown in FIG. 1(b). Next, using the polycrystalline silicon film 6 and a resist (not shown) as masks, phosphorus is ion-implanted in a partially self-aligned manner to form a heavily doped n-type region 8, as shown in FIG. 1(c). After forming a silicon oxide film 9 on the entire surface and performing heat treatment at 1100°C for 125 hours, the n-type region 7 spreads more than the high concentration n-type region 8 due to the difference in diffusion coefficients of poron and phosphorus, and the spread The difference is the channel length. Next, the silicon oxide film 9 is opened so that the surface of the n-type region 7 sandwiched between the high-concentration n-type region 8 and the surface of the high-concentration n-type region 8 are partially exposed, and then the source electrode The Mis-FET of the present invention can be obtained by forming and patterning an aluminum film IO, forming a surface protection film 11, and forming a gold film 12, which will become a drain electrode, on the back surface.

第2図は本発明の他の実施例である自己保持機能を持っ
たl GBTの製造工程を示すものである。
FIG. 2 shows the manufacturing process of an l GBT having a self-holding function, which is another embodiment of the present invention.

第1図と異なる点は基板としてp型不純物を高濃度にド
ープした単結晶シリコン基板13を用いていることであ
る。第1図と対応した個所には同一番号を用いている。
The difference from FIG. 1 is that a single crystal silicon substrate 13 heavily doped with p-type impurities is used as the substrate. The same numbers are used for parts corresponding to those in FIG.

後は第1図と同様に第2図に示しfこ工程に従って最後
まで作製するが、表面側のアルミニウム膜14はエミッ
タ電極とし、裏面側の金膜15はコレクタ電極とする。
The rest is manufactured according to the steps shown in FIG. 2 in the same manner as in FIG. 1, except that the aluminum film 14 on the front side is used as an emitter electrode, and the gold film 15 on the back side is used as a collector electrode.

なお、第1図、第2図の実施例ではゲート部の絶縁膜と
して酸化ノリクン膜を用いたが、らちろん窒化シリコン
膜、酸化アルミニウム膜等、池の絶縁膜を用いてらよい
In the embodiments shown in FIGS. 1 and 2, an oxidized film was used as the insulating film of the gate portion, but it is also possible to use a similar insulating film such as a silicon nitride film or an aluminum oxide film.

第1図乃至第2図に示した素子の動作原理自体は、通常
の電気的書き込み、紫外線照射消去可能なフローティン
グゲート構造の不揮発性メモリ(例えば、EPROM)
と同様である。即ち、コントロールゲートである多結晶
シリコン膜(第2i電極)6に正の高い電圧(例えば+
10〜50■)を印加すると電子が酸化シリコン膜(第
1絶縁膜)3を通して基板から注入され、フローティン
グゲートである多結晶シリコン膜(第1電極)4に電子
が蓄積される。この時、トランジスタの閾値電圧が正の
方向にシフトし、このトランジスタがノーマリ−オフ状
態になる。一方、紫外線照射するとフローティングゲー
トである多結晶シリコン膜4中に注入されていた電子が
放出され閾値電圧が負の方向にシフトし、このトランジ
スタがノーマリ−オン状態になる。電子の注入、放出に
よりノ−マリ−オフ、ノーマリ−オンになるような閾値
電圧の制御は、n型領域7の表面不純物a変を適合化す
ることにより容易に行うことができる。いずれに仕よ、
これら電子の注入、放出がなされた後はこれらの状態は
コントロールゲートに電圧を印加しなくても変化するこ
とはなく、自己保持機能を有する。
The operating principle of the device shown in FIGS. 1 and 2 is based on a nonvolatile memory (e.g., EPROM) with a floating gate structure that can be written electrically and erased by ultraviolet irradiation.
It is similar to That is, a high positive voltage (for example +
When 10 to 50 cm) is applied, electrons are injected from the substrate through the silicon oxide film (first insulating film) 3 and accumulated in the polycrystalline silicon film (first electrode) 4 which is a floating gate. At this time, the threshold voltage of the transistor shifts in the positive direction, and the transistor becomes normally off. On the other hand, when ultraviolet rays are irradiated, the electrons injected into the polycrystalline silicon film 4 serving as the floating gate are released, the threshold voltage shifts in the negative direction, and the transistor enters a normally-on state. The threshold voltage can be easily controlled so as to be normally off or normally on by injection and emission of electrons by optimizing the variation of the surface impurity a of the n-type region 7. Whatever you do,
After these electrons are injected and emitted, these states do not change even if no voltage is applied to the control gate, and have a self-holding function.

なお実施例ではnチャネルの素子を示したが、pチャネ
ルの素子ら不純物の極性を逆にすることで実現できる。
Although an n-channel device is shown in the embodiment, it can be realized by reversing the polarity of impurities in a p-channel device.

ただし、この場合はn型領域形成と高濃度p型領域形成
の間にn型領域を拡散により広げておくだめの熱処理を
行う必要がある。
However, in this case, it is necessary to perform heat treatment to expand the n-type region by diffusion between the formation of the n-type region and the formation of the high concentration p-type region.

第3図は本発明の他の実施例である自己保持機能を持っ
た半導体リレー装置を示す回路図を示すものである。こ
の半導体リレー装置においては、自己保持機能を持った
MI 5−FET 16.  l 7がソース’gti
を共通にして逆直列に接続され、それぞれのMIS−F
ETのドレイン電極はドレイン端子is、19として取
り出されている。共通に接続したソース電極はソース端
子20として取り出され、コントロールゲートN極(第
2N[i)も共通に接続して一つのゲート端子21とし
て取り出されている。かかる半導体リレー装置において
、自己保持機能を持ったMis−FET16゜17のゲ
ート端子21に正の高い電圧を印加して、フローティン
グゲートである多結晶シリコン膜(第■電極)4に基板
から電子を注入し、−旦ノーマリーオフ状態にしておく
と、ゲート端子2Iへの電圧印加をやめてもこの半導体
リレーは開状態を保つ。一方、自己保持機能を持ったM
is−FET16.17に紫外線を照射するとフローテ
ィングゲートである多結晶シリコン膜(第1電極)4に
注入されていた電子は放出されノーマリ−オン状態、即
らドレイン端子18.19間は導通状態になり、この半
導体リレーは閉状態を保つ。ここで自己保持機能を持っ
たM[5−FETを2個逆直列に接続したのはドレイン
端子18.19間に直流のみならず交流ら印加できるよ
うにするためである。なおドレイン端子18とソース端
子20間、あるいはドレイン端子19とソース端子20
間には直流負荷のみ印加できる。
FIG. 3 is a circuit diagram showing a semiconductor relay device having a self-holding function, which is another embodiment of the present invention. In this semiconductor relay device, MI 5-FET with a self-holding function 16. l 7 is sauce'gti
are connected in anti-series with each MIS-F in common.
The drain electrode of ET is taken out as a drain terminal is, 19. The commonly connected source electrodes are taken out as a source terminal 20, and the control gate N pole (second N[i) is also commonly connected and taken out as one gate terminal 21. In such a semiconductor relay device, a high positive voltage is applied to the gate terminal 21 of the Mis-FET 16°17 which has a self-holding function, and electrons are transferred from the substrate to the polycrystalline silicon film (electrode 2) 4, which is a floating gate. Once injected and placed in a normally off state, this semiconductor relay remains open even when voltage application to the gate terminal 2I is stopped. On the other hand, M with self-retention function
When the IS-FET 16.17 is irradiated with ultraviolet rays, the electrons injected into the polycrystalline silicon film (first electrode) 4, which is the floating gate, are released and the state is normally on, that is, the drain terminals 18 and 19 are in a conductive state. Therefore, this semiconductor relay remains closed. The reason why two M[5-FETs having a self-holding function are connected in anti-series is to enable not only direct current but also alternating current to be applied between the drain terminals 18 and 19. Note that between the drain terminal 18 and the source terminal 20, or between the drain terminal 19 and the source terminal 20
Only a DC load can be applied between them.

第4図は本発明の池の実施例である自己保持機能を持っ
た半導体リレー装置を示す回路図を示す。
FIG. 4 is a circuit diagram showing a semiconductor relay device having a self-holding function, which is an embodiment of the present invention.

この半導体リレー装置において、自己保持機能を持った
IGBT22,23は逆並列に接続され、端子24.2
5が取り出されている。コントロールゲート電極(第2
電極)は共通に接続して一つのゲート端子26として取
り出す。この装置において、自己保持機能を持ったrG
BT22.23のゲート端子26に正の高い電圧を印加
して、フローティングゲートである多結晶シリコン膜(
第1電極)4に基板から電子を注入し、−旦ノーマリー
オフ状仲にしておくと、ゲート端子26への電圧印加を
やめてらこの半導体リレーは開状態を保つ、一方、自己
保持機能を持ったIGBT22゜23に紫外線を照射す
るとフローティングゲートである多結晶シリコン膜4に
注入されていた電子は放出されノーマリ−オン状態、即
ち端子24゜25間は導通状態になり、この半導体リレ
ーは閉状態を保つ。ここで自己保持機能を持ったIGB
Tを2個逆並列に接続しf二のは端子24.25間に直
流のみならず交流ら印加てきるようにするためである。
In this semiconductor relay device, IGBTs 22 and 23 having a self-holding function are connected in antiparallel, and terminals 24.2 and 23 are connected in antiparallel.
5 has been taken out. Control gate electrode (second
electrodes) are connected in common and taken out as one gate terminal 26. In this device, rG with self-holding function
By applying a high positive voltage to the gate terminal 26 of BT22.23, the floating gate of the polycrystalline silicon film (
If electrons are injected into the first electrode 4 from the substrate and the state is set in a normally-off state, this semiconductor relay will remain open after the voltage application to the gate terminal 26 is stopped, while the self-holding function will be activated. When the IGBT 22 and 23 held in the hand are irradiated with ultraviolet rays, the electrons injected into the polycrystalline silicon film 4, which is the floating gate, are released and the normally-on state is established, that is, the terminals 24 and 25 are in a conductive state, and this semiconductor relay is closed. maintain condition. Here, IGB with self-holding function
Two T's are connected in anti-parallel, and f2 is so that not only direct current but also alternating current can be applied between terminals 24 and 25.

(ト)発明の効果 本発明によれば、自己保持機能を有する縦型構造のMi
s−FET″Pr GBTを実現することができ、これ
らを用いることにより自己保持機能を持った半導体リレ
ー装置を提供することができる。
(g) Effects of the invention According to the present invention, a vertically structured Mi having a self-holding function
s-FET''Pr GBT can be realized, and by using these, a semiconductor relay device with a self-holding function can be provided.

そして、かかる半導体リレー装置によれば、自己保持用
の周辺回路をとくに設けることなく自己保持的なリレー
動作を実現できるため、各種制御素子の小型化、高集積
化の点からも極めて有用である。
According to such a semiconductor relay device, a self-holding relay operation can be realized without providing a special peripheral circuit for self-holding, so it is extremely useful from the point of view of miniaturization and high integration of various control elements. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は本発明の一実施例の半導体装置
の製造工程図、第2図は同じく池の実施例を示すr二め
の製造工程図、第3図は本発明の半導体リレー装置の実
施例を示すための回路図、第4図は同じく他の実施例を
示すための回路図、第5図及び第6図は各々従来の縦型
構造の絶縁ゲート型半導体装置を例示する構成説明図で
ある。 1・・・・・・高濃度n型単結晶シリコン基板、2・・
・・・・n型車結晶ンリコン膜、3.5,9.27・・
・・・・酸化シリコン膜、4・・・・・・フローティン
グゲートとなる多結晶シリコン膜(第1電極)、 6・・・・・・コントロールゲートとなる多結晶シリコ
ン膜(第2電極)、 7・・・・・・p型領域、8・・・・・・高濃度n型領
域、10・・・・・・ソース電極(アルミニウムII)
、2・・・・・・表面保護膜、 12・・・・・・ドレイン電極(金膜)、13・・・・
・・高濃度p型車結晶シリコン基板、14・・・・・・
エミッタ電極(アルミニウム膜)、15・・・・・・コ
レクタ電極(金膜)、16.17・・・・・・自己保持
機能を持ったMIS−FET。 18.19・・・・・・ドレイン電子、20・・・・・
・ソース端子、2【、26・・・・・・ゲート端子、2
2゜ 23・・・・・・自己保持機能を持ったIGBT。 24゜ 25・・・・・・端子、 28・・・・・・ゲート電極(多結晶シリコン膜)。 笥 3 図 剣 図 第 図 飯 図
FIGS. 1(a) to (d) are manufacturing process diagrams of a semiconductor device according to an embodiment of the present invention, FIG. 2 is a second manufacturing process diagram showing an embodiment of the present invention, and FIG. FIG. 4 is a circuit diagram showing another embodiment of the semiconductor relay device, and FIGS. 5 and 6 are each a conventional insulated gate semiconductor device with a vertical structure. It is a configuration explanatory diagram illustrating an example. 1...High concentration n-type single crystal silicon substrate, 2...
...N-type car crystal silicon film, 3.5, 9.27...
... Silicon oxide film, 4 ... Polycrystalline silicon film (first electrode) that will become a floating gate, 6 ... Polycrystalline silicon film (second electrode) that will become a control gate, 7...p-type region, 8...high concentration n-type region, 10...source electrode (aluminum II)
, 2... Surface protective film, 12... Drain electrode (gold film), 13...
・High concentration p-type crystal silicon substrate, 14...
Emitter electrode (aluminum film), 15... Collector electrode (gold film), 16.17... MIS-FET with self-holding function. 18.19...Drain electron, 20...
・Source terminal, 2 [, 26... Gate terminal, 2
2゜23... IGBT with self-holding function. 24°25... terminal, 28... gate electrode (polycrystalline silicon film).笥3 Zuken Zuzu Zuzu Meal Zuzu

Claims (1)

【特許請求の範囲】 1、ソース電極が基板表面側にあり、ドレイン電極が基
板裏面側にある縦型構造の絶縁ゲート型トランジスタか
らなり、該絶縁ゲート型トランジスタの絶縁ゲート部が
、ゲート絶縁膜を構成する第1絶縁膜と、第1絶縁膜上
に設けられフローティングゲートを構成する第1電極と
、第1電極を被覆する第2絶縁膜と、第2絶縁膜上に設
けられ第1電極へ電子を注入しうるコントロールゲート
を構成する第2電極、を備えてなる自己保持型半導体装
置。 2、エミッタ電極が基板表面側にあり、コレクタ電極が
基板の裏面側にある縦型構造の絶縁ゲート型バイポーラ
トランジスタからなり、該絶縁ゲート型バイポーラトラ
ンジスタの絶縁ゲート部が、ゲート絶縁膜を構成する第
1絶縁膜と、第1絶縁膜上に設けられ、フローティング
ゲートを構成する第1電極と、第1電極を被覆する第2
絶縁膜と、第2絶縁膜上に設けられ第1電極へ電子を注
入しうるコントロールゲートを構成する第2電極を、備
えてなる自己保持型半導体装置。 3、請求項1又は2に記載の自己保持型半導体装置をリ
レー素子として用いた半導体リレー装置。
[Claims] 1. An insulated gate transistor with a vertical structure in which the source electrode is on the front surface side of the substrate and the drain electrode is on the back side of the substrate, and the insulated gate part of the insulated gate transistor is connected to the gate insulating film. a first insulating film forming a floating gate; a first electrode provided on the first insulating film and forming a floating gate; a second insulating film covering the first electrode; and a first electrode provided on the second insulating film. A self-holding semiconductor device comprising a second electrode constituting a control gate capable of injecting electrons into the semiconductor device. 2. Consists of an insulated gate bipolar transistor with a vertical structure in which the emitter electrode is on the front side of the substrate and the collector electrode is on the back side of the substrate, and the insulated gate part of the insulated gate bipolar transistor constitutes a gate insulating film. a first insulating film, a first electrode provided on the first insulating film and forming a floating gate, and a second electrode covering the first electrode.
A self-holding semiconductor device comprising an insulating film and a second electrode that is provided on the second insulating film and constitutes a control gate capable of injecting electrons into the first electrode. 3. A semiconductor relay device using the self-holding semiconductor device according to claim 1 or 2 as a relay element.
JP2004093A 1990-01-10 1990-01-10 Self-hold type semiconductor device and self-hold type semiconductor relay Pending JPH03208409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004093A JPH03208409A (en) 1990-01-10 1990-01-10 Self-hold type semiconductor device and self-hold type semiconductor relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004093A JPH03208409A (en) 1990-01-10 1990-01-10 Self-hold type semiconductor device and self-hold type semiconductor relay

Publications (1)

Publication Number Publication Date
JPH03208409A true JPH03208409A (en) 1991-09-11

Family

ID=11575183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004093A Pending JPH03208409A (en) 1990-01-10 1990-01-10 Self-hold type semiconductor device and self-hold type semiconductor relay

Country Status (1)

Country Link
JP (1) JPH03208409A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002218679A (en) * 2001-01-16 2002-08-02 Pana R & D:Kk Remote control unit not consuming power in standby
WO2008035532A1 (en) * 2006-09-20 2008-03-27 Advantest Corporation Switching device and testing apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002218679A (en) * 2001-01-16 2002-08-02 Pana R & D:Kk Remote control unit not consuming power in standby
WO2008035532A1 (en) * 2006-09-20 2008-03-27 Advantest Corporation Switching device and testing apparatus
JPWO2008035532A1 (en) * 2006-09-20 2010-01-28 株式会社アドバンテスト Switch device and test device
US8058648B2 (en) 2006-09-20 2011-11-15 Advantest Corporation Switching device and testing apparatus
JP5137840B2 (en) * 2006-09-20 2013-02-06 株式会社アドバンテスト Switch device and test device

Similar Documents

Publication Publication Date Title
US5014102A (en) MOSFET-gated bipolar transistors and thyristors with both turn-on and turn-off capability having single-polarity gate input signal
US6518589B2 (en) Dual mode FET & logic circuit having negative differential resistance mode
US4173791A (en) Insulated gate field-effect transistor read-only memory array
EP0471131B1 (en) Process for obtaining an N-channel single polysilicon level EPROM cell
JPH07183500A (en) Insulated gate type field effect transistor
GB2214351A (en) Dmosfet device
KR101138463B1 (en) Hetero-bimos injection process for non-volatile flash memory
US5773862A (en) Floating gate FGPA cell with separated select device
JPH0715009A (en) Vertical mos field-effect transistor
JP2624878B2 (en) Semiconductor device
JPH03208409A (en) Self-hold type semiconductor device and self-hold type semiconductor relay
JPS6211017Y2 (en)
JPS62274775A (en) Semiconductor device
US5894148A (en) Floating gate FPGA cell with counter-doped select device
US6661056B1 (en) DMOS transistor protected against polarity reversal
JPH02295169A (en) Nonvolatile semiconductor memory
JP2005536048A (en) DMOS device with programmable threshold voltage
JP2629437B2 (en) Lateral insulated gate bipolar transistor
JPH06252386A (en) Semiconductor device
JP2633381B2 (en) Semiconductor device
JP3073056B2 (en) Static induction semiconductor device
JPH04318975A (en) Memory cell
JP2782501B2 (en) Method for manufacturing nonvolatile semiconductor memory device
JPH0320081A (en) Semiconductor integrated circuit
JPH05267654A (en) Mos transistor