JPH03208373A - Soi type thin film transistor - Google Patents

Soi type thin film transistor

Info

Publication number
JPH03208373A
JPH03208373A JP157890A JP157890A JPH03208373A JP H03208373 A JPH03208373 A JP H03208373A JP 157890 A JP157890 A JP 157890A JP 157890 A JP157890 A JP 157890A JP H03208373 A JPH03208373 A JP H03208373A
Authority
JP
Japan
Prior art keywords
single crystal
insulating film
grown
thin film
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP157890A
Other languages
Japanese (ja)
Inventor
Shigeki Kondo
茂樹 近藤
Hisashi Shindo
進藤 寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP157890A priority Critical patent/JPH03208373A/en
Publication of JPH03208373A publication Critical patent/JPH03208373A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the deterioration in the drain breakdown strength during OFF time while retaining the high mobility and high characteristics by a method wherein channel potential fixing electrodes are formed on a single crystal semiconductor layer grown using a single crystal substrate as a seed on the opposite side to a gate electrode and beneath a channel part. CONSTITUTION:An insulating film 2 is formed on a single crystal substrate 1 as a basic body while an opening part 3 is made in a specific region and then a semiconductor layer 4 to form a transistor is formed on the opening part 3. As for the semiconductor layer 4, single crystal or amorphous silicon is selectively epitaxial grown through the opening part 3 from the single crystal substrate 1 further to be grown in the lateral direction on the insulating film 2 or deposited covering the opening part 3 further to be grown in the lateral direction in the insulating film using the single crystal as a seed. Finally, a gate insulating film 5 and a gate electrode 6 are formed and then source and drain regions 7 are formed to form respective leading electrodes 8. Through these procedures, the high performances such as the high mobility and the low parasitic capacity by the thin film formation can be retained while enabling the transistor characteristics to be improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、So r (Silicon  On  I
 nsulating S ubstrate)構造を
有する薄膜トランジスタに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is based on So r (Silicon On I
The present invention relates to a thin film transistor having a nsulating substrate structure.

[従来の技術] 近年、3次元回路素子実現のため、5OI)ランジスタ
が、活発に研究されている。そのようなSOI素子は、
例えば、次の様にして形成されていた。
[Prior Art] In recent years, 5OI transistors have been actively researched to realize three-dimensional circuit elements. Such an SOI device is
For example, it was formed as follows.

単結晶ウェハー上に、絶縁膜を形成し、所望の領域を開
孔し、種となる単結晶を露出させる。次に、その種結晶
部から単結晶を絶縁膜上にまで成長させ、その領域にト
ランジスタを形成していた。
An insulating film is formed on a single crystal wafer, and holes are opened in desired areas to expose the single crystal that will serve as a seed. Next, a single crystal is grown from the seed crystal portion onto the insulating film, and a transistor is formed in that region.

単結晶の成長方法としては、絶縁膜に開孔部を設けた単
結晶基板を、通常のエピタキシャル装置を用いて、開孔
部から選択エピタキシャル成長させ、更に、絶縁膜上へ
ELO(旦pitaxialL ateral  Ov
ergrowth)成長させたり、開孔部を覆う様に非
晶質シリコンや多結晶シリコンを堆積させ、レーザービ
ームや電子ビームなどによりLSPE (Latera
l  5olid  Phase  旦pitaxy)
成長させたりしたものが、用いられる。
As a method for growing a single crystal, a single crystal substrate with an opening in an insulating film is selectively epitaxially grown from the opening using an ordinary epitaxial apparatus, and then ELO (ELO) is applied onto the insulating film.
Amorphous silicon or polycrystalline silicon is deposited to cover the opening, and then LSPE (Latera
l 5olid Phase)
Those that have been grown are used.

これらの絶縁膜上の単結晶は、そのまま用いられるか、
必要ならば、研磨、エツチング、犠牲酸化などにより、
平坦化、あるいは、薄膜化したのち、電気的分離のため
、島状にエツチング分離されて用いられる。
Is the single crystal on these insulating films used as is?
If necessary, by polishing, etching, sacrificial oxidation, etc.
After being flattened or made into a thin film, it is etched and separated into islands for electrical isolation.

[発明が解決しようとしている課題] 前述のSOIO子は、結晶性を単結晶のそれに近づけて
高性能化を図るとともに、最近では、膜厚を超薄膜化(
0,1μm以下)にすることで、固有のメカニズムによ
って、非常に高いモビリティを得ようとする研究がある
[Problem to be solved by the invention] The above-mentioned SOIO crystal has been improved in performance by bringing its crystallinity closer to that of a single crystal, and recently, the film thickness has been made ultra-thin (
There is research that attempts to obtain extremely high mobility using a unique mechanism by reducing the diameter (0.1 μm or less).

しかし、そのような研究においては、特定の特性のみが
注目されているが、一方SOI特有の種々の問題の解決
は、まだ十分ではない。すなわち、本発明者らはSO工
槽構造有する薄膜トランジスタの全般的な電気特性に関
する研究を進めた結果、半導体層の膜厚が、ある所定の
膜厚より薄くなると、良く知られたSOIO導体層のフ
ローティングに起因する第2図の1に示す様なドレイン
電流の折れ曲がり現象(キンク現象)の他に。
However, such research has focused only on specific characteristics, and on the other hand, various problems specific to SOI have not yet been sufficiently resolved. That is, as a result of our research on the general electrical characteristics of thin film transistors having an SOI conductor structure, the present inventors found that when the thickness of the semiconductor layer becomes thinner than a certain predetermined thickness, the well-known SOIO conductor layer In addition to the bending phenomenon (kink phenomenon) of the drain current as shown in 1 in FIG. 2 due to floating.

ゲート電圧がO■の時(OFF時)のドレイン耐圧が、
厚膜の場合に比較して急激に劣化することを突き止めた
The drain breakdown voltage when the gate voltage is O■ (when OFF) is
It was found that the deterioration occurred more rapidly than in the case of thick films.

これは、OFF時であっても両側を絶縁層で挟んだ半導
体層で構成されたSOI型MIS−FETにおいては、
発生した少数キャリヤは、チャネル領域内ゲート絶縁膜
、または、他の絶縁層との界面近傍の低ポテンシヤル領
域に蓄積し、その結果ソース/ドレイン耐圧が劣化する
のである。
This is true even when the SOI MIS-FET is OFF, which is composed of semiconductor layers sandwiched between insulating layers on both sides.
The generated minority carriers accumulate in the gate insulating film in the channel region or in the low potential region near the interface with other insulating layers, resulting in deterioration of the source/drain breakdown voltage.

今まで述べたような、チャネルへのキャリヤの蓄積を防
ぐためには、バルクSiを用いたトランジスタに見られ
るようなチャネル電位をとり、チャネルに流れ込んでき
た、少数キャリヤを蓄積させない様にすることが考えら
れる。しかしながら、通常のバルクSi上のトランジス
タと同様の素子構造とすると、チャネル電位は、ソース
・ドレイン領域の外側からとらねばならず、素子面積が
増大し、SOIOランジスタに求められる3次元回路の
高集積化という観点から太き(ずれてしまうという問題
があった。
In order to prevent the accumulation of carriers in the channel as described above, it is necessary to set the channel potential as seen in transistors using bulk Si to prevent the accumulation of minority carriers that have flowed into the channel. Conceivable. However, if the device structure is similar to that of a transistor on ordinary bulk Si, the channel potential must be taken from outside the source/drain region, which increases the device area and increases the integration of the three-dimensional circuit required for SOIO transistors. There was a problem with the thickness (shifting) from the perspective of compatibility.

[発明の目的] 本発明は、以上のような新しい知見に基づき、SOIO
造のトランジスタにおいて、薄膜化による高モビリティ
および低寄生容量といった高特性を維持しつつ、OFF
時のドレイン耐圧の劣化を改善した、素子面積の増大の
ない薄膜トランジスタを実現しようとするものである。
[Object of the invention] The present invention is based on the above new findings, and the SOIO
In manufactured transistors, while maintaining high characteristics such as high mobility and low parasitic capacitance due to thinner films,
The objective is to realize a thin film transistor that improves the deterioration of the drain breakdown voltage during operation and does not increase the device area.

[課題を解決するための手段及び作用]本発明は、上記
課題点を解決するため、絶縁膜上に形成された、チャネ
ル部、ゲート、ソース及びドレイン部、及び、それらの
引出電極からなるSOIO薄膜トランジスタにおいて、
前記SOTO薄膜トランジスタは、単結晶基板を種とし
て成長させた単結晶半導体層上に形成され、かつ、ゲー
ト電極と反対側、チャネル部直下の前記種結晶を介した
基板による、チャネル電位固定電極を有することを特徴
とする、SOIO薄膜トランジスタを提供するものであ
る。
[Means and effects for solving the problems] In order to solve the above-mentioned problems, the present invention provides an SOIO which consists of a channel part, a gate, a source and a drain part, and their extraction electrodes formed on an insulating film. In thin film transistors,
The SOTO thin film transistor is formed on a single crystal semiconductor layer grown using a single crystal substrate as a seed, and has a channel potential fixing electrode by the substrate via the seed crystal on the opposite side from the gate electrode and directly under the channel part. The present invention provides a SOIO thin film transistor characterized by the following.

本発明によれば、チャネル部に注入されたキャリアを、
チャネル電位固定電極によって消滅させることができ、
チャネル部へのキャリヤの蓄積を防ぐことが可能である
According to the present invention, the carriers injected into the channel part are
The channel can be quenched by voltage-clamping electrodes,
It is possible to prevent carriers from accumulating in the channel portion.

[実施態様例] 本発明の実施態様例を、図面を用いて説明する。[Example of implementation] Embodiments of the present invention will be described with reference to the drawings.

第1図は本発明によるSOIO薄型トランジスタの作成
工程を示す断面図である。
FIG. 1 is a cross-sectional view showing the manufacturing process of a SOIO thin transistor according to the present invention.

第1図(a)に示す様に、基体としての単結晶基板1上
に、絶縁膜2を形成し、所望の領域に開孔部3を設ける
As shown in FIG. 1(a), an insulating film 2 is formed on a single crystal substrate 1 as a base, and openings 3 are provided in desired regions.

次に、第1図(b)に示す様に、トランジスタを形成す
る半導体層4を開孔部3上に形成する。半導体層4とし
ては、単結晶基板1から開孔部3を通して気相成長法に
より選択エピタキシャル成長させ、更に、絶縁膜2上に
、横方向成長(ELO: E pitaxial  L
 ateral  Overgrowth)させたもの
や、開孔部3を覆って堆積させた多結晶や非晶質シリコ
ンを、単結晶を種として、レーザーなどにより絶縁膜状
に横方向成長(LSPE+L ateral  S o
lid  P hase  旦pitaxy)させたも
のを用いることができる。
Next, as shown in FIG. 1(b), a semiconductor layer 4 for forming a transistor is formed on the opening 3. The semiconductor layer 4 is selectively epitaxially grown from the single-crystal substrate 1 through the opening 3 by vapor phase growth, and then grown on the insulating film 2 by lateral epitaxial growth (ELO).
Polycrystalline or amorphous silicon deposited covering the opening 3 is laterally grown into an insulating film shape using a laser or the like using a single crystal as a seed.
It is possible to use one that has been subjected to a lid phase.

これらの半導体層を、必要ならば、研磨などにより表面
を平坦化した後、所望の領域のみを残して、エツチング
除去する。
If necessary, the surfaces of these semiconductor layers are flattened by polishing or the like, and then removed by etching, leaving only desired regions.

次に、第1図(C)、第1図(d)に示すが如(、ゲー
ト絶縁膜5を形成し、ゲート電極6を形成する。更に、
周知の技術により、ソース及びドレイン領域7をイオン
注入法などにより形成し、おのおのの引出電極8を形成
する。
Next, as shown in FIG. 1(C) and FIG. 1(d), a gate insulating film 5 is formed and a gate electrode 6 is formed.
Using a well-known technique, source and drain regions 7 are formed by ion implantation or the like, and respective extraction electrodes 8 are formed.

[実施例] 本発明の実施例を、図面を用いて詳細に述べる。[Example] Embodiments of the present invention will be described in detail using the drawings.

第1図に、本発明によるSOI型薄膜トランジスタの工
程断面フローを示した。
FIG. 1 shows a cross-sectional process flow of an SOI type thin film transistor according to the present invention.

板状基体として、P (100) 0.1〜0.2Ωc
mの単結晶シリコンウェハー基板1を、熱酸化して、酸
化膜2を5000人形成し、周知のフォトリソ技術によ
り、酸化膜2に1umの開孔部3を形成した(第1図(
a))。
As a plate-like substrate, P (100) 0.1 to 0.2 Ωc
A monocrystalline silicon wafer substrate 1 with a thickness of 5,000 mm was thermally oxidized to form an oxide film 2 of 5,000 mm, and an opening 3 of 1 μm was formed in the oxide film 2 by a well-known photolithography technique (see Fig. 1).
a)).

次に、通常のエピタキシャル装置を用いて、選択エピタ
キシャル成長及びELO成長により、ソースガスとして
5iC1□H2、キャリヤガスとしてH2,不純物ガス
としてBaHaを用い、圧カフ60Torr、温度10
00℃の条件で、501層4の成長を行なった。この5
01層4は、トランジスタを形成できる大きさである1
5μm×15μm以上までELO成長させた後、通常の
メカノケミカル研磨により、表面を研磨し、厚さ200
0人に平坦化した(第1図(b))。
Next, selective epitaxial growth and ELO growth were performed using a normal epitaxial apparatus using 5iC1□H2 as a source gas, H2 as a carrier gas, BaHa as an impurity gas, a pressure cuff of 60 Torr, and a temperature of 10
501 layer 4 was grown under conditions of 00°C. This 5
01 layer 4 has a size of 1 to form a transistor.
After ELO growth to 5 μm x 15 μm or more, the surface is polished by normal mechanochemical polishing to a thickness of 200 μm.
It flattened to 0 (Fig. 1(b)).

次に、熱酸化法により、ゲート酸化膜5を500人形成
し、ゲート長3μm、ゲート幅9μmのゲート電極6を
、開孔部3をカバーして形成した。次に、イオン注入法
により、ソース・ドレイン領域7を形成した。その際、
開孔部3は、イオン注入されないチャネル部と連結して
いる(第1図(C))。
Next, 500 gate oxide films 5 were formed by a thermal oxidation method, and a gate electrode 6 having a gate length of 3 μm and a gate width of 9 μm was formed to cover the opening 3. Next, source/drain regions 7 were formed by ion implantation. that time,
The opening portion 3 is connected to a channel portion into which ions are not implanted (FIG. 1(C)).

次に、層間絶縁膜9を形成した後、コンタクト孔10を
形成し、引き出し電極8を形成した。また、引き$し電
極8は、ゲート6、ソース・ドレイン領域7以外に、基
板1からもとった(第1図(d))。
Next, after forming an interlayer insulating film 9, a contact hole 10 was formed, and an extraction electrode 8 was formed. In addition, the pull electrode 8 was taken from the substrate 1 in addition to the gate 6 and the source/drain region 7 (FIG. 1(d)).

本実施例によれば、選択エピタキシャル成長させるため
の単結晶シリコン基板1を、そのままチャネル電位固定
用電極として用いることができる。
According to this embodiment, the single crystal silicon substrate 1 for selective epitaxial growth can be used as it is as an electrode for fixing the channel potential.

SOI層4内に、新たに電極を取るとすると、段差のあ
る素子表面側から、チャネル部にコンタクト用のスペー
ス、及び電極を形成する必要があり、そのためのアライ
メント及びエツチングマージンを考慮すると、前述した
如く、素子面積の増大を招く。本実施例においては、チ
ャネル用電極が、実質上、シリコン島によってそろって
いる(セルフ・アラインになっている)ので、素子の集
積化の妨げにならない。
If a new electrode is to be provided in the SOI layer 4, it is necessary to form a contact space and an electrode in the channel part from the side of the element surface with a step, and considering the alignment and etching margin for this, the above-mentioned As a result, the area of the device increases. In this embodiment, since the channel electrodes are substantially aligned (self-aligned) by the silicon islands, they do not interfere with the integration of devices.

そして、チャネルに流れ込んだ少数キャリヤは、チャネ
ル電極によって、速やかに消滅させられ、少数キャリヤ
の蓄積によるチャネル部のポテンシャル変動によるKI
NK現象を防止することができた。
The minority carriers that have flowed into the channel are quickly annihilated by the channel electrode, and KI due to potential fluctuations in the channel portion due to the accumulation of minority carriers.
It was possible to prevent the NK phenomenon.

このことは、本実施例と同様の構成で、SOI膜厚を、
例えば5000人、10000人とした場合でも、同じ
<KINK現象は認められず、本発明の効果を確認でき
た。
This means that with the same configuration as this example, the SOI film thickness is
For example, even when the number of participants was 5,000 or 10,000, the same <KINK phenomenon was not observed, confirming the effect of the present invention.

また、OFF時のドレイン破壊耐圧は、チャネル電位を
取らない場合は、7■程度であったものが、本実施例に
おいては、IOV以上に向上した。このことは、チャネ
ル電極により、チャネルに流れ込んだ少数キャリヤは、
速やかに消滅させられ、少数キャリアが、チャネル領域
内ゲート絶縁膜、または、他の絶縁層との界面近傍の低
ポテンシヤル領域に蓄積し、その結果ソース/ドレイン
耐圧が劣化することを防止しているためと考えられる。
In addition, the drain breakdown voltage in the OFF state was about 7.0 cm when no channel potential was taken, but in this example, it improved to more than IOV. This means that the minority carriers flowing into the channel due to the channel electrode are
This prevents minority carriers from accumulating in the gate insulating film in the channel region or in low potential regions near the interface with other insulating layers, resulting in deterioration of source/drain breakdown voltage. It is thought that this is because of this.

また、この効果は、SOI層の膜厚をさらに薄くしても
十分にあり、例えば、500人にしだ場合、耐圧は、従
来の4VからIOV程度まで上昇した。
Moreover, this effect is sufficient even if the thickness of the SOI layer is made even thinner. For example, when 500 people are served, the withstand voltage increases from the conventional 4V to about IOV.

一方、他の電気的特性、特にキャリヤモビリティ−は、
チャネル電位を固定しない場合に比べても差はなく、本
実施例の有効性が実証された。
On the other hand, other electrical properties, especially carrier mobility,
There was no difference compared to the case where the channel potential was not fixed, demonstrating the effectiveness of this example.

また、本実施例では、ウェハー基板を用いた選択エピタ
キシャル成長及びELO成長させた801層を用いたが
、レーザービームなどによりLSPE成長させた801
層においても同様の効果があった。
In addition, in this example, the 801 layer was grown by selective epitaxial growth using a wafer substrate and by ELO, but the 801 layer was grown by LSPE using a laser beam or the like.
A similar effect was found in the layers.

[発明の効果] 以上説明した様に、本発明によれば、801層の膜厚を
薄くしても、ドレイン破壊耐圧の劣化が無く、また、K
INK現象も防止でき、薄膜化による高モビリティ−及
び低寄生容量といった高性能を維持したSOI型薄膜ト
ランジスタを形成することが可能となった。
[Effects of the Invention] As explained above, according to the present invention, even if the thickness of the 801 layer is reduced, there is no deterioration in the drain breakdown voltage, and the K
The INK phenomenon can also be prevented, and it has become possible to form an SOI type thin film transistor that maintains high performance such as high mobility and low parasitic capacitance due to thinning.

また、本発明によれば、SOI型薄膜トランジスタにお
いて、素子面積を増大させること無しに、チャネル部の
電位を固定することができ、トランジスタ特性の向上が
可能となった。
Further, according to the present invention, in an SOI type thin film transistor, the potential of the channel portion can be fixed without increasing the element area, and the transistor characteristics can be improved.

また、本発明によれば、チャネル電位固定電極として、
基体としての単結晶ウェハーをそのまま用いることがで
きるため、特別なプロセスを必要としないで済む。
Further, according to the present invention, as a channel potential fixing electrode,
Since a single crystal wafer can be used as a base as it is, no special process is required.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明によるSOI型薄膜トランジスタの工
程断面フローである。 第2図は、従来技術の問題点を示すトランジスタ特性の
図である。 に基板 2:絶縁膜 3:開孔部 4:801層 5:ゲート酸化膜 6:ゲート電極 7:ソース・ドレイン領域 8:引出電極 9:眉間絶縁膜 10:コンタクト孔 第1図
FIG. 1 is a cross-sectional flowchart of a process for manufacturing an SOI thin film transistor according to the present invention. FIG. 2 is a diagram of transistor characteristics showing problems in the prior art. Substrate 2: Insulating film 3: Opening part 4: 801 layer 5: Gate oxide film 6: Gate electrode 7: Source/drain region 8: Leading electrode 9: Insulating film between eyebrows 10: Contact hole Fig. 1

Claims (1)

【特許請求の範囲】[Claims]  絶縁膜上に形成された、チャネル部、ゲート、ソース
及びドレイン部、及び、それらの引出電極からなるSO
I型薄膜トランジスタにおいて、前記SOI型薄膜トラ
ンジスタは、単結晶基板を種として成長させた単結晶半
導体層上に形成され、かつ、ゲート電極と反対側、チャ
ネル部直下の前記種結晶を介した基板による、チャネル
電位固定電極を有することを特徴とする、SOI型薄膜
トランジスタ。
SO consisting of a channel part, gate, source and drain parts, and their lead electrodes formed on an insulating film.
In the I-type thin film transistor, the SOI-type thin film transistor is formed on a single-crystal semiconductor layer grown using a single-crystal substrate as a seed, and the SOI-type thin film transistor is formed on a single-crystal semiconductor layer grown using a single-crystal substrate as a seed, and is formed on the substrate via the seed crystal on the opposite side of the gate electrode and directly under the channel part. An SOI type thin film transistor characterized by having a channel potential fixing electrode.
JP157890A 1990-01-10 1990-01-10 Soi type thin film transistor Pending JPH03208373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP157890A JPH03208373A (en) 1990-01-10 1990-01-10 Soi type thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP157890A JPH03208373A (en) 1990-01-10 1990-01-10 Soi type thin film transistor

Publications (1)

Publication Number Publication Date
JPH03208373A true JPH03208373A (en) 1991-09-11

Family

ID=11505399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP157890A Pending JPH03208373A (en) 1990-01-10 1990-01-10 Soi type thin film transistor

Country Status (1)

Country Link
JP (1) JPH03208373A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183987A (en) * 2003-12-19 2005-07-07 Samsung Electronics Co Ltd Semiconductor device having two different operation modes by employing asymmetrical buried insulating film and manufacturing method therefor
US7449375B2 (en) 2003-03-17 2008-11-11 Kabushiki Kaisha Toshiba Fin semiconductor device and method for fabricating the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7449375B2 (en) 2003-03-17 2008-11-11 Kabushiki Kaisha Toshiba Fin semiconductor device and method for fabricating the same
JP2005183987A (en) * 2003-12-19 2005-07-07 Samsung Electronics Co Ltd Semiconductor device having two different operation modes by employing asymmetrical buried insulating film and manufacturing method therefor

Similar Documents

Publication Publication Date Title
US6919238B2 (en) Silicon on insulator (SOI) transistor and methods of fabrication
JP4202563B2 (en) Semiconductor device
US7067386B2 (en) Creation of high mobility channels in thin-body SOI devices
JP4058751B2 (en) Method for manufacturing field effect transistor
US6281054B1 (en) SOI device and method for fabricating the same
US20040222471A1 (en) Semiconductor device having a plurality of gate electrodes and manufacturing method thereof
JP2746225B2 (en) Semiconductor device and manufacturing method thereof
WO2007004535A1 (en) Semiconductor device and method for manufacturing same
JPS6159853A (en) Structure of silicon crystalline body
JPH04230071A (en) Integrated circuit provided with field- effect transistor its manufacture
JPS61187224A (en) Method of making electric field effect device on silicon substrate
JPH06177154A (en) Manufacture and structure of mosfet
JP3152959B2 (en) Semiconductor device and manufacturing method thereof
KR100639199B1 (en) Method for fabricating full depletion type soi device
JP4065580B2 (en) Silicon-on-insulator base for transistor manufacture and method for manufacturing the base
JP2001244469A (en) Semiconductor device and method for its manufacture
JP2008085357A (en) Manufacturing method of fet
JPH03208373A (en) Soi type thin film transistor
JPH08330527A (en) Manufacture of semiconductor substrate
JPH03154383A (en) Semiconductor device
JPS6094778A (en) Field effect transistor and manufacture thereof
JP3608293B2 (en) Manufacturing method of semiconductor device
JPH06310427A (en) Manufacture of semiconductor device
JP2006222447A (en) Semiconductor apparatus and manufacturing method therefor
JPH0669430A (en) Manufacture of semiconductor device