JPH03207752A - Polymer solid electrolyte - Google Patents

Polymer solid electrolyte

Info

Publication number
JPH03207752A
JPH03207752A JP230190A JP230190A JPH03207752A JP H03207752 A JPH03207752 A JP H03207752A JP 230190 A JP230190 A JP 230190A JP 230190 A JP230190 A JP 230190A JP H03207752 A JPH03207752 A JP H03207752A
Authority
JP
Japan
Prior art keywords
solid electrolyte
polymer solid
ionic salt
polymer
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP230190A
Other languages
Japanese (ja)
Inventor
Shuichi Ido
秀一 井土
Tomohiko Noda
智彦 野田
Hiroshi Imachi
宏 井町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP230190A priority Critical patent/JPH03207752A/en
Publication of JPH03207752A publication Critical patent/JPH03207752A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/181Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyethers (AREA)
  • Conductive Materials (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To obtain a polymer solid electrolyte suitable for primary battery, secondary battery, electrochromic display, etc., having excellent mechanical strength and high ionic conductivity, comprising a specific crosslinked network polymer containing ionic salt. CONSTITUTION:A polymer solid electrolyte comprising a crosslinked network polymer of a diacrylic ester and/or a dimethacrylic ester of a polyethylene glycol having 2,000-30,000 molecular weight containing an ionic salt and further a compound to compatibilize the ionic salt. The crosslinking network is formed by irradiating heat, active light rays or ionizing radiation.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は一次電池、二次電池、エレクトロクロミックデ
イスプレィ、電気化学センサー、イオントフォレーVス
、コンデンサーその他の電気化学的デバイスく用いるポ
リマー固体電解質に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to polymer solid electrolytes used in primary batteries, secondary batteries, electrochromic displays, electrochemical sensors, iontophores, capacitors, and other electrochemical devices. It is something.

従来技術とその問題点 従来のポリマー固体電解質は分子量が2,000より低
いボリエーテμの架橋ネットワークが主であった。特に
シアクリy酸エステル又はジメタクリ〃酸エヌテμに変
性したボリエーテ〜を架橋したものは柔軟性が低いとい
う欠点があった。このため電池等に使用した場合、外部
からの力によって破壊しやすくシ1−F等の原因となっ
ていた。
Prior art and its problems Conventional polymer solid electrolytes are mainly composed of crosslinked networks of polyether μ having a molecular weight lower than 2,000. In particular, those obtained by crosslinking polyether modified with cyacrylic acid ester or dimethacrylic acid NTE have a drawback of low flexibility. For this reason, when used in a battery or the like, it is easy to break due to external force, causing problems such as 1-F.

発明の目的 本発明は上記従来の問題点に鑑みなされたものであり、
機械的強度に優れた、イオン伝導度の高い、ポリマー固
体電解質を提供することを目的とするものである。
Purpose of the Invention The present invention has been made in view of the above-mentioned conventional problems.
The purpose of this invention is to provide a polymer solid electrolyte with excellent mechanical strength and high ionic conductivity.

発明の構成 本発明は上記目的を達成するべく、 ポリエチレングリコ−〃のジアクリル酸エステ〜又は/
及びゾメタクリ/I/WIエステ〜の架橋ネットワーク
高分子がイオン性塩を含み、該ポリエチレングリコ−ρ
の分子量がZOOO乃至50.000であることを特徴
とするポリマー固体電解質である。
Structure of the Invention In order to achieve the above object, the present invention provides a diacrylic acid ester of polyethylene glycol or/
The crosslinked network polymer of Zometacrylic/I/WI Esthe contains an ionic salt, and the polyethylene glyco-
It is a polymer solid electrolyte characterized by having a molecular weight of ZOOO to 50,000.

又、イオン性塩を相溶することができる化合物を該イオ
ン性塩と共に含有する前記のポリマー固体電解質である
Further, the polymer solid electrolyte described above contains a compound capable of dissolving the ionic salt together with the ionic salt.

又、架橋ネットワークの形成は熱的、活性光線又は電離
性放射線の照射による前記のポリマー固体電解質である
Further, the crosslinked network can be formed in the polymer solid electrolyte by thermal, irradiation with actinic light or ionizing radiation.

実施例 以下、本発明の詳細について実施例により説明する。Example Hereinafter, the details of the present invention will be explained with reference to Examples.

実施例(1) ポリエチレングリコ−〜のジメタクリル酸ニスPル(分
子量4,000 ) 100重量部にLi0F3S0゜
11.51量%のプロピレンカーボネート溶液を100
重量部加えて、均一に混合した。この混合液をガラス板
にキャストし、10Mradの電子線を照射した。この
膜の厚みは1100pであり、複素インピーダンス法で
イオン伝導度を測定した結果、25℃テ3X10−48
cm−1であった。
Example (1) 100 parts by weight of dimethacrylic acid varnish P of polyethylene glycol (molecular weight 4,000) was mixed with 100 parts by weight of a propylene carbonate solution containing 11.51% by weight of Li0F3S0°.
Parts by weight were added and mixed uniformly. This mixed solution was cast on a glass plate and irradiated with an electron beam of 10 Mrad. The thickness of this film was 1100p, and the ionic conductivity was measured using the complex impedance method.
cm-1.

又、柔軟性テストとして900折り曲げテストをおこな
った結果、この膜は割れを生じなかった。
Further, as a result of conducting a 900-fold bending test as a flexibility test, this film did not crack.

別にポリエチレングリコ−〜のジメタクリ〃酸エステル
の分子量が400.1,000,2.000とio、o
ooのものを用いて、同様の組成比で厚みioo声鯛の
フィルムを得た。これらのイオン伝導度及び柔軟性テス
Fの結果を表11C示した。
Separately, the molecular weight of dimethacrylic acid ester of polyethylene glycol is 400.1,000, 2.000, io, o.
A film of Koedai sea bream with a thickness of 10 mm was obtained using the same composition ratio. The results of these ionic conductivity and flexibility test F are shown in Table 11C.

表     1 実施例2 ポリエチレングリコールのVメタクリル酸エステA/(
分子量4,000) 100重量部にLi0F3SO3
11,5重量%のジメトキVエタン溶液を100重量部
加えて、均一に混合した。この混合液をガラス板にキャ
ストし、ジメトキシエタンを蒸発させた。次に10 M
radの電子線を照射した。得られた膜の厚みは100
声調であり、複素インピーダンス法でイオン伝導度を測
定した結果、25℃で3X10−’Sc+m−1であっ
た。
Table 1 Example 2 Polyethylene glycol V methacrylic acid ester A/(
Molecular weight: 4,000) 100 parts by weight of Li0F3SO3
100 parts by weight of a 11.5% by weight dimethoxy V ethane solution was added and mixed uniformly. This mixture was cast on a glass plate, and dimethoxyethane was evaporated. Next 10M
It was irradiated with a rad electron beam. The thickness of the obtained film is 100
The ionic conductivity was measured using the complex impedance method and found to be 3X10-'Sc+m-1 at 25°C.

又、柔軟性テストとして、900折り曲げテストをおこ
なつた結果、割れを生じなかった。ポリエチレングリコ
−〜のジメタクリμ酸エステルの分子量が400 、1
,000 、2.000と10.000のものを用いて
、同様の組成比で厚み100声解のフィルムを得た。こ
れらのイオン伝導度及び柔軟性テスFの結果を表2IC
示した。
Further, as a flexibility test, a 900-fold bending test was performed, and no cracks were found. The molecular weight of dimethacrylic acid ester of polyethylene glycol is 400, 1
,000, 2.000 and 10.000 were used to obtain films having a similar composition ratio and a thickness of 100. The results of these ionic conductivity and flexibility test F are shown in Table 2IC.
Indicated.

以下余白 表     2 実施例3 実施例2において、電子線照射に代えて5重量部のアゾ
イソブチロニトリ〃を加えて180℃で1時間反応する
。これ以外はすべて、5I!施例2と同様とした。
Margin Table 2 Example 3 In Example 2, instead of electron beam irradiation, 5 parts by weight of azoisobutyronitrile was added and the reaction was carried out at 180° C. for 1 hour. Everything else is 5I! The procedure was the same as in Example 2.

分子量4.000で厚さ100t#tの膜は、イオン伝
導度が25℃で3X10−’Sc禦−1であり、90゜
折り曲げテストにおいて割れは生じなかったり実施例4 実施例2N−おいて、電子線照射に代えて2重量部のベ
ンゾフェノンと2重量部のトリエチルアミンを加えて、
1nの水銀ランデで15CIllの距離から50秒間、
紫外線を照射した。これ以外はすべて、実施例2と同様
とした。
A membrane with a molecular weight of 4.000 and a thickness of 100t#t had an ionic conductivity of 3X10-'Sc-1 at 25°C, and no cracking occurred in the 90° bending test. , by adding 2 parts by weight of benzophenone and 2 parts by weight of triethylamine instead of electron beam irradiation,
50 seconds from a distance of 15CIll with 1n mercury rande,
Irradiated with ultraviolet light. Everything else was the same as in Example 2.

分子量4,000で厚さ100声mの膜は、イオン伝導
度が25℃で3X10−’5ea−1であり、90’折
り曲げテストにおいて割れは生じなかった。
A membrane with a molecular weight of 4,000 and a thickness of 100 m has an ionic conductivity of 3 x 10 -'5 ea -1 at 25°C and no cracking occurred in the 90' bending test.

実施例5 実施例1において、ポリエチレングリコ−〜のジメタク
リル酸エステルに代えて、シアクリル酸エステ、A/(
分子量4.000 )を用いた。これ以外はすべて、実
施例1と同様とした。
Example 5 In Example 1, cyacrylic acid ester, A/(
(molecular weight 4.000) was used. Everything else was the same as in Example 1.

得られた厚み100upの膜は、イオン伝導度が2X[
Q−’SC+m−1であり(25℃)、90°折り曲げ
テストにおいても割れを生じなかった。
The obtained membrane with a thickness of 100 up has an ionic conductivity of 2X [
Q-'SC+m-1 (25°C), and no cracking occurred even in the 90° bending test.

又、イオン性塩を相溶することができる化合物(溶剤)
をポリマー固体電解質は含有する@必要に応じて、溶剤
を固体電解質に含ませることによって、イオン伝導性を
高めることが可能である。この場合、ポリエーテ〃の分
子量が高くなると、企<の溶剤を含ませることができ、
イオン伝導性についても有利になり、さらに溶剤によっ
て膨潤した架橋ネットワーク高分子の強度を改善できる
Also, a compound (solvent) that can dissolve ionic salts.
The polymer solid electrolyte contains @If necessary, it is possible to improve the ionic conductivity by including a solvent in the solid electrolyte. In this case, as the molecular weight of the polyether increases, it is possible to incorporate the intended solvent,
It is also advantageous in terms of ionic conductivity and can further improve the strength of the crosslinked network polymer swollen by a solvent.

尚、イオン性塩としては、Li0104 、 Lint
嶋LiA8F6. Li0F3SO3,LiPF6. 
LiI、 LiBrLi5ON  NaI  Li2B
l(IOllo、 Li0F5002. NaBrMa
soN、KSON、Mg0h、Mg(OJO4)2゜(
(H3)4MBF4. (OJ)4NBr  (02H
5)4NOIO4゜(02■5)4NI  (03H7
)4NBr  (n−04H?)4NI(”−05H1
1)4NIが好ましいが限定しない。
In addition, as the ionic salt, Li0104, Lint
Shima LiA8F6. Li0F3SO3, LiPF6.
LiI, LiBrLi5ON NaI Li2B
l(IOllo, Li0F5002.NaBrMa
soN, KSON, Mg0h, Mg(OJO4) 2゜(
(H3)4MBF4. (OJ)4NBr (02H
5) 4NOIO4゜(02■5)4NI (03H7
)4NBr (n-04H?)4NI(”-05H1
1) 4NI is preferred, but not limited.

イオン性塩を溶解することができる化合物とはテトラヒ
ドロフフン、2−メチ〜テトブヒドロフフン、1.5−
ジオキソラン、4.4−ジメチtv−j、3−ジオキン
フン、r−プチロフクトン、エチレンカーボネート、プ
ロピレンカーボネート1ブチレンカーボネート、スルホ
フン、5−メチルスルホフン、 tart、−ブチ、ル
エーテμ、180−プ千ρエーテル、1,2−ジメトキ
Vエタン、i、2−エトキシメFキシエタン、メチ〜ジ
グフイム、メチルトリグツイム、メチ〃テトフグライム
、エチルグツイム、エチルジグライム等があるが限定は
しない。
Compounds that can dissolve ionic salts include tetrahydrofufurn, 2-methy-tetobutyrofufurn, 1.5-
Dioxolane, 4.4-dimethytv-j, 3-dioquinhun, r-butylofuctone, ethylene carbonate, propylene carbonate 1-butylene carbonate, sulfofune, 5-methylsulfofune, tart, -buty, luete μ, 180-butylene rhoether , 1,2-dimethoxyV-ethane, i,2-ethoxymeF-xyethane, methyl-digime, methyltriglyme, methytetophglyme, ethylgutime, ethyldiglyme, etc., but are not limited thereto.

ポリエチレングリコ−〃の分子量を上げることによって
、柔軟性と強度をさらに上げることができる。しかし分
子量を上げすぎると反応速度が低下し、生産性が悪くな
ることと、結晶化し易くなるために、伝導度の低下を招
き問題である・従って分子量はzooo乃至30.00
0が好ましい。
By increasing the molecular weight of polyethylene glycol, flexibility and strength can be further increased. However, if the molecular weight is increased too much, the reaction rate will decrease, productivity will deteriorate, and crystallization will occur easily, leading to a decrease in conductivity, which is a problem.Therefore, the molecular weight will be between zoooo and 30.00.
0 is preferred.

発明の効果 上述した如く、本発明は機械的強度に優れた、イオン伝
導度の高いポリマー固体電解質を提供することができる
ので、その工業的価値は極めて大である。
Effects of the Invention As described above, the present invention can provide a polymer solid electrolyte with excellent mechanical strength and high ionic conductivity, and therefore has extremely great industrial value.

Claims (3)

【特許請求の範囲】[Claims] (1)ポリエチレングリコールのジアクリル酸エステル
又は/及びジメタクリル酸エステルの架橋ネットワーク
高分子がイオン性塩を含み、該ポリエチレングリコール
の分子量が2,000乃至30,000であることを特
徴とするポリマー固体電解質。
(1) A polymer solid characterized in that the crosslinked network polymer of diacrylic acid ester and/or dimethacrylic acid ester of polyethylene glycol contains an ionic salt, and the molecular weight of the polyethylene glycol is from 2,000 to 30,000. Electrolytes.
(2)イオン性塩を相溶することができる化合物を該イ
オン性塩と共に含有する請求項1記載のポリマー固体電
解質。
(2) The polymer solid electrolyte according to claim 1, which contains, together with the ionic salt, a compound that is compatible with the ionic salt.
(3)架橋ネットワークの形成は熱的、活性光線、又は
電離性放射線の照射による請求項1記載のポリマー固体
電解質。
(3) The polymer solid electrolyte according to claim 1, wherein the crosslinked network is formed thermally, by actinic light, or by irradiation with ionizing radiation.
JP230190A 1990-01-08 1990-01-08 Polymer solid electrolyte Pending JPH03207752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP230190A JPH03207752A (en) 1990-01-08 1990-01-08 Polymer solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP230190A JPH03207752A (en) 1990-01-08 1990-01-08 Polymer solid electrolyte

Publications (1)

Publication Number Publication Date
JPH03207752A true JPH03207752A (en) 1991-09-11

Family

ID=11525543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP230190A Pending JPH03207752A (en) 1990-01-08 1990-01-08 Polymer solid electrolyte

Country Status (1)

Country Link
JP (1) JPH03207752A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2724261A1 (en) * 1994-09-06 1996-03-08 Hydro Quebec ACEP ELECTROLYTE COMPOSITIONS BASED ON MIXTURES OF COPOLYMERS AND INTERPENETRATED NETWORKS.
US5620810A (en) * 1992-07-22 1997-04-15 Valence Technology, Inc. Solid, solvent-containing electrolytes and electrolytic cells produced therefrom
US7097942B2 (en) 2001-10-17 2006-08-29 Samsung Sdi Co., Ltd. Fluoride copolymer, polymer electrolyte comprising the same and lithium battery employing the polymer electrolyte
CN1302069C (en) * 2001-05-03 2007-02-28 三星Sdi株式会社 Polymer electrolyte, its prodcing process and lithim bottery using the same electrolyte

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169875A (en) * 1987-12-25 1989-07-05 Ube Ind Ltd Cell
JPH01294768A (en) * 1987-09-18 1989-11-28 Devars Ms Co Liquid containing polymer network as a solid electrolyte
JPH0384809A (en) * 1989-08-28 1991-04-10 Hitachi Maxell Ltd Lithium ion conductive polymer electrolyte

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294768A (en) * 1987-09-18 1989-11-28 Devars Ms Co Liquid containing polymer network as a solid electrolyte
JPH01169875A (en) * 1987-12-25 1989-07-05 Ube Ind Ltd Cell
JPH0384809A (en) * 1989-08-28 1991-04-10 Hitachi Maxell Ltd Lithium ion conductive polymer electrolyte

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5620810A (en) * 1992-07-22 1997-04-15 Valence Technology, Inc. Solid, solvent-containing electrolytes and electrolytic cells produced therefrom
FR2724261A1 (en) * 1994-09-06 1996-03-08 Hydro Quebec ACEP ELECTROLYTE COMPOSITIONS BASED ON MIXTURES OF COPOLYMERS AND INTERPENETRATED NETWORKS.
CN1302069C (en) * 2001-05-03 2007-02-28 三星Sdi株式会社 Polymer electrolyte, its prodcing process and lithim bottery using the same electrolyte
US7097942B2 (en) 2001-10-17 2006-08-29 Samsung Sdi Co., Ltd. Fluoride copolymer, polymer electrolyte comprising the same and lithium battery employing the polymer electrolyte

Similar Documents

Publication Publication Date Title
JP2987474B2 (en) Solid electrolyte
JP2914388B2 (en) Polymer solid electrolyte
US5240791A (en) Solid polymer electrolyte
JPH05198303A (en) Battery
KR20020084614A (en) Polymer electrolyte and lithium battery employing the same
KR20200005796A (en) Gel electrolyte comprising crosslinked polymer and manufacturing method for the same
WO1999005191A1 (en) Vinylidene fluoride copolymer for gel-form solid electrolyte formation, solid electrolyte, and battery
JPH03207752A (en) Polymer solid electrolyte
JPH03210313A (en) Solid-state polyelectrolyte
JPH03212415A (en) Solid polyelectrolyte
JPH03205416A (en) Solid-state polyelectrolyte
JP2682098B2 (en) Polymer solid electrolyte
JPH03212416A (en) Solid polyelectrolyte
JP2925231B2 (en) Polymer solid electrolyte
CA2118946A1 (en) Oxirane and dioxolane copolymers; process for preparing them and ion conductive materials containing the same
JP3843505B2 (en) Polymer electrolyte and battery
JPH03207711A (en) Solid polyelectrolyte
JPS62140306A (en) Solid electrolyte composition
JP2002208311A (en) Gel electrolyte forming composition and gel electrolyte
ITMI930233A1 (en) POLYESTER BASED SOLID POLYMER ELECTROLYTE.
JPH0384806A (en) Polymer solid electrolyte
JPH03188115A (en) Solid polyelectrolyte
KR100229600B1 (en) Interpenetration network solid polymer electrolyte composition
JPH03196409A (en) Polymer solid electrolyte
JPH0335060A (en) Polymer solid electrolyte