JPS62140306A - Solid electrolyte composition - Google Patents

Solid electrolyte composition

Info

Publication number
JPS62140306A
JPS62140306A JP60280660A JP28066085A JPS62140306A JP S62140306 A JPS62140306 A JP S62140306A JP 60280660 A JP60280660 A JP 60280660A JP 28066085 A JP28066085 A JP 28066085A JP S62140306 A JPS62140306 A JP S62140306A
Authority
JP
Japan
Prior art keywords
solid electrolyte
electrolyte composition
branched polyethyleneimine
composition according
polyethyleneimine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60280660A
Other languages
Japanese (ja)
Inventor
透 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP60280660A priority Critical patent/JPS62140306A/en
Publication of JPS62140306A publication Critical patent/JPS62140306A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術的分野] 本発明は、イオン導電性の固体電解質組成物に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an ionically conductive solid electrolyte composition.

[発明の背景] 一次電池、二次電池、燃料電池、エレクトロクロミック
(E CD)表示素子などの電解質としては従来より液
体のものが用いられてきた。しかしながら、液体電解質
は、部品外部への液漏れ、電極物質の溶出などが発生し
やすいため長期信頼性の問題がある。
[Background of the Invention] Liquid electrolytes have conventionally been used in primary batteries, secondary batteries, fuel cells, electrochromic (ECD) display elements, and the like. However, liquid electrolytes have problems with long-term reliability because liquid electrolytes tend to leak to the outside of components and elute electrode materials.

それに対して、固体電解質はそのような問題がなく各装
置の部品の構成が簡略化でき、更に薄膜化により部品の
軽量化、小型化が可能となる利点を有している。これら
の特徴は、エレクトロニクスの進展に伴なった小型、軽
量で信頼性の高い各種電子部品に対する要求に適合して
いるため、その開発研究が活発に行なわれている。
On the other hand, solid electrolytes have the advantage that they do not have such problems and can simplify the structure of the components of each device, and furthermore, can be made thinner, making it possible to reduce the weight and size of the components. These features meet the demands for various electronic components that are small, lightweight, and highly reliable as electronics advances, and research and development efforts are therefore being actively conducted.

固体電解質材料としては、従来より、主に無機物、例え
ばβ−アルミナ、酸化銀ルビジウム、ヨウ化リチウムな
どが知られている。しかし、無機物は任意の形に成形、
成膜するのが困難な場合が多く、かつ一般に高価格であ
るため、実用上は問題が多い。
As solid electrolyte materials, mainly inorganic materials such as β-alumina, silver rubidium oxide, lithium iodide, etc. have been known so far. However, inorganic materials can be formed into any shape,
Since it is often difficult to form a film and is generally expensive, there are many problems in practical use.

一方、高分子物質(ポリマー)は均一な薄膜を任意の形
状に容易に加工できる長所があるところから、種々のポ
リマーを用いた固体電解質がこれまでに提案されている
。すなわち、ポリエチレンオキサイド、ポリエピクロル
ヒドリン、ポリエチレンサクシネートなどのポリマーと
、Li、Naなとの無機イオン塩との組合せからなる固
体電解質組成物及びそれらの組成物を用いた電池が既に
提案されている(例、特開昭58−75.779号、同
58−108667号、同58−188062号、同5
8−188063号、同59−71263号公報)。し
かしながら、これらの組成物は、イオン導電性が充分で
ないため、現在の段階では実用化までには至っていない
On the other hand, solid electrolytes using various polymers have been proposed since polymers have the advantage that a uniform thin film can be easily processed into any shape. That is, solid electrolyte compositions consisting of a combination of polymers such as polyethylene oxide, polyepichlorohydrin, polyethylene succinate, and inorganic ionic salts such as Li and Na, and batteries using these compositions have already been proposed ( Examples: JP-A No. 58-75.779, JP-A No. 58-108667, JP-A No. 58-188062, No. 5
No. 8-188063, No. 59-71263). However, since these compositions do not have sufficient ionic conductivity, they have not been put into practical use at the current stage.

また、ポリマーと無機イオン塩との組成物の導電率を高
めるための方法として、見掛は上は固形状態を保つ範囲
で該組成物に有機溶媒を適当量加える方法も提案されて
いる(例、特開昭57−137359号、同57−13
7360号、同57−143355号、同57−143
356号、同59−149601号、同59−2300
31号など)。しかし、有機溶媒を含有する組成物はそ
の有機溶媒の含有量が少量であっても、長期にわたって
微量づつ溶媒が気化し、性質が劣化するという欠点を有
している。
In addition, as a method for increasing the electrical conductivity of a composition of a polymer and an inorganic ionic salt, a method has been proposed in which an appropriate amount of an organic solvent is added to the composition while maintaining an apparently solid state (e.g. , JP-A-57-137359, JP-A No. 57-13
No. 7360, No. 57-143355, No. 57-143
No. 356, No. 59-149601, No. 59-2300
31 etc.). However, compositions containing organic solvents have the disadvantage that even if the content of the organic solvent is small, the solvent evaporates little by little over a long period of time, resulting in deterioration of properties.

さらに、ポリマーとアルカリ塩との組成物に二次ポリマ
ーを加え、光照射または加熱カレンダー加工によって網
状構造とした固体電解質も提案されている(特開昭58
−82477号公報)。
Furthermore, a solid electrolyte has been proposed in which a secondary polymer is added to a composition of a polymer and an alkali salt, and a network structure is formed by light irradiation or heat calendering (Japanese Patent Laid-Open No. 58
-82477).

さらにまた、ポリマーとして線状ポリエチレンイミンを
用い、アルカリ金属などのイオン塩との組成物が固体電
解質として有効であることが報告されている(Macr
omolecules Vol、 18.825〜B2
?頁(1985年))。しかし、線状ポリエチレンイミ
ンは結晶性であり、これを用いた固体電解質組成物のイ
オン導電率は充分とはいえない。
Furthermore, it has been reported that a composition using linear polyethyleneimine as a polymer and an ionic salt such as an alkali metal is effective as a solid electrolyte (Macr.
Omolecules Vol, 18.825~B2
? (1985)). However, linear polyethyleneimine is crystalline, and the ionic conductivity of solid electrolyte compositions using it cannot be said to be sufficient.

[発明の「1的および構成] 本発明者は、ポリエチレンイミンをポリマーとして用い
た高いイオン導電性と優れた成形加工性を持つ固体電解
質組成物を得ることを目的に研究を行なった結果、本発
明に到達した。
[Objective and Structure of the Invention] The present inventor has conducted research with the aim of obtaining a solid electrolyte composition that uses polyethyleneimine as a polymer and has high ionic conductivity and excellent moldability, and has developed the present invention. invention has been achieved.

すなわち、本発明者は、線状ポリエチレンイミンが結晶
性であるのに対して、分枝状ポリエチレンイミンは木質
的に非晶質であることに着目し、この分枝状ポリエチレ
ンイミンを多官能性エポキシ化合物によって架橋して形
成した架橋重合体とと無機電解質との組成物が、高いイ
オン導電性と優れた成形加工性を持つことを見いだし、
本発明に到達した。
That is, the present inventor focused on the fact that linear polyethyleneimine is crystalline, whereas branched polyethyleneimine is woody and amorphous. We discovered that a composition of a crosslinked polymer formed by crosslinking with an epoxy compound and an inorganic electrolyte has high ionic conductivity and excellent moldability,
We have arrived at the present invention.

すなわち、本発明は分枝状ポリエチレンイミンを多官能
性エポキシ化合物で架橋してなる架橋重合体と無機電解
質とを含むことを特徴とする固体電解質組成物にある。
That is, the present invention resides in a solid electrolyte composition characterized by containing a crosslinked polymer formed by crosslinking branched polyethyleneimine with a polyfunctional epoxy compound and an inorganic electrolyte.

本発明の固体電解質組成物における分枝状ポリエチレン
イミンは、第一級、第二級、および第三級の7ミノ基を
含む枝分れを有し、次の一般式により表わされるポリマ
ーである。
The branched polyethyleneimine in the solid electrolyte composition of the present invention has branches containing primary, secondary, and tertiary 7-mino groups, and is a polymer represented by the following general formula. .

H2[cH2CH2Nh+CI2 CH2NM+−yN
− 」1記の一般式を有する分枝状ポリエチレンイミンは既
に知られている。そして、その分子量も数百から数百万
という広範な範囲内で変動させることができる。本発明
において使用するのに好ましい分枝状ポリエチレンイミ
ンは、分子量が300〜100000、好ましくは10
00〜100000の範囲内のものである。
H2 [cH2CH2Nh+CI2 CH2NM+-yN
- Branched polyethyleneimine having the general formula 1 is already known. The molecular weight can also be varied within a wide range from hundreds to millions. Preferred branched polyethyleneimines for use in the present invention have a molecular weight of 300 to 100,000, preferably 10
It is within the range of 00 to 100,000.

なお、」1記の一般式で表される分枝状ポリエチレンイ
ミンの代表的な例では、第一級、第二級、および第三級
の各アミン基のモル比は、おおよそ1:2:1となる。
In addition, in a typical example of a branched polyethyleneimine represented by the general formula 1, the molar ratio of primary, secondary, and tertiary amine groups is approximately 1:2: It becomes 1.

分枝状ポリエチレンイミンを架橋するために用いられる
多官能性エポキシ化合物は、公知の多官崩性エポキシ化
合物から任意に選択することができる。本発明における
分枝状ポリエチレンイミンの架橋との目的に特に適した
多官能性エポキシ化合物としてはジェポキシアルカン(
例、1.3−ジェポキシブタンおよび1.7−ジェポキ
シオクタン)、ポリアルキレングリコール型エポキシ樹
脂(例、ポリエヂレングリコール型エポキシ樹脂)、ビ
スフェノ−1しA型エポキシ樹脂、ビスフェノールF型
エポキシ樹脂、ノボラック樹脂とエピハロヒドリンとの
反応によって得られるノボラックエポキシ樹脂、多官能
フェノール型エポキシ樹脂、グリシジルアミン型多官飽
エポキシ樹脂、レゾルシノールとエピハロヒドリンとの
反応で得られるジグリシジルエーテル化合物、環状脂肪
族エポキシ樹脂、ヒダントイン型エポキシ樹脂を挙げる
ことができる。
The polyfunctional epoxy compound used for crosslinking the branched polyethyleneimine can be arbitrarily selected from known polyfunctional degradable epoxy compounds. Polyfunctional epoxy compounds particularly suitable for the purpose of crosslinking branched polyethyleneimines in the present invention include jepoxy alkanes (
(e.g., 1.3-jepoxybutane and 1.7-jepoxyoctane), polyalkylene glycol type epoxy resin (e.g., polyethylene glycol type epoxy resin), bispheno-1A type epoxy resin, bisphenol F type epoxy resin, Novolak epoxy resin obtained by the reaction of novolac resin and epihalohydrin, polyfunctional phenol type epoxy resin, glycidylamine type polyfunctional epoxy resin, diglycidyl ether compound obtained by the reaction of resorcinol and epihalohydrin, cycloaliphatic epoxy resin, Hydantoin type epoxy resins can be mentioned.

なお、多官能性エポキシ化合物は、分枝状ポリエチレン
イミンに対して1〜50重量%のiM 合で用いられて
いることが好ましく、さらに2〜20重量%の割合で用
いられていることが特に好ましい。また、多官能性エポ
キシ化合物は、分枝状ポリエチレンイミンのエチレンイ
ミンユニット(fa返し単位)に対しては、0.1〜5
0モル%の割合で用いられていることが好ましく、さら
に0.5〜20モル%の割合で用いられていることが特
に好ましい。多官能性エポキシ化合物が少なすぎると組
成物が軟化し、場合によっては液状(分子量が高くない
分枝状ポリエチレンイミン自体は常温で液状である)と
なる。また多すぎると組成物がもろくなり、成形性やJ
Jt膜性が劣る結果となる。
The polyfunctional epoxy compound is preferably used in an iM ratio of 1 to 50% by weight, and particularly preferably 2 to 20% by weight, based on the branched polyethyleneimine. preferable. In addition, the polyfunctional epoxy compound has a value of 0.1 to 5
It is preferably used in a proportion of 0 mol%, and particularly preferably in a proportion of 0.5 to 20 mol%. If the amount of the polyfunctional epoxy compound is too small, the composition becomes soft and, in some cases, becomes liquid (branched polyethyleneimine itself, which does not have a high molecular weight, is liquid at room temperature). Also, if the amount is too high, the composition will become brittle and the moldability will deteriorate.
This results in poor Jt film properties.

本発明の電解質組成物に含まれる無機電解質には特に制
限はないが、たとえば、L i CI Oa、LiI、
Li5CN、LiBFa、LiAsF5、  L i 
CF :+ S O:+、LiPF6、NaI、Na5
CN、NaBr、KI、Cs5CN、AgNO3、Cu
C1,、Mg (C,uoa)2などの電解質を使用す
ることができる。
There are no particular limitations on the inorganic electrolyte contained in the electrolyte composition of the present invention, but examples include L i CI Oa, LiI,
Li5CN, LiBFa, LiAsF5, Li
CF:+ SO:+, LiPF6, NaI, Na5
CN, NaBr, KI, Cs5CN, AgNO3, Cu
Electrolytes such as C1, Mg (C, uoa)2 can be used.

無機電解質が、ポリエチレンイミンのエチレンイミンモ
ノマ一単位当り0.1〜100モル%の範囲にある量に
て使用することが好ましく、さらに0.5〜20モル%
の範囲にある量にて使用することが特に好ましい。無機
電解質の使用量が多すぎる場合には、過剰の無機電解質
が解離せず、単にポリエチレンイミン構造体中に混在す
るのみになり、このためイオン導電性が逆に低下する。
The inorganic electrolyte is preferably used in an amount ranging from 0.1 to 100 mol%, more preferably from 0.5 to 20 mol%, per ethyleneimine monomer unit of polyethyleneimine.
It is particularly preferred to use amounts in the range of . If the amount of inorganic electrolyte used is too large, the excess inorganic electrolyte will not dissociate and will simply be mixed in the polyethyleneimine structure, resulting in a decrease in ionic conductivity.

本発明の固体電解質組成物は、たとえばまず、分枝状ポ
リエチレンイミンと無機電解質とを均一に混合し、次い
で、得られた混合物に多官能性エポキシ化合物を加える
ことにより架橋反応を発生させて製造することができる
。なお、これらの工程において必要に応じて(例えば、
分枝状ポリエチレンイミンが固体である場合)、アルコ
ール(例、メタノール)などの良溶媒を用いてもよい。
The solid electrolyte composition of the present invention can be produced, for example, by first uniformly mixing a branched polyethyleneimine and an inorganic electrolyte, and then adding a polyfunctional epoxy compound to the resulting mixture to cause a crosslinking reaction. can do. In addition, in these steps, if necessary (for example,
When the branched polyethyleneimine is solid), a good solvent such as alcohol (eg, methanol) may be used.

架橋反応は加熱下に行なうことが好ましい。The crosslinking reaction is preferably carried out under heating.

なお、本発明の固体電解質組成物をシート状などの形態
に成形したい場合には、架橋反応の完了前に所望の形態
に成形することが好ましい。
In addition, when it is desired to form the solid electrolyte composition of the present invention into a form such as a sheet, it is preferable to form the solid electrolyte composition into the desired form before the completion of the crosslinking reaction.

[発明の効果] 本発明の固体電解質組成物は高いイオン導電性と優れた
成形加工性を持つため、−次電池、二次電池、燃料電池
、エレクトロクロミック表示素子などに使用する固体電
解質として極めて有用であり、また液体成分を含有しな
い固体電解質であるため保存性において優れ、長期間の
使用が可能となる。
[Effects of the Invention] Since the solid electrolyte composition of the present invention has high ionic conductivity and excellent moldability, it is extremely suitable as a solid electrolyte for use in secondary batteries, secondary batteries, fuel cells, electrochromic display elements, etc. It is useful, and since it is a solid electrolyte that does not contain a liquid component, it has excellent storage stability and can be used for a long period of time.

[実施例] [実施例1] 分枝状ポリエチレンイミン(商品名:エポミン5P−3
00、日本触媒化学工業■製、分子量=30000)I
gとLiC見Oa 0 、123 g(ポリエチレンイ
ミンのモノマー単位当り5モル%)とを、4ccのメタ
ノールに溶解し、得られた溶液にポリエチレングリコー
ル型エポキシ化合物(商品名:DER732、ダウ番ケ
ミカル・カンパニー)0.056g(ポリエチレンイミ
ンのモノマ一単位当り:0.75モル%)を加えて均一
に混合した。この混合物をガラスシャーレに流延し、窒
素気流下でメタノールを留去し、さらに100℃で真空
下乾燥し、膜厚的4001Lmの透明な膜を得た。
[Example] [Example 1] Branched polyethyleneimine (trade name: Epomin 5P-3
00, manufactured by Nippon Shokubai Chemical Industry ■, molecular weight = 30000) I
g and LiC Oa 0, 123 g (5 mol % per monomer unit of polyethyleneimine) were dissolved in 4 cc of methanol, and a polyethylene glycol type epoxy compound (trade name: DER732, Dowban Chemical Co., Ltd.) was dissolved in the resulting solution. 0.056 g (per unit of polyethyleneimine monomer: 0.75 mol %) was added and mixed uniformly. This mixture was cast into a glass Petri dish, methanol was distilled off under a nitrogen stream, and the mixture was further dried under vacuum at 100° C. to obtain a transparent film having a thickness of 4001 Lm.

上記の膜を直径15mmの円盤状にして両面に導電性銀
ペーストを塗布して電極を形成し、これに交流電圧を印
加して複素インピーダンス法によりイオン導電率を算出
した。その結果、23℃で0 、25X 10−’S/
Cm(7)値を得た。なお、S=Ω−゛である。
The above membrane was shaped into a disk with a diameter of 15 mm, conductive silver paste was applied on both sides to form electrodes, and an alternating current voltage was applied thereto to calculate the ionic conductivity using the complex impedance method. As a result, at 23℃, 0,25X 10-'S/
Cm(7) values were obtained. Note that S=Ω−゛.

[実施例2] L i CI Oaの量を2.5モル%とした以外は実
施例1と同様にして透明な膜を得た。
[Example 2] A transparent film was obtained in the same manner as in Example 1 except that the amount of L i CI Oa was 2.5 mol %.

この膜について実施例1と同様の方法により導電率を測
定したところ0.54X10−’S/cm(23℃で)
の値を得た。
The conductivity of this film was measured in the same manner as in Example 1 and was 0.54X10-'S/cm (at 23°C).
obtained the value of

[比較例1] 無機塩(LiCuOa)を用いなかった以外は実施例1
と同様にして透明な膜を得た。
[Comparative Example 1] Example 1 except that inorganic salt (LiCuOa) was not used.
A transparent film was obtained in the same manner as above.

この膜について実施例1と同様の方法により導電率を測
定したところ0.42X 10−9S/cm(25℃)
の値を得た。
The conductivity of this film was measured in the same manner as in Example 1 and was found to be 0.42X 10-9S/cm (25°C).
obtained the value of

[比較例2] ポリマー材料として分枝状ポリエチレンイミンの代りに
線状ポリエチレンイミンを用いた以外は実施例1と同様
にして透明な膜を得た。なお、線状ポリエチレンイミン
はMacromolecules Vol、 5゜10
8頁(1972年)を参照して合成したもので、その分
子量は約2000であった。
[Comparative Example 2] A transparent film was obtained in the same manner as in Example 1 except that linear polyethyleneimine was used instead of branched polyethyleneimine as the polymer material. In addition, linear polyethyleneimine is described in Macromolecules Vol. 5゜10.
It was synthesized with reference to p. 8 (1972), and its molecular weight was about 2,000.

この膜について実施例1と同様の方法により導電率を測
定したところ0 、54X 10−8S/ cm(30
℃)の値を得た。すなわち、測定温度を上げれば導電率
は上昇するはずであるが、分枝状ポリエチレンイミンの
代りに線状ポリエチレンイミンを用いた場合には、測定
温度が高くなったにもかかわらず、導電率は低下してい
る。
The electrical conductivity of this film was measured in the same manner as in Example 1 and found to be 0.54 x 10-8 S/cm (30
℃) was obtained. In other words, the conductivity should increase if the measurement temperature is increased, but when linear polyethyleneimine is used instead of branched polyethyleneimine, the conductivity does not increase even though the measurement temperature increases. It is declining.

Claims (1)

【特許請求の範囲】 1、分枝状ポリエチレンイミンを多官能性エポキシ化合
物で架橋してなる架橋重合体と無機電解質とを含むこと
を特徴とする固体電解質組成物。 2、分枝状ポリエチレンイミンが下記一般式:▲数式、
化学式、表等があります▼ で表わされるものであることを特徴とする特許請求の範
囲第1項記載の固体電解質組成物。 3、分枝状ポリエチレンイミンが、300〜10000
0の範囲内の分子量を有するものであることを特徴とす
る特許請求の範囲第1項もしくは第2項記載の固体電解
質組成物。4、多官能性エポキシ化合物がジエポキシア
ルカンもしくはポリアルキレングリコール型エポキシ樹
脂であることを特徴とする特許請求の範囲第1項もしく
は第2項記載の固体電解質組成物。 5、多官能性エポキシ化合物が、分枝状ポリエチレンイ
ミンに対して1〜50モル%の割合で用いられているこ
とを特徴とする特許請求の範囲第1項もしくは第2項記
載の固体電解質組成物。 6、無機電解質が、LiClO_4、LiI、LiBF
_4、LiAsF_6、LiCF_3SO_3、LiP
F_6、LiSCN、NaI、NaSCN、NaBr、
KI、CsSCN、AgNO_3、CuCl_2、およ
びMg(ClO_4)_2からなる群より選ばれるもの
であることを特徴とする特許請求の範囲第1項もしくは
第2項記載の固体電解質組成物。 7、無機電解質が、分枝状ポリエチレンイミンのモノマ
ー単位当り0.1〜100モル%の範囲にある量にて含
まれていることを特徴とする特許請求の範囲第1項もし
くは第2項記載の固体電解質組成物。
[Scope of Claims] 1. A solid electrolyte composition comprising a crosslinked polymer obtained by crosslinking branched polyethyleneimine with a polyfunctional epoxy compound and an inorganic electrolyte. 2. Branched polyethyleneimine has the following general formula: ▲ Formula,
The solid electrolyte composition according to claim 1, characterized in that it has a chemical formula, table, etc. ▼. 3. Branched polyethyleneimine has a molecular weight of 300 to 10,000
3. The solid electrolyte composition according to claim 1 or 2, wherein the solid electrolyte composition has a molecular weight within a range of 0. 4. The solid electrolyte composition according to claim 1 or 2, wherein the polyfunctional epoxy compound is a diepoxy alkane or polyalkylene glycol type epoxy resin. 5. The solid electrolyte composition according to claim 1 or 2, wherein the polyfunctional epoxy compound is used in a proportion of 1 to 50 mol% relative to the branched polyethyleneimine. thing. 6. Inorganic electrolyte is LiClO_4, LiI, LiBF
_4, LiAsF_6, LiCF_3SO_3, LiP
F_6, LiSCN, NaI, NaSCN, NaBr,
3. The solid electrolyte composition according to claim 1 or 2, wherein the solid electrolyte composition is selected from the group consisting of KI, CsSCN, AgNO_3, CuCl_2, and Mg(ClO_4)_2. 7. Claim 1 or 2, characterized in that the inorganic electrolyte is contained in an amount ranging from 0.1 to 100 mol% per monomer unit of the branched polyethyleneimine. solid electrolyte composition.
JP60280660A 1985-12-13 1985-12-13 Solid electrolyte composition Pending JPS62140306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60280660A JPS62140306A (en) 1985-12-13 1985-12-13 Solid electrolyte composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60280660A JPS62140306A (en) 1985-12-13 1985-12-13 Solid electrolyte composition

Publications (1)

Publication Number Publication Date
JPS62140306A true JPS62140306A (en) 1987-06-23

Family

ID=17628151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60280660A Pending JPS62140306A (en) 1985-12-13 1985-12-13 Solid electrolyte composition

Country Status (1)

Country Link
JP (1) JPS62140306A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01124248A (en) * 1987-11-09 1989-05-17 Matsushita Electric Ind Co Ltd Electronic component
US7238451B2 (en) * 2000-12-29 2007-07-03 The Board Of Regents Of The University Of Oklahoma Conductive polyamine-based electrolyte
JP2012248442A (en) * 2011-05-30 2012-12-13 Hitachi Maxell Ltd Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
CN108365262A (en) * 2018-02-08 2018-08-03 广东猛狮新能源科技股份有限公司 A kind of 3D networks hybrid inorganic-organic all solid state electrolyte and a kind of lithium secondary battery
CN112448028A (en) * 2020-12-12 2021-03-05 安徽嘉誉伟丰机电科技有限公司 Preparation method of stable electrolyte suitable for secondary lithium battery
JP2021075636A (en) * 2019-11-11 2021-05-20 東洋インキScホールディングス株式会社 Aqueous conductive gel composition, and laminate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01124248A (en) * 1987-11-09 1989-05-17 Matsushita Electric Ind Co Ltd Electronic component
US7238451B2 (en) * 2000-12-29 2007-07-03 The Board Of Regents Of The University Of Oklahoma Conductive polyamine-based electrolyte
JP2012248442A (en) * 2011-05-30 2012-12-13 Hitachi Maxell Ltd Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
CN108365262A (en) * 2018-02-08 2018-08-03 广东猛狮新能源科技股份有限公司 A kind of 3D networks hybrid inorganic-organic all solid state electrolyte and a kind of lithium secondary battery
JP2021075636A (en) * 2019-11-11 2021-05-20 東洋インキScホールディングス株式会社 Aqueous conductive gel composition, and laminate
CN112448028A (en) * 2020-12-12 2021-03-05 安徽嘉誉伟丰机电科技有限公司 Preparation method of stable electrolyte suitable for secondary lithium battery

Similar Documents

Publication Publication Date Title
US5731104A (en) Batteries, conductive compositions, and conductive films containing organic liquid electrolytes and plasticizers
US4908283A (en) Preparation of ion conductive solid electrolyte
US5041346A (en) Ion conductors
JP3328262B2 (en) Crosslinking agent for solid polymer electrolyte, crosslinked solid polymer electrolyte and lithium polymer secondary battery manufactured using the same
US6015638A (en) Batteries, conductive compositions, and conductive films containing organic liquid electrolytes and plasticizers
CN100343330C (en) High ionic conductivity gel polymer electrolyte for chargeable polymer cell
JPH01294768A (en) Liquid containing polymer network as a solid electrolyte
JPH0799645B2 (en) Polymer solid electrolyte
CN111682261B (en) Repairable crosslinked solid polymer electrolyte, and preparation method and application thereof
US5300374A (en) Ion conducting polymers
JPS62140306A (en) Solid electrolyte composition
US5433877A (en) Ion-conductive polymer electrolyte
CN110504486A (en) A kind of functional quantum point composite solid electrolyte film and the preparation method and application thereof
US5501921A (en) Fabrication of alkane polymer electrolyte
JPS6355810A (en) Ion conducting solid electrolyte composition
JP3843505B2 (en) Polymer electrolyte and battery
JPS6355811A (en) Solid electrolyte composition
JP2925231B2 (en) Polymer solid electrolyte
JP3424235B2 (en) Solid electrode composition
Tigelaar et al. Synthesis and compatibility of ionic liquid containing rod-coil polyimide gel electrolytes with lithium metal electrodes
JPH01107474A (en) Lithium ion conductive polymer electrolyte
JP2014062255A (en) Polyimide resin
KR100473352B1 (en) Polyalkylene oxide Composition for Polymer Electrolytes with Enhanced Lithium Stability
EP3950769A1 (en) Polymeric binder and all-solid-state secondary battery including same
JPH02105855A (en) Ionically conductive composition