JPH0320081A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPH0320081A
JPH0320081A JP1155458A JP15545889A JPH0320081A JP H0320081 A JPH0320081 A JP H0320081A JP 1155458 A JP1155458 A JP 1155458A JP 15545889 A JP15545889 A JP 15545889A JP H0320081 A JPH0320081 A JP H0320081A
Authority
JP
Japan
Prior art keywords
diffusion layer
drain
contact window
transistor
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1155458A
Other languages
Japanese (ja)
Inventor
Akio Shimano
嶋野 彰夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP1155458A priority Critical patent/JPH0320081A/en
Publication of JPH0320081A publication Critical patent/JPH0320081A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate

Abstract

PURPOSE:To prevent a current from concentrating in a contact window and from causing thermal breakdown by constituting a drain diffusion layer of a transistor whereto a high voltage is applied only by a diffusion layer of low concentration in LDD structure. CONSTITUTION:A device is composed of a P-type silicon substrate 1, a polysilicon gate electrode 2, a gate oxide film 3, an N-type diffusion layer 4 of low concentration, a sidewall 5, an N-type diffusion layer 6 of high concentration, a layer insulating film 7, a source electrode 8, and a drain electrode 9. A drain diffusion layer of a transistor where a voltage of at least source voltage is applied to a drain terminal is constituted only by the diffusion layer 4 of low concentration in LDD structure. Therefore, a series resistance is inserted between a contact window of a drain terminal and a channel; the parasitic series resistance prevents a current from concentrating to one contact window and operates to distribute the current to each contact window uniformly. Thereby, an integrated circuit can be protected against thermal breakdown.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はMOSトランジスタを集積化した半導体MOS
集積回路に関するものである。
[Detailed Description of the Invention] Industrial Field of Application The present invention relates to a semiconductor MOS in which MOS transistors are integrated.
It concerns integrated circuits.

従来の技術 近年、MOS集積回路はコンピュータ等大規模情報シス
テムに限らず家庭電化製品にも大量に使用されるように
なった。これら集積回路の電源電圧は釦おむね従来よp
sVが踏襲されてかり、デザインルールの縮小に伴って
ドレイン耐圧の確保.ホットキャリアによる特性劣化の
緩和等の点からMOSトランジスタの構造は単一ドレイ
ン構造から二重拡散ドレイン構造.更に低濃度領域を有
するドレイン構造(以下LDD構造と記す)へと変わっ
てきている。
2. Description of the Related Art In recent years, MOS integrated circuits have come to be used in large quantities not only in large-scale information systems such as computers, but also in home appliances. The power supply voltage of these integrated circuits is generally the same as before.
sV has been followed, and as design rules have been reduced, drain breakdown voltage has been secured. In order to alleviate characteristic deterioration caused by hot carriers, the structure of MOS transistors has changed from a single drain structure to a double diffused drain structure. Furthermore, there has been a shift to a drain structure (hereinafter referred to as LDD structure) having a low concentration region.

以下、図面を参照しながら、上述したような従来のLD
D構造トランジスタについて説明する。
Hereinafter, with reference to the drawings, the conventional LD as described above
A D-structure transistor will be explained.

第2図は従来のLDD構造トランジスタの構造断面図を
示すものである。第2図において、1はMOS集積回路
が形或されるp型シリコン基板、2はポリシリコンから
なるゲート電極、3はシリコン基板を熱酸化して形或さ
れたゲート酸化膜、41dボリシリコンゲート電極2を
マスクとしてイオン注入によって形威された低濃度ドレ
イン拡散層である。6はポリシリコンゲート電Wi2の
側壁に自己整合的につくられた二酸化シリコン膜からな
るサイドウオール、6はサイドウオール5の形或後イオ
ン注入して形或された高濃度ドレイン拡散層、7は層間
絶縁膜、8かよび9は層間絶縁膜を開孔しアルミを付着
させたソース電極およびドレイン電極である。
FIG. 2 shows a structural sectional view of a conventional LDD structure transistor. In FIG. 2, 1 is a p-type silicon substrate on which a MOS integrated circuit is formed, 2 is a gate electrode made of polysilicon, 3 is a gate oxide film formed by thermally oxidizing the silicon substrate, and 41d is a polysilicon gate. This is a low concentration drain diffusion layer formed by ion implantation using electrode 2 as a mask. 6 is a side wall made of a silicon dioxide film formed in a self-aligned manner on the side wall of the polysilicon gate electrode Wi2; 6 is a high concentration drain diffusion layer formed in the form of side wall 5 or by subsequent ion implantation; 7 is a high concentration drain diffusion layer formed by ion implantation; Interlayer insulating films 8 and 9 are source and drain electrodes formed by opening holes in the interlayer insulating film and depositing aluminum thereon.

以上のように構戒された従来のLDD構造のドレイン耐
圧について説明する。
The drain breakdown voltage of the conventional LDD structure constructed as described above will be explained.

ゲート電位がゲートしきい電圧以下の場合ドレイン耐圧
はフィールド酸化膜下の基板濃度が通常高めてあるため
、トランジスタの周囲部分でのドレイン拡散層−基板間
のアパランシェブレークダウンによって決定される。ゲ
ート電位がしきい電圧以上となうドレイン電流を流した
状態ではドレイン耐圧は上述の7パランシェブレークダ
ウン電圧よシ・も低い値となることが観測される。これ
はソース(n型)一基板(p型)一ドレイン(n型)間
の寄生バイボーラ効果が働くためと考えられる。
When the gate potential is lower than the gate threshold voltage, the drain breakdown voltage is determined by aparanche breakdown between the drain diffusion layer and the substrate in the peripheral area of the transistor, since the substrate concentration under the field oxide film is usually high. It is observed that when a drain current is flowing such that the gate potential is higher than the threshold voltage, the drain withstand voltage is lower than the above-mentioned 7-paranche breakdown voltage. This is considered to be due to the parasitic bibolar effect between the source (n type), substrate (p type), and drain (n type).

すなわち、ドレイン近傍の強い電界によってチャンネル
を流れる電子がアパランシェ増倍され、生戒した正孔は
基板へ流れ込み基板電流となる。この基板電流がチャン
ネル直下の基板電位を浮き上がらせ寄生バイポーラトラ
ンジスタのベース電位を正にバイアスしてしまう。この
ためコレクタ電流ヲ流した場合のパイポーラトランジス
タのコレクタ耐圧同様、動作状態におけるMOSトラン
ジスタのドレイン耐圧はカットオフ時の耐圧ようも低下
する。
That is, electrons flowing through the channel are multiplied by apalanche due to the strong electric field near the drain, and the trapped holes flow into the substrate and become a substrate current. This substrate current raises the substrate potential directly under the channel and biases the base potential of the parasitic bipolar transistor positively. Therefore, like the collector breakdown voltage of a bipolar transistor when a collector current flows, the drain breakdown voltage of the MOS transistor in the operating state decreases as well as the breakdown voltage at cut-off.

上述のドレイン耐圧はゲート長を短くするほど寄生パイ
ボーフトランジスタの電流増幅率の増大につながb1低
下することが認められ、例えばグー}長1.0μmのN
チャンネMトランジスタでカットオフ時13vに対し動
作時のドレイン耐圧は約8v程度となる。
It is recognized that as the gate length becomes shorter, the current amplification factor of the parasitic Paibov transistor increases and b1 decreases as the gate length becomes shorter.
In the channel M transistor, the drain breakdown voltage during operation is about 8V, compared to 13V when cut off.

発明が解決しようとする課題 ところで代表的なMO8半導体集積回路であるダイナミ
ックランダムアクセスメモリー(以下DRAMと略す)
においては、メモリセルに情報として電源電圧を書き込
み/読み出しするためアクセストランジスタのゲートに
I/i電源電圧以上の高電圧を印加する必要があシこの
高電圧はチップ内の周辺回路においてグートストラップ
回路を用いて生成されている。
Problems to be Solved by the Invention Dynamic Random Access Memory (hereinafter abbreviated as DRAM) is a typical MO8 semiconductor integrated circuit.
In order to write/read the power supply voltage as information in the memory cell, it is necessary to apply a high voltage higher than the I/I power supply voltage to the gate of the access transistor.This high voltage is applied to the Gutstrap circuit in the peripheral circuitry within the chip. It is generated using .

電源電圧以上に昇圧された高電圧がドレイン端子に印加
されるトランジスタとして上述の従来のLDD構造トラ
ンジスタが用いられた場合、時としてドレイン耐圧以上
の電圧がドレイン端子に印加され、過大電流が流れて集
積回路を破壊してしまうという欠点を有していた。破壊
されたヂバイスを物理解析した結果、複数個あるコンタ
クト窓の中の1個にかいて拡散層が熱的破壊を受けてい
ることが判明した。このことよシ複数個のコンタクト窓
のうち窓の形状.コンタクト抵抗等の違いによ91個の
コンタクト窓に電流が集中して破壊に至ったものと考え
られる。
When the above-mentioned conventional LDD structure transistor is used as a transistor in which a high voltage boosted to a level higher than the power supply voltage is applied to the drain terminal, a voltage higher than the drain breakdown voltage is sometimes applied to the drain terminal, causing an excessive current to flow. This had the disadvantage of destroying the integrated circuit. As a result of physical analysis of the destroyed device, it was found that the diffusion layer of one of the multiple contact windows had been thermally destroyed. This is the shape of the window among multiple contact windows. It is thought that current was concentrated in the 91 contact windows due to differences in contact resistance, etc., leading to the breakdown.

本発明は上記欠点に鑑み、1個のコンタクト窓に電流が
集中することを避けてデバイス破壊を防止し、信頼性を
飛躍的に向上させることのできる半導体集積回路を提供
するものである。
SUMMARY OF THE INVENTION In view of the above drawbacks, the present invention provides a semiconductor integrated circuit that can avoid current concentration in one contact window, prevent device destruction, and dramatically improve reliability.

課題を解決するための手段 上記問題点を解決するために、本発明の半導体集積回路
は、高電圧が印加されるトランジスタのドレイン拡散層
がLDD構造にかける低濃度拡散層のみから或D高濃度
拡散層を有しないことから構或されてhる。
Means for Solving the Problems In order to solve the above-mentioned problems, the semiconductor integrated circuit of the present invention has a structure in which the drain diffusion layer of a transistor to which a high voltage is applied is changed from only a low concentration diffusion layer to a high concentration diffusion layer applied to an LDD structure. This is because it does not have a diffusion layer.

作  用 この構成によって、ドレイン端子のコンタクト窓よシチ
ャンネルに至るまでに直列抵抗が挿入され、この寄生直
列抵抗が1個のコンタクト窓に電流が集中することを防
止し、各コンタクト窓に均等に配分するようVcf#〈
ため、集積回路を熱的破壊から保護することとなる。
Function: With this configuration, a series resistance is inserted from the contact window of the drain terminal to the channel, and this parasitic series resistance prevents the current from concentrating on one contact window, and distributes the current evenly to each contact window. Vcf# to allocate
Therefore, the integrated circuit is protected from thermal damage.

実施例 以下、本発明の一実確例について、図面を参照しながら
説明する。
EXAMPLE Hereinafter, one concrete example of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例にかける高電圧が印加される
トランジスタの構造断面図を示すものである。第1図に
おいて、1はp型シリコン基板、2はゲート長1μmの
ポリシリコンゲート電極、3は厚さ200人のゲート酸
化膜、4はリンのイオン注入で形或した不純物濃度I 
X 1 0”r’程度の低濃度n型拡散層、6はCVD
法で蒸着の後異方性エッチングにようポリシリコンゲー
ト側壁に形或したサイドウォール、7はボロンとリンを
含む二酸化シリコン膜から或る層間絶縁膜、8およびe
は層間絶縁膜を開孔後アルミニウムで形或したソース電
極かよびドレイン電極である。6はドレイン領域をフォ
トレジストで覆って砒素をイオン注入して形戊した10
20α−3程度の不扁物濃度を有する高濃度n型拡散層
でソース側のみに形或されている。なお高電圧の印加さ
れない回路のNチャンネルトランジスタについては従来
のLDD構造とした。
FIG. 1 shows a cross-sectional view of the structure of a transistor to which a high voltage is applied according to an embodiment of the present invention. In FIG. 1, 1 is a p-type silicon substrate, 2 is a polysilicon gate electrode with a gate length of 1 μm, 3 is a gate oxide film with a thickness of 200 μm, and 4 is an impurity concentration I formed by phosphorus ion implantation.
Low concentration n-type diffusion layer of about X 1 0"r', 6 is CVD
7 is an interlayer insulating film formed from a silicon dioxide film containing boron and phosphorous, 8 and e
are source and drain electrodes formed of aluminum after opening holes in the interlayer insulating film. 6 is formed by covering the drain region with photoresist and implanting arsenic ions into 10.
A high-concentration n-type diffusion layer having a solid material concentration of about 20α-3 is formed only on the source side. Note that the N-channel transistor in the circuit to which no high voltage is applied has a conventional LDD structure.

以上のように本実施例ではCMOS集積回路においては
工程数を増加させることなく、砒素注入用マスクを変更
するだけでドレインコンタクト窓よシチャンネルに至る
寄生抵抗を増加させ、高電圧印加による熱的破壊を防止
することができた。
As described above, in this embodiment, in a CMOS integrated circuit, the parasitic resistance from the drain contact window to the channel can be increased by simply changing the mask for arsenic implantation without increasing the number of steps, and the thermal resistance caused by high voltage application can be increased. We were able to prevent the destruction.

なか本実施例では低濃度ドレイン拡散層にコンタクト窓
を通して直接アルミ電極を接触させたが、これではコン
タクト抵抗が高くなる欠点がある。
In this embodiment, the aluminum electrode was brought into direct contact with the low concentration drain diffusion layer through the contact window, but this has the disadvantage of increasing contact resistance.

このためコンタクト窓の位置に高濃度拡散層を形成して
かくか或いはコンタクト窓を開孔の後、不純物を導入し
てコンタクト窓直下に高濃度拡散層を形或すればコンタ
クト抵抗を上げることなく所期の目的を達或することが
できる。
For this reason, it is possible to form a highly doped diffusion layer at the position of the contact window, or to form a highly doped diffusion layer directly under the contact window by introducing impurities after opening the contact window, without increasing the contact resistance. It is possible to achieve the intended purpose.

発明の”効果 以上のように本発明はドレイン端子に電源電圧以上の電
圧が印加されるMOSトランジスタのドレイン拡散層を
LDD構造における低濃度拡散層のみとすることにより
、寄生直列抵抗の働きで1コのコンタクト窓に電流が集
中して熱的破壊を起こすことを防止することができ、そ
の実用的効果は大なるものがある。
Effects of the Invention As described above, the present invention provides a drain diffusion layer of a MOS transistor to which a voltage higher than the power supply voltage is applied to the drain terminal, by making it only a low concentration diffusion layer in an LDD structure. It is possible to prevent current from concentrating on the contact window and causing thermal breakdown, which has a great practical effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例にかけるNチャンネルMOSト
ランジスタの構造断面図、第2図は従来のLDD構造N
チャンネルMOSトランジスタの構造断面図である。 1・・・・・・p型シリコン基板、2・・・・・・ポリ
シリコンゲート電極、3・・・・・・ゲート酸化膜、4
・・・・・・低濃度n型拡散層、6・・・・・・サイド
ウオール、6・・・・・・高濃度n型拡散層、7・・・
・・・層間絶縁膜、8・・・・・・ソース電極、9・・
・・・・ドレイン電極。
FIG. 1 is a structural cross-sectional view of an N-channel MOS transistor according to an embodiment of the present invention, and FIG. 2 is a conventional LDD structure N
FIG. 2 is a cross-sectional view of the structure of a channel MOS transistor. 1...p-type silicon substrate, 2...polysilicon gate electrode, 3...gate oxide film, 4
......Low concentration n-type diffusion layer, 6...Side wall, 6...High concentration n-type diffusion layer, 7...
...Interlayer insulating film, 8...Source electrode, 9...
...Drain electrode.

Claims (1)

【特許請求の範囲】[Claims] ドレイン端子に電源電圧以上の電圧が印加されるNチャ
ンネルMOSトランジスタを備え、前記MOSトランジ
スタのドレイン拡散層が低濃度n型拡散層で形成されて
いることを特徴とする半導体集積回路。
1. A semiconductor integrated circuit comprising an N-channel MOS transistor to which a voltage higher than a power supply voltage is applied to a drain terminal, and a drain diffusion layer of the MOS transistor is formed of a low concentration n-type diffusion layer.
JP1155458A 1989-06-16 1989-06-16 Semiconductor integrated circuit Pending JPH0320081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1155458A JPH0320081A (en) 1989-06-16 1989-06-16 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1155458A JPH0320081A (en) 1989-06-16 1989-06-16 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH0320081A true JPH0320081A (en) 1991-01-29

Family

ID=15606489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1155458A Pending JPH0320081A (en) 1989-06-16 1989-06-16 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH0320081A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2770931A1 (en) * 1997-11-07 1999-05-14 Fujitsu Ltd Metal-Oxide-Semiconductor Field Effect Transistor MOSFET integrated circuit device
CN1073280C (en) * 1995-03-22 2001-10-17 现代电子产业株式会社 Method of making MOS transistor having LDD structure
JP2009238936A (en) * 2008-03-26 2009-10-15 Nec Electronics Corp Semiconductor device and method of manufacturing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1073280C (en) * 1995-03-22 2001-10-17 现代电子产业株式会社 Method of making MOS transistor having LDD structure
FR2770931A1 (en) * 1997-11-07 1999-05-14 Fujitsu Ltd Metal-Oxide-Semiconductor Field Effect Transistor MOSFET integrated circuit device
JP2009238936A (en) * 2008-03-26 2009-10-15 Nec Electronics Corp Semiconductor device and method of manufacturing same

Similar Documents

Publication Publication Date Title
US5321287A (en) Semiconductor device wherein n-channel MOSFET, p-channel MOSFET and nonvolatile memory cell are formed in one chip
JP3490746B2 (en) Semiconductor memory device and method of manufacturing the same
KR0128062B1 (en) Method for producing semiconductor integrated cirucit device
US6462374B2 (en) Semiconductor device and method for fabricating the same
US6359303B1 (en) Split gate flash memory with virtual ground array structure and method of fabricating the same
KR100486187B1 (en) Semiconductor device and its manufacturing method
US5296399A (en) Method for manufacturing a narrowed sidewall spacer in a peripheral circuit of a ULSI semiconductor memory device
JP2600621B2 (en) Method for manufacturing semiconductor device
JP2752892B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
FR2762930B1 (en) SEMICONDUCTOR DEVICE HAVING A GRID STRUCTURE OF THE POLYCRYSTALLINE / SILICIDE SILICON TYPE AND MANUFACTURING METHOD
JPH0320081A (en) Semiconductor integrated circuit
JPH0793381B2 (en) Semiconductor integrated circuit device
US5959334A (en) Semiconductor memory device
JP3231345B2 (en) Semiconductor memory device and method of manufacturing the same
KR910017675A (en) High voltage MOS transistor and manufacturing method thereof and semiconductor device having high voltage MOS transistor and manufacturing method thereof
JP3102923B2 (en) Semiconductor storage device
US7259060B2 (en) Method for fabricating a semiconductor structure
JPS63160276A (en) Manufacture of semiconductor integrated circuit device
JPS62265765A (en) Semiconductor device and manufacture thereof
US20030207509A1 (en) Semiconductor integrated circuit device and manufacture method therefore
JPH0763075B2 (en) Semiconductor integrated circuit device
KR100275114B1 (en) Semiconductor device having low bit line capacitance and method for forming the same
JP2738604B2 (en) Semiconductor storage device
JP2900717B2 (en) Semiconductor device
JP2770416B2 (en) Semiconductor storage device