JPH03208266A - Sodium-sulphur battery and manufacture thereof - Google Patents
Sodium-sulphur battery and manufacture thereofInfo
- Publication number
- JPH03208266A JPH03208266A JP2003791A JP379190A JPH03208266A JP H03208266 A JPH03208266 A JP H03208266A JP 2003791 A JP2003791 A JP 2003791A JP 379190 A JP379190 A JP 379190A JP H03208266 A JPH03208266 A JP H03208266A
- Authority
- JP
- Japan
- Prior art keywords
- wall
- tube
- safety
- safety tube
- solid electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 19
- BNOODXBBXFZASF-UHFFFAOYSA-N [Na].[S] Chemical compound [Na].[S] BNOODXBBXFZASF-UHFFFAOYSA-N 0.000 title claims description 15
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 58
- 239000011261 inert gas Substances 0.000 claims abstract description 33
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical group [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910052751 metal Inorganic materials 0.000 claims abstract description 9
- 239000002184 metal Substances 0.000 claims abstract description 9
- 239000011734 sodium Substances 0.000 claims description 31
- 229910052708 sodium Inorganic materials 0.000 claims description 31
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 7
- 239000007789 gas Substances 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 abstract description 12
- 230000002159 abnormal effect Effects 0.000 abstract description 4
- 229910001415 sodium ion Inorganic materials 0.000 abstract description 4
- 230000035882 stress Effects 0.000 abstract description 3
- 230000008646 thermal stress Effects 0.000 abstract description 3
- 230000015556 catabolic process Effects 0.000 abstract 3
- 239000005864 Sulphur Substances 0.000 abstract 1
- 230000008961 swelling Effects 0.000 abstract 1
- 229910052717 sulfur Inorganic materials 0.000 description 11
- 239000011593 sulfur Substances 0.000 description 11
- 230000006378 damage Effects 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000010935 stainless steel Substances 0.000 description 5
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- 229910000873 Beta-alumina solid electrolyte Inorganic materials 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- -1 sodium nitride Chemical class 0.000 description 1
- 235000010288 sodium nitrite Nutrition 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/36—Accumulators not provided for in groups H01M10/05-H01M10/34
- H01M10/39—Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
- H01M10/3909—Sodium-sulfur cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はナトリウム−硫黄電池及びその製造方法に係り
、特に固体電解質が破損した場合のナトリウムと硫黄の
直接反応による危険防止に好適な負極室及びその負極室
の製造方法に関するものである.
(従来の技術)
ナトリウム−硫黄電池は負極活物質であるナトリウムと
正極活物質である硫黄とをβ−アルミナ、β −アルミ
ナなどのナトリウムイオン伝導性固体電解質により分離
し、3(10〜350゜Cの高温で作動させる密閉型高
温二次電池である。Detailed Description of the Invention (Industrial Application Field) The present invention relates to a sodium-sulfur battery and a method for manufacturing the same, and in particular to a negative electrode chamber suitable for preventing danger due to direct reaction between sodium and sulfur when a solid electrolyte is damaged. and a method for manufacturing its negative electrode chamber. (Prior art) Sodium-sulfur batteries separate sodium, which is a negative electrode active material, and sulfur, which is a positive electrode active material, using a sodium ion conductive solid electrolyte such as β-alumina or β-alumina. It is a sealed high-temperature secondary battery that operates at a high temperature of C.
ところでこのナトリウム−硫黄電池の固体電解質には熱
サイクルによる熱応力やナトリウムイオンの移動による
機械的応力が加わり、充放電に伴って劣化するためしば
しば破損を生じることがある。そしてこの破損により大
量のナトリウムと硫黄とが直接反応すると1(100″
C以上の高温となり、かつガスの発生により電池容器が
破壊されるなど非常に危険な状態を引き起こすことがあ
る。By the way, the solid electrolyte of this sodium-sulfur battery is subjected to thermal stress due to thermal cycles and mechanical stress due to the movement of sodium ions, and it deteriorates with charging and discharging, which often causes damage. When a large amount of sodium and sulfur react directly due to this damage, 1 (100"
The temperature can reach temperatures exceeding 100 ℃, and the generation of gas can cause extremely dangerous conditions such as destruction of the battery container.
そこで、固体電解質破損時にナトリウムと硫黄との直接
反応を小規模に抑えるために従来より第2図に示すよう
な工夫が負極室(3)になされている。即ち、この図に
おいて固体電解質管(1)の内側はナトリウムの充填さ
れた負極室(3)、外便は硫黄の充填された正極室(4
)であり、固体電解質管(1)の上方にはα−アルミナ
リング(2)がガラス半田により接合されている。図中
の符号(5)は負極蓋で円板部(6)と、α−アルミナ
リング(2)の上面に接合されるフランジ部(8)を設
けた円筒部(7)とからなり、その材質はアルミニウム
、あるいはアルミニウム合金などの良導電性の金属であ
って負極の集電は負極M(5)の円筒部(7)の下端と
ナトリウムの接触により行なわれている。そして負極室
(3)内に挿入されている図中の符号(9)で示す部材
がステンレス製で大部分のナトリウムを保持しているカ
ートリッジであり、電池作動時の反応に用いるナトリウ
ムはカートリノジ底部の孔(10)を通って固体電解質
管(1)とカートリッジ(9)との間に形成される間隙
部(11)に供給されているので万一固体電解質管(1
)が破損しても硫黄と直接反応するナトリウムは間隙部
(II)に充填されている少量のナトリウムに抑えるこ
とができ、大規模な固体電解賞の破損、それに伴う温度
上昇、容器の破壊など危険な状態を回避することができ
るというものである。Therefore, in order to suppress the direct reaction between sodium and sulfur to a small scale when the solid electrolyte is damaged, a device as shown in FIG. 2 has been conventionally devised in the negative electrode chamber (3). That is, in this figure, the inside of the solid electrolyte tube (1) is the negative electrode chamber (3) filled with sodium, and the outside is the positive electrode chamber (4) filled with sulfur.
), and an α-alumina ring (2) is bonded above the solid electrolyte tube (1) with glass solder. Reference numeral (5) in the figure is a negative electrode lid, which consists of a disc part (6) and a cylindrical part (7) provided with a flange part (8) that is joined to the upper surface of the α-alumina ring (2). The material is a highly conductive metal such as aluminum or aluminum alloy, and current collection at the negative electrode is performed by contacting the lower end of the cylindrical portion (7) of the negative electrode M (5) with sodium. The member indicated by the symbol (9) in the figure inserted into the negative electrode chamber (3) is a stainless steel cartridge that holds most of the sodium, and the sodium used for reactions during battery operation is stored at the bottom of the cartridge. The solid electrolyte tube (1) is supplied to the gap (11) formed between the solid electrolyte tube (1) and the cartridge (9) through the hole (10).
) is damaged, the amount of sodium that directly reacts with sulfur can be kept to a small amount of sodium filled in the gap (II), resulting in large-scale damage to the solid electrolyte, associated temperature rise, and destruction of the container. This means that dangerous situations can be avoided.
ここでこの従来例においては負極室(3)の製造をまず
(135気圧程度の不活性ガス充填部021を上部に有
し、ナトリウムを充填したカートリッジ(9)を固体電
解質管(1)に挿入、続いて真空中で負極蓋(5)を取
り付けて負極室(3)を密封することで行ない、ナトリ
ウムの間隙部(11)への供給をカートリッジ(9)内
の不活性ガス(l2:たとえばN2ガスやArガス)の
押圧力により良好に行おうとしているものである。In this conventional example, the negative electrode chamber (3) is first manufactured by inserting the cartridge (9), which has an inert gas filling part 021 of about 135 atm in the upper part and is filled with sodium, into the solid electrolyte tube (1). Then, the negative electrode lid (5) is attached in a vacuum to seal the negative electrode chamber (3), and the sodium is supplied to the gap (11) by inert gas (l2: e.g. This is attempted to be done effectively using the pressing force of N2 gas or Ar gas).
(発明が解決しようとする諜B)
ところで上記従来のナトリウム−硫黄電池では固体電解
質管(1)とカートリッジ(9)の間隙部(10を充分
に狭く保つことが固体電解質管(1)の破損時の危険を
防止しかつ間隙部(10へのナトリウムの供給を良好に
行うために好ましいのであるが、そのためには固体電解
質管(1)及びカートリッジ(9)をゆがみや凹凸など
のないように精密に形戒する必要があり、万一固体電解
質管(1)やカートリッジ(9)がゆがみや凹凸などの
不良形状を有している場合には電池製造時の固体電解質
管(1)へのカートリッジ(9)の挿入が良好に行えな
かったり、間隙部(10の厚みが均一でなくなったりす
るという問題点を有している。(Secret B to be solved by the invention) By the way, in the above conventional sodium-sulfur battery, keeping the gap (10) between the solid electrolyte tube (1) and the cartridge (9) sufficiently narrow can prevent damage to the solid electrolyte tube (1). This is preferable in order to prevent danger from occurring and to ensure a good supply of sodium to the gap (10), but for this purpose, the solid electrolyte tube (1) and cartridge (9) should be made so that there are no distortions or irregularities. It is necessary to form the solid electrolyte tube (1) precisely, and in the unlikely event that the solid electrolyte tube (1) or the cartridge (9) has a defective shape such as distortion or unevenness, the solid electrolyte tube (1) should be carefully shaped during battery manufacturing. There are problems in that the cartridge (9) cannot be inserted properly and the thickness of the gap (10) is not uniform.
(課題を解決するための手段)
本発明は上記の点に鑑み、ナトIJウムー硫黄電池の固
体電解質管(1)が破損した場合のナトリウムと硫黄の
直接反応を最小限に抑えるべくなされたもので、即ち上
端部にα−アルミナリングを固着した有底円筒状の固体
電解質管の内側と外側をそれぞれ負極室及び正極室とし
たナトリウム−硫黄電池において、前記負極室(3)内
には大部分のナトリウムを保持し、かつ前記固体電解質
管の内壁面との間の間隙部にナトリウムを供給する孔を
底部に有するカートリンジが挿入され、また前記間隙部
(11)内には少なくとも円筒側面部が安全管外壁と安
全管内壁の二重壁からなりその内部に不活性ガスを充填
した安全管壁内空間を形成し、かつ前記安全管外壁及び
安全管内壁のうち少なくとも安全管外壁が安全管壁内空
間内の不活性ガスの体積膨張により膨出する金属部材で
ある安全管0■が挿入されていることを特徴とするもの
及び、そのものの製造方法、即ち上端部にα−アルミナ
リングを固着した有底円筒状の固体電解質管の内側と外
側をそれぞれ負極室及び正極室とし、前記負極室内に大
部分のナトリウムを保持し、かつ前記固体電解質管の内
壁面との間の間隙部にナトリウムを供給する孔を底部に
有するカートリッジを挿入し、また前記間隙部内に少な
くとも円筒側面部が安全管外壁と安全管内壁の二重壁か
らなりその内部に不活性ガスを充填した安全管壁内空間
(14))が形成されている安全管を挿入したナトリウ
ム−硫黄電池の製造方法において、安全管外壁及び安全
管内壁のうち安全管外壁のみを安全管壁内空間内の不活
性ガスの体積膨張により膨出する金属部材とし、固体電
解質管内に安全管を挿入した後に減圧、あるいは加熱に
より不活性ガスを膨張させて安全管外壁を固体電解質管
に添装させることあるいは上端部にα−アルミナリング
を固着した有底円筒状の固体電解質管の内側と外側をそ
れぞれ負極室及び正極室とし、前記負極室内に大部分の
ナトリウムを保持し、かつ前記固体電解質管の内壁面と
の間の間隙部にナトリウムを供給する孔を底部に有する
カートリッジを挿入し、また前記間隙部内に少なくとも
円筒側面部が安全管外壁と安全管内壁の二重壁からなり
その内部に不活性ガスを充填した安全管壁内空間が形成
されている安全管を挿入したナトリウム−硫黄電池の製
造方法において、安全管外壁及び安全管内壁のうち安全
管外壁のみを安全管壁内空間内の不活性ガスの体積膨張
により膨出する金属部材とし、固体電解質管内に安全管
を挿入した後に減圧、あるいは加熱により不活性ガスを
膨張させて安全管外壁を固体電解質管に添装させること
を特徴とする製造方法である。(Means for Solving the Problems) In view of the above points, the present invention has been made in order to minimize the direct reaction between sodium and sulfur when the solid electrolyte tube (1) of the Nato IJ Umu sulfur battery is damaged. In other words, in a sodium-sulfur battery in which the inside and outside of a bottomed cylindrical solid electrolyte tube with an α-alumina ring fixed to the upper end are used as the negative electrode chamber and the positive electrode chamber, respectively, there is a large amount inside the negative electrode chamber (3). A cartridge having a hole at the bottom that retains sodium in the portion and supplies sodium to the gap between the inner wall surface of the solid electrolyte tube and the inner wall surface of the solid electrolyte tube is inserted, and at least a cylindrical side surface is inserted into the gap (11). The section is made up of a double wall consisting of an outer safety pipe wall and an inner safety pipe wall, and forms an inner space inside the safety pipe wall filled with an inert gas, and of the safety pipe outer wall and the safety pipe inner wall, at least the safety pipe outer wall is safe. A safety tube 0■, which is a metal member that expands due to the volumetric expansion of an inert gas in the inner space of the tube wall, is inserted therein, and a method for manufacturing the same, i.e., an α-alumina ring at the upper end. The inside and outside of a cylindrical solid electrolyte tube with a bottom fixed to the solid electrolyte tube are respectively designated as a negative electrode chamber and a positive electrode chamber, and most of the sodium is retained in the negative electrode chamber, and the gap between the solid electrolyte tube and the inner wall surface of the solid electrolyte tube is A cartridge having a hole at the bottom for supplying sodium is inserted into the gap, and at least a cylindrical side wall is made of a double wall of an outer wall of the safety tube and an inner wall of the safety tube, and the inside thereof is filled with an inert gas. In the method for manufacturing a sodium-sulfur battery in which a safety tube is inserted in which an inner space (14) is formed, only the outer wall of the safety tube out of the outer wall of the safety tube and the inner wall of the safety tube is exposed to the inert gas inside the inner space of the safety tube wall. It is a metal member that expands due to volumetric expansion, and after inserting the safety tube into the solid electrolyte tube, an inert gas is expanded by reducing pressure or heating, and the outer wall of the safety tube is added to the solid electrolyte tube, or α- The inside and outside of a bottomed cylindrical solid electrolyte tube to which an alumina ring is fixed are used as a negative electrode chamber and a positive electrode chamber, respectively, and most of the sodium is held in the negative electrode chamber, and the A safety cartridge having a hole at the bottom for supplying sodium into the gap is inserted, and at least the cylindrical side part is made of a double wall of an outer wall of the safety tube and an inner wall of the safety tube, and the inside thereof is filled with an inert gas. In a method for manufacturing a sodium-sulfur battery in which a safety tube is inserted in which a space inside the tube wall is formed, only the outer wall of the safety tube out of the outer wall of the safety tube and the inner wall of the safety tube is subjected to volumetric expansion of inert gas in the space inside the safety tube wall. This manufacturing method is characterized in that the outer wall of the safety tube is attached to the solid electrolyte tube by inserting the safety tube into the solid electrolyte tube, expanding the inert gas by reducing pressure or heating. .
(実施例)
以下、本発明を図示のナトリウム−硫黄電池を実施例と
して詳細に説明する。(Example) Hereinafter, the present invention will be described in detail by using the illustrated sodium-sulfur battery as an example.
第工図は本発明のナ} IJウムー硫黄電池の要部断面
図で第2図と同一部材は同一符号で示されている。この
第1図においで固体電解質管(1)とカートリッジ(9
)との間の間隙部(11)に挿入されている図中の符号
(13)で示す部材は安全管で、安全管外壁(13A)
と安全管内壁(13B) との二重壁を有し、その二
重壁の内部には1気圧程度の不活性ガスが充填された筒
状の安全管壁内空間(2)が形成されているそして、安
全管側の材質はアルミニウムやステンレスなど、耐食性
に優れた金属で本実施例では安全管外壁(13^)は肉
厚30〜5(10μのアルミニウム又は肉厚50〜3(
10 μのステンレスからなり、方安全管内壁(13B
)は安全管外壁(13A)よりも大きい肉厚のアルミニ
ウム又はステンレスを用いている。なお、安全管(13
)の下方に図中の符号(13C)で示す部分はアルミニ
ウム繊維やステンレス繊維などを圧縮してカートリッジ
(9)の底面及び固体電解質管(1)の形状にあわせて
適宜戒型した部材で、その多孔性によりカートリッジ(
9)底面の孔OIからのナトリウムの供給を良好にする
とともに電池の製造時や運搬時、作動時などにカートリ
ッジ(9)の衝撃をうけて固体電解質管(1)が破損す
るのを防ぐ緩衝体としての役割も果たす.ただし、この
部材(13C)は必ずしも設ける必要はなく、例えばカ
ートリッジ(9)の底部を固体電解質管(1)の底部と
略同一形状として安全管QZを固体電解質管(1)の内
表面全体に不活性ガスの充填された安全管壁内空間(1
4)を有する形状としてもよい。Figure 2 is a cross-sectional view of the main parts of the Na IJ Umu sulfur battery of the present invention, and the same members as in Figure 2 are designated by the same symbols. In this Figure 1, a solid electrolyte tube (1) and a cartridge (9) are shown.
) The member indicated by the symbol (13) in the figure inserted into the gap (11) between the safety tube and the outer wall (13A) is a safety tube.
It has a double wall of a safety pipe inner wall (13B) and a cylindrical safety pipe inner wall space (2) filled with inert gas of about 1 atm inside the double wall. The material on the safety tube side is a metal with excellent corrosion resistance, such as aluminum or stainless steel. In this example, the safety tube outer wall (13^) is made of aluminum with a wall thickness of 30 to 5 (10μ) or aluminum with a wall thickness of 50 to 3 (3).
Made of 10μ stainless steel, the inner wall of the safety tube (13B
) is made of aluminum or stainless steel, which is thicker than the outer wall of the safety tube (13A). In addition, the safety tube (13
) The part indicated by the symbol (13C) in the figure is a member made of compressed aluminum fibers, stainless steel fibers, etc. and shaped appropriately to match the bottom surface of the cartridge (9) and the shape of the solid electrolyte tube (1). Due to its porosity, the cartridge (
9) A buffer that improves the supply of sodium from the hole OI on the bottom and prevents the solid electrolyte tube (1) from being damaged by the impact of the cartridge (9) during battery manufacturing, transportation, and operation. It also plays a role as a body. However, this member (13C) does not necessarily need to be provided; for example, the bottom of the cartridge (9) can be made to have approximately the same shape as the bottom of the solid electrolyte tube (1), and the safety tube QZ can be placed over the entire inner surface of the solid electrolyte tube (1). Safety tube wall space filled with inert gas (1
4).
次に、前記第■図に示した実施例の電池の製造方法、と
くに負極室(3)の製造方法を説明する。Next, a method for manufacturing the battery according to the embodiment shown in FIG.
まず、α−アルミナリング(2)に接合されている固体
電解質管(1)に1気圧程度の不活性ガスを充填した安
全管(13)を挿入、続いて減圧して真空にするかある
いは330〜5(10゜Cに加熱することにより壁内空
間圓内の不活性ガスを膨張させ、これにより安全管外壁
(13A)を固体電解質管(1)内表面に添装させる。First, a safety tube (13) filled with inert gas of about 1 atm is inserted into the solid electrolyte tube (1) connected to the α-alumina ring (2), and then the pressure is reduced to create a vacuum or 330 ~5 (by heating to 10°C, the inert gas in the inner wall space circle is expanded, thereby attaching the safety tube outer wall (13A) to the inner surface of the solid electrolyte tube (1).
そしてナトリウムを入れたカートリッジ(9)を安全管
αの内に嵌挿、真空中で負極蓋(5)を取り付けて負極
室(3)を封ロすることで製造している。The cartridge (9) containing sodium is then inserted into the safety tube α, the negative electrode cover (5) is attached in a vacuum, and the negative electrode chamber (3) is sealed.
ここで壁内空間圓内の不活性ガスの膨張を減圧と同時に
加熱することで行ってもよく、また負極室(3)の封口
と同時に不活性ガスの膨張を行えば製造工程を簡略化す
ることができる。Here, the expansion of the inert gas in the inner wall space circle may be performed by heating at the same time as depressurization, and the manufacturing process can be simplified by expanding the inert gas at the same time as sealing the negative electrode chamber (3). be able to.
なお、この実施例では壁内空間側に1気圧程度の不活性
ガスを充填したが加熱により不活性ガスを放出する物質
たとえば窒化ナトリウム、亜硝酸ナトリウムなどを封入
し、窒素ガスを発生させるようにしてもよい。In this embodiment, the inner wall space was filled with inert gas at a pressure of about 1 atm, but a substance that releases inert gas when heated, such as sodium nitride or sodium nitrite, was also sealed to generate nitrogen gas. You can.
さらに安全管外壁(130 と安全管内壁(13B)の
両方を壁内空間(ロ)内の不活性ガスの体積膨張により
膨出する金属部材とすれば安全管α印は固体電解質管(
1)とカートリッジ(9)との両部材に添装させること
ができる。なお、この場合には不活性ガスの膨張はカー
トリッジ(9)も固体電解質管(1)に挿入した後に行
う必要があり負極室(3)の封口と同時に行うことが好
ましい。Furthermore, if both the safety tube outer wall (130) and the safety tube inner wall (13B) are made of metal members that expand due to the volume expansion of the inert gas in the wall space (b), the safety tube α mark is the solid electrolyte tube (
1) and the cartridge (9). In this case, it is necessary to expand the inert gas after the cartridge (9) is also inserted into the solid electrolyte tube (1), and it is preferable to expand the inert gas at the same time as sealing the negative electrode chamber (3).
(作用及び効果)
このような方法で製造されたものは熱サイクルによる熱
応力や、ナトリウムイオンの移動による機械的応力によ
り固体電解質管(1)にクランクが発生しても硫黄と直
接反応するナトリウムは安全管(13lと固体電解質管
(1)との間のごく少量に抑えることができるので大規
模な固体電解質管(1)の破損、それに伴う異常な温度
上昇、容器の破壊など危険な状態を回避することができ
る。その上、本発明の製造方法によれば、万一固体電解
質管(1)やカートリッジ(9)にゆがみや凹凸などの
不良形状があっても安全管外壁(13A)あるいは安全
管内壁(13B)を膨出させて固体電解質管(1)又は
カートリッジ(9)に添装しているため間隙部(11)
の厚みを均一に、かつ充分に狭く保つことができてナト
リウムの間隙部(11)の供給が良好となり、また、電
池製造時の歩どまりも減少させることができるので量産
が可能となる.
なお、第1図に示した実施例の電池では仮に固体電解質
管(1)にひずみがかかってクラツクが発生し、その部
分でナトリウムと硫黄の過剰反応が進んで異常な加熱が
起きても安全管外壁(13A)が溶融し、安全管壁内空
間(14))に充填されている不活性ガスが放出されて
間隙部(11)の上方に溜まるので、ナトリウムと負極
の集電部材である円筒部(7)との接触が絶たれて電池
の作動を止めることができる。即ち電流が流れなくなる
ので固体電解質管(1)の破損はそれ以上に広がらず、
また異常な過熱を抑制でき破裂などの危険も回避できる
。(Function and Effect) Products manufactured using this method do not contain sodium, which directly reacts with sulfur even if a crank occurs in the solid electrolyte tube (1) due to thermal stress due to thermal cycles or mechanical stress due to the movement of sodium ions. Since the amount of water can be kept to a very small amount between the safety tube (13L) and the solid electrolyte tube (1), there will be no danger of large-scale damage to the solid electrolyte tube (1), resulting abnormal temperature rise, or destruction of the container. Moreover, according to the manufacturing method of the present invention, even if the solid electrolyte tube (1) or the cartridge (9) has a defective shape such as distortion or unevenness, the safety tube outer wall (13A) Alternatively, the inner wall of the safety tube (13B) is bulged and attached to the solid electrolyte tube (1) or cartridge (9), so that the gap (11)
Since the thickness of the battery can be kept uniform and sufficiently narrow, the supply of sodium to the gap (11) can be improved, and the yield rate during battery manufacturing can also be reduced, making mass production possible. In addition, in the battery of the example shown in Fig. 1, even if the solid electrolyte tube (1) is strained and cracks, and an excessive reaction between sodium and sulfur occurs in that part and abnormal heating occurs, it is still safe. The outer wall (13A) of the tube melts, and the inert gas filling the inner space (14) of the safety tube wall is released and accumulates above the gap (11), which serves as a current collector for sodium and the negative electrode. Contact with the cylindrical portion (7) is broken and the operation of the battery can be stopped. In other words, since the current stops flowing, the damage to the solid electrolyte tube (1) does not spread further.
In addition, abnormal overheating can be suppressed and dangers such as explosions can be avoided.
以上に説明したとおり、本発明のものは従来の問題点を
一掃したナトリウム−硫黄電池及びその製造方法として
、産業の発展に寄与するところは極めて大である。As explained above, the present invention greatly contributes to the development of industry as a sodium-sulfur battery and its manufacturing method that eliminates the conventional problems.
第1図は本発明の実施例を示す要部断面図、第2図は従
来例を示す要部断面図である。
(1):固体電解質管、(2):α−アルミナリング、
(3):負極室、(4):正極室、(5):負極蓋、(
7)二円筒部、(9):カートリッジ、(10):孔、
(11)二間隙部、02l:不活性ガス充填部、α■二
安全管、(13A) :安全管外壁、(13B)
:安全管内壁、a4二安全管壁内空間。FIG. 1 is a sectional view of a main part showing an embodiment of the present invention, and FIG. 2 is a sectional view of a main part showing a conventional example. (1): Solid electrolyte tube, (2): α-alumina ring,
(3): Negative electrode chamber, (4): Positive electrode chamber, (5): Negative electrode lid, (
7) Two cylindrical parts, (9): cartridge, (10): hole,
(11) Two gap parts, 02l: Inert gas filled part, α ■ Two safety pipes, (13A): Safety pipe outer wall, (13B)
: Safety pipe inner wall, A4 second safety pipe wall inner space.
Claims (1)
円筒状の固体電解質管(1)の内側と外側をそれぞれ負
極室(3)及び正極室(4)としたナトリウム−硫黄電
池において、前記負極室(3)内には大部分のナトリウ
ムを保持し、かつ前記固体電解質管(1)の内壁面との
間の間隙部(11)にナトリウムを供給する孔(10)
を底部に有するカートリッジ(9)が挿入され、また前
記間隙部(11)内には少なくとも円筒側面部が安全管
外壁(13A)と安全管内壁(13B)の二重壁からな
りその内部に不活性ガスを充填した安全管壁内空間(1
4)を形成し、かつ前記安全管外壁(13A)及び安全
管内壁(13B)のうち少なくとも安全管外壁(13A
)が安全管壁内空間(14)内の不活性ガスの体積膨張
により膨出する金属部材である安全管(13)が挿入さ
れていることを特徴とするナトリウム−硫黄電池。 2、上端部にα−アルミナリング(2)を固着した有底
円筒状の固体電解質管(1)の内側と外側をそれぞれ負
極室(3)及び正極室(4)とし、前記負極室(3)内
に大部分のナトリウムを保持し、かつ前記固体電解質管
(1)の内壁面との間の間隙部(11)にナトリウムを
供給する孔(10)を底部に有するカートリッジ(9)
を挿入し、また前記間隙部(11)内に少なくとも円筒
側面部が安全管外壁(13A)と安全管内壁(13B)
の二重壁からなりその内部に不活性ガスを充填した安全
管壁内空間(14)が形成されている安全管(13)を
挿入したナトリウム−硫黄電池の製造方法において、安
全管外壁(13A)及び安全管内壁(13B)のうち安
全管外壁(13A)のみを安全管壁内空間(14)内の
不活性ガスの体積膨張により膨出する金属部材とし、固
体電解質管(1)内に安全管(13)を挿入した後に減
圧、あるいは加熱により不活性ガスを膨張させて安全管
外壁(13A)を固体電解質管(1)に添装させること
を特徴とするナトリウム−硫黄電池の製造方法。 3、上端部にα−アルミナリング(2)を固着した有底
円筒状の固体電解質管(1)の内側と外側をそれぞれ負
極室(3)及び正極室(4)とし、前記負極室(3)内
に大部分のナトリウムを保持し、かつ前記固体電解質管
(1)の内壁面との間の間隙部(11)にナトリウムを
供給する孔(10)を底部に有するカートリッジ(9)
を挿入し、また前記間隙部(11)内に少なくとも円筒
側面部が安全管外壁(13A)と安全管内壁(13B)
の二重壁からなりその内部に不活性ガスを充填した安全
管壁内空間(14)が形成されている安全管(13)を
挿入したナトリウム−硫黄電池の製造方法において、安
全管外壁(13A)及び安全管内壁(13B)を安全管
壁内空間(14)内の不活性ガスの体積膨張により膨出
する金属部材とし固体電解質管(1)内に安全管(13
)及びカートリッジ(9)を挿入した後に減圧あるいは
加熱により不活性ガスを膨張させて安全管(13)を固
体電解質管(1)及びカートリッジ(9)に添装させる
ことを特徴とするナトリウム−硫黄電池の製造方法。[Claims] 1. The inside and outside of a bottomed cylindrical solid electrolyte tube (1) with an α-alumina ring (2) fixed to its upper end are defined as a negative electrode chamber (3) and a positive electrode chamber (4), respectively. In the sodium-sulfur battery, the negative electrode chamber (3) contains a hole that retains most of the sodium and supplies sodium to the gap (11) between the negative electrode chamber (3) and the inner wall surface of the solid electrolyte tube (1). (10)
A cartridge (9) is inserted into the gap (11), and at least the cylindrical side surface is made up of a double wall of a safety tube outer wall (13A) and a safety tube inner wall (13B), and there is no impurity inside the cartridge (9). Safety tube wall space filled with active gas (1
4), and of the safety pipe outer wall (13A) and the safety pipe inner wall (13B), at least the safety pipe outer wall (13A)
A sodium-sulfur battery characterized in that a safety tube (13) is inserted, which is a metal member that expands due to the volumetric expansion of an inert gas within the safety tube wall space (14). 2. The inside and outside of a bottomed cylindrical solid electrolyte tube (1) with an α-alumina ring (2) fixed to its upper end are respectively designated as a negative electrode chamber (3) and a positive electrode chamber (4). ), and has a hole (10) at the bottom that supplies sodium to the gap (11) between the solid electrolyte tube (1) and the inner wall surface of the solid electrolyte tube (1).
is inserted into the gap (11), and at least the cylindrical side surface is connected to the safety tube outer wall (13A) and the safety tube inner wall (13B).
In the method for manufacturing a sodium-sulfur battery, a safety tube (13) is inserted, which has a double-walled safety tube (13) and a safety tube inner space (14) filled with an inert gas. ) and the safety tube inner wall (13B), only the safety tube outer wall (13A) is a metal member that expands due to the volumetric expansion of the inert gas in the safety tube wall inner space (14), A method for manufacturing a sodium-sulfur battery, which comprises inserting a safety tube (13) and then expanding an inert gas by reducing pressure or heating to attach a safety tube outer wall (13A) to a solid electrolyte tube (1). . 3. The inside and outside of a bottomed cylindrical solid electrolyte tube (1) with an α-alumina ring (2) fixed to its upper end are respectively designated as a negative electrode chamber (3) and a positive electrode chamber (4). ), and has a hole (10) at the bottom to supply sodium to the gap (11) between the solid electrolyte tube (1) and the inner wall surface of the solid electrolyte tube (1).
is inserted into the gap (11), and at least the cylindrical side surface is connected to the safety tube outer wall (13A) and the safety tube inner wall (13B).
In the method for manufacturing a sodium-sulfur battery, a safety tube (13) is inserted, which is made of a double wall and has a safety tube wall inner space (14) filled with an inert gas. ) and the safety tube inner wall (13B) are metal members that expand due to the volumetric expansion of the inert gas in the safety tube wall inner space (14), and the safety tube (13B) is installed in the solid electrolyte tube (1).
) and the cartridge (9) are inserted, and then an inert gas is expanded by reducing pressure or heating to load the safety tube (13) into the solid electrolyte tube (1) and the cartridge (9). How to manufacture batteries.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003791A JPH03208266A (en) | 1990-01-10 | 1990-01-10 | Sodium-sulphur battery and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003791A JPH03208266A (en) | 1990-01-10 | 1990-01-10 | Sodium-sulphur battery and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03208266A true JPH03208266A (en) | 1991-09-11 |
Family
ID=11567011
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003791A Pending JPH03208266A (en) | 1990-01-10 | 1990-01-10 | Sodium-sulphur battery and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03208266A (en) |
-
1990
- 1990-01-10 JP JP2003791A patent/JPH03208266A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3946751A (en) | Cell casing with a hermetic mechanical seal and a hermetically sealed sodium-sulfur cell | |
US3419432A (en) | Seal | |
GB2083686A (en) | Electrochemical storage cell | |
JPH03208266A (en) | Sodium-sulphur battery and manufacture thereof | |
KR101937922B1 (en) | Sodium-sulfur rechargeable battery | |
JP2895991B2 (en) | Sodium-sulfur battery | |
JPH03203171A (en) | Sodium-sulfur battery | |
KR101507946B1 (en) | sodium sulfur battery | |
JPS631705B2 (en) | ||
CN202534703U (en) | Sodium-sulfur cell | |
KR101616896B1 (en) | sodium sulfur battery | |
JP4289948B2 (en) | Sodium-sulfur battery | |
US3904440A (en) | Method of sealing an aperture in a metallic surface and battery employing an aperture seal | |
US20150372352A1 (en) | Electrochemical cells | |
KR20130074645A (en) | Sodium-sulfur rechargeable battery | |
KR102028546B1 (en) | sodium sulfur battery | |
KR101419475B1 (en) | Sodium sulfur rechargeable battery | |
CN202423413U (en) | Insulating ring used for natrium-sulfur cell | |
KR101460280B1 (en) | Sodium sulfur rechargeable battery | |
JP2001338624A (en) | Anode container for sodium-sulfur cell | |
JPS6366862A (en) | Sodium-sulfur battery | |
JP2000040522A (en) | Sodium-sulfur battery | |
JPS6020475A (en) | Sodium-sulfur battery | |
SU826464A1 (en) | Sulphur-sodium storage battery | |
JP2522862B2 (en) | Sodium-sulfur battery |