JPS6355811A - Solid electrolyte composition - Google Patents

Solid electrolyte composition

Info

Publication number
JPS6355811A
JPS6355811A JP61198177A JP19817786A JPS6355811A JP S6355811 A JPS6355811 A JP S6355811A JP 61198177 A JP61198177 A JP 61198177A JP 19817786 A JP19817786 A JP 19817786A JP S6355811 A JPS6355811 A JP S6355811A
Authority
JP
Japan
Prior art keywords
solid electrolyte
diisocyanate
electrolyte composition
present
trifunctional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61198177A
Other languages
Japanese (ja)
Other versions
JPH0588482B2 (en
Inventor
透 高橋
横尾 泰日児
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP61198177A priority Critical patent/JPS6355811A/en
Publication of JPS6355811A publication Critical patent/JPS6355811A/en
Publication of JPH0588482B2 publication Critical patent/JPH0588482B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Polyurethanes Or Polyureas (AREA)
  • Conductive Materials (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Fuel Cell (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、固体電解質組成物に関するものである。さら
に、詳しくは、ポリオキシアルキレングリセリンとアル
キレンジイソシアネートとを反応させて得られる架橋型
樹脂と無機イオン塩とからなることを特徴とする固体電
解質組成物である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to solid electrolyte compositions. More specifically, it is a solid electrolyte composition characterized by comprising a crosslinked resin obtained by reacting polyoxyalkylene glycerin and alkylene diisocyanate and an inorganic ionic salt.

[産業上の利用分野] 本発明は一次電池、二次電池、エレクトロクロミック表
示素子など電解質として従来より使用されていたところ
に利用出来る。
[Industrial Field of Application] The present invention can be applied to primary batteries, secondary batteries, electrochromic display devices, and other places where electrolytes have been conventionally used.

[従来の技術] 一次電池、二次電池、エレクトロクロミック(E CD
)表示素子などの電解質としては従来より液体のものが
用いられてきた。しかしながら、液体電解質は、部品外
部への液漏れ、電極物質の溶出などが発生しやすいため
長期信頼性の問題がある。
[Prior art] Primary batteries, secondary batteries, electrochromic (E CD)
) Liquid electrolytes have traditionally been used in display elements and the like. However, liquid electrolytes have problems with long-term reliability because liquid electrolytes tend to leak to the outside of components and elute electrode materials.

それに対して、固体電解質はそのような問題がなく各装
設の部品の構成が簡略化でき、更に薄膜化により部品の
軽量化、小型化が可能どなる利点を有している。これら
の特徴は、エレクトロニクスの進展に伴った小型、軽量
で信頼性の高い各種電子部品に対する要求に適合してい
るため、その開発研究が活発に行われている。
On the other hand, solid electrolytes do not have such problems and have the advantage that the configuration of each installed component can be simplified, and furthermore, by making the film thinner, the components can be made lighter and smaller. These features meet the demands for various electronic components that are small, lightweight, and highly reliable as electronics advances, and research and development efforts are therefore being actively conducted.

固体電解質材料としては、従来より、主に無機物、例え
ばβ−アルミナ、酸化銀、ルビジウム。
Solid electrolyte materials have traditionally been mainly inorganic materials such as β-alumina, silver oxide, and rubidium.

ヨウ化リチウムなどが知られている。しかし、無機物は
任意の形に成形、成膜するのが困難な場合が多く、かつ
、一般に高価格であるため、実用上は問題が多い。
Lithium iodide is known. However, since inorganic materials are often difficult to mold into arbitrary shapes and form into films, and are generally expensive, there are many problems in practical use.

一方、高分子物質(ポリマー)は均一な薄膜を任意の形
状に容易に加工できる長所があるところから、種々のポ
リマーを用いた固体電解質がこれまでに提案されている
。すなわち、ポリエチレンオキシド、ポリプロピレンオ
キシド、ポリエチレンイミン、ポリエピクロルヒドリン
、ポリエチレンサクシネートなどのポリマーと、Li、
Naなとの無機イオン塩との組み合せからなる固体電解
質組成物及びそれらの組成物を用いた電池が既に提案さ
れている(例、特開昭55−98480号。
On the other hand, solid electrolytes using various polymers have been proposed since polymers have the advantage that a uniform thin film can be easily processed into any shape. That is, polymers such as polyethylene oxide, polypropylene oxide, polyethyleneimine, polyepichlorohydrin, polyethylene succinate, Li,
Solid electrolyte compositions comprising a combination of Na and inorganic ion salts and batteries using these compositions have already been proposed (eg, JP-A-55-98480).

同58−75779号、同58−108667号、同5
8−188062号、同58−188063号、同59
−71263号公報、米国特2許4.576.882号
)、シかしながら、これらの組成物は、イオン導電性が
充分でないため現在の段階では実用化までには至ってい
ない。
No. 58-75779, No. 58-108667, No. 5
No. 8-188062, No. 58-188063, No. 59
However, these compositions have not been put into practical use at the current stage because they do not have sufficient ionic conductivity.

イオン伝導度を増加させるために、最近、高分子材料を
用いた固体電解質において、高いイオン伝導性を与える
大きな要因として、高分子のアモルファス領域の存在が
重要との観点からポリエチレングリコールなどを架橋剤
により架橋する方法が提案されている(特開昭60−1
48003号、同60−262852号など)、また、
三官能性ポリオキシアルキレングリセリンを、架橋剤と
して芳香族ジイソシアネートを用いて架橋させている報
告もある(昭和60年日本化学会春季年会3Z−46)
、これらの例においても、イオン伝導度が不充分であり
、実用化までには至っていない。
In order to increase ionic conductivity, polyethylene glycol and other cross-linking agents have recently been used in solid electrolytes using polymer materials, from the perspective that the presence of an amorphous region of the polymer is a major factor in providing high ionic conductivity. A method of crosslinking has been proposed by
No. 48003, No. 60-262852, etc.), and
There is also a report of crosslinking trifunctional polyoxyalkylene glycerin using an aromatic diisocyanate as a crosslinking agent (1985 Chemical Society of Japan Spring Annual Meeting 3Z-46)
Even in these examples, the ionic conductivity is insufficient, and they have not been put into practical use.

本発明は、かかる従来の欠点を改善し、高いイオン伝導
性を有し、かつ成形加工性に優れた固体電解質組成物を
提供することにある。
The present invention aims to improve such conventional drawbacks and provide a solid electrolyte composition that has high ionic conductivity and excellent moldability.

本発明は、下記一般式 %式%) で表わされる数平均分子量4,000未満の三官能性ポ
リオキシアルキレングリセリンとフルキレンジイソシア
ネートとを反応させて得られる架橋型樹脂と無機イオン
塩とからなることを特徴とする固体電解質組成物に関す
るものである。
The present invention consists of a crosslinked resin obtained by reacting a trifunctional polyoxyalkylene glycerin with a number average molecular weight of less than 4,000 represented by the following general formula (%) and a fullylene diisocyanate, and an inorganic ionic salt. The present invention relates to a solid electrolyte composition characterized by the following.

固体電解質として高分子材料を用いる場合、導電率に寄
与する物性として、用いる高分子固体電解質のガラス転
移点が重要である。すなわち、ガラス転移点が低い物質
であるほど高分子鎖のミクロブラウン運動が活発になり
イオン伝導が促進されるためである。
When using a polymer material as a solid electrolyte, the glass transition point of the solid polymer electrolyte used is important as a physical property that contributes to electrical conductivity. That is, the lower the glass transition point of a substance, the more active the micro-Brownian motion of the polymer chain becomes, promoting ionic conduction.

本発明は、三官能性ポリオキシグリセリンを架橋フィル
ム化する時に架橋剤として脂肪族ジイソシアネートを用
いることにより高い電導性を有する固体電解質な得るこ
とを達成した。
The present invention has achieved obtaining a solid electrolyte with high conductivity by using an aliphatic diisocyanate as a crosslinking agent when forming a trifunctional polyoxyglycerin into a crosslinked film.

本発明に用いられるポリオキシアルキレングリセリン CH2−0−(−CH2CH20升H のnは0以上である。但しnが同時に2ヶ以上Oとなる
場合を除く、数平均分子量は100〜to、ooo、好
ましくは500〜4.000である。
n of the polyoxyalkylene glycerin CH2-0-(-CH2CH20 sho H) used in the present invention is 0 or more.However, except when n is 2 or more O at the same time, the number average molecular weight is 100 to, ooo, Preferably it is 500 to 4,000.

また、本発明で用いられるアルキレンジイソシアネート
としては、ヘキサメチレンジイソシアネート、トリメチ
レンジイソシアネート、テトラメチレンジイソシアネー
ト、ペンタメチレンジイソシアネートなどが挙げられる
Furthermore, examples of the alkylene diisocyanate used in the present invention include hexamethylene diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, and the like.

アルキレンジイソシアネートの使用量は、アルキレンジ
イソシアネートのインシアナト基(以下NC0)のモル
数と三官能性ポリオキシグリセリンが有する水酸基(以
下01()のモル数の比OH: NCOが1:0.3か
らlニア、好ましくは1 : 0.5から1=5である
The amount of alkylene diisocyanate to be used is determined by the ratio of the number of moles of incyanato groups (hereinafter referred to as NC0) of the alkylene diisocyanate to the number of moles of hydroxyl groups (hereinafter referred to as 01 ()) possessed by the trifunctional polyoxyglycerin (OH:NCO) from 1:0.3 to 1. near, preferably from 1:0.5 to 1=5.

アルキレンジイソシアネートの使用量が、この範囲より
小さいと架橋反応が不十分でフィルム状になりにくい、
また、この範囲よりアルキレンジイソシアネートを多く
使用すると、電導度が減少して好ましくない。
If the amount of alkylene diisocyanate used is smaller than this range, the crosslinking reaction will be insufficient and it will be difficult to form a film.
Furthermore, if the alkylene diisocyanate is used in an amount larger than this range, the electrical conductivity will decrease, which is not preferable.

本発明の電解質組成物に含まれる無機イオン塩には特に
制限はないが、たとえば、LiCuO4゜Li I 、
Li SCN、LiBF4 、LiAsF6 。
The inorganic ionic salt contained in the electrolyte composition of the present invention is not particularly limited, but examples include LiCuO4°Li I,
LiSCN, LiBF4, LiAsF6.

LiCF3SO3、LiPF6 、NaI、Na5CN
、NaBr、KI 、Cs5CN、AgNO3。
LiCF3SO3, LiPF6, NaI, Na5CN
, NaBr, KI, Cs5CN, AgNO3.

CuCl2.Mg (CuO4)2などを使用すること
ができる。
CuCl2. Mg (CuO4)2, etc. can be used.

また1本発明における無機イオン塩の添加量は三官能性
ポリオキシグリセリンのエチレンオキサイドユニット 
(以下EO)に対して、LiCuO4/E OX 10
0  (%/l/%)がo、05〜50モル%、特に好
ましくは0.1〜30モル%になるように添加する。S
機イオン塩の量がこれより少ないと、その効果がなく、
無機イオン塩の使用量が多すぎる場合には、過剰の無機
イオン塩が解離せず、単に混在するのみになり、このた
めイオン導電性が逆に低下する。
In addition, the amount of inorganic ion salt added in the present invention is ethylene oxide units of trifunctional polyoxyglycerin.
(hereinafter referred to as EO), LiCuO4/E OX 10
It is added so that 0 (%/l/%) is o, 05 to 50 mol%, particularly preferably 0.1 to 30 mol%. S
If the amount of organic salt is less than this, there will be no effect,
If the amount of inorganic ionic salt used is too large, the excess inorganic ionic salt will not dissociate and will simply coexist, resulting in a decrease in ionic conductivity.

本発明において三官能性ポリオキシアルキレングリセリ
ンとアルキレンジイソシアネートとの架橋は特に制限は
なく、一般的には両者の混合物を加熱することで達成さ
れる。
In the present invention, crosslinking between trifunctional polyoxyalkylene glycerin and alkylene diisocyanate is not particularly limited, and is generally achieved by heating a mixture of the two.

また、本発明において無機イオン塩の添加方法は特に制
限はない、一般的には三官能性ポリエチレンオキシグリ
セリン、アルキレンジインシアネートおよび無機イオン
塩を、必要ならばテトラヒドロフランなどの溶媒を用い
て、均一に混合し、次いで、得られた混合物を架橋反応
させて無機イオン塩を含む固体電解質組成物を得ること
ができる。
In addition, in the present invention, there is no particular restriction on the method of adding the inorganic ionic salt; generally, trifunctional polyethylene oxyglycerin, alkylene diincyanate, and the inorganic ionic salt are uniformly added using a solvent such as tetrahydrofuran if necessary. A solid electrolyte composition containing an inorganic ionic salt can be obtained by mixing and then subjecting the resulting mixture to a crosslinking reaction.

また、これらの組成物は、注型、引抜、溶液流延法等の
各種成形方法により、フィルム状、繊維状、パイプ、チ
ューブ状等にして実用に供される。
Further, these compositions are put into practical use in the form of films, fibers, pipes, tubes, etc. by various molding methods such as casting, drawing, and solution casting.

[発明の効果] 本発明の固体電解質組成物は高いイオン導電性と優れた
成形加工性を持つため、−次電池、二次電池、燃料電池
、エレクトロクコミック表示素子などに使用する固体電
解質として極めて有用である。
[Effects of the Invention] Since the solid electrolyte composition of the present invention has high ionic conductivity and excellent moldability, it can be used as a solid electrolyte for secondary batteries, secondary batteries, fuel cells, electrocomic display elements, etc. Extremely useful.

[本発明の実施例] 以下に実施例及び比較例を示す。実施例及び比較例にお
いて、各種原料は各々に適した方法で乾燥したものを使
用した。またフィルム形成能は原料が固化することで確
認した。
[Examples of the present invention] Examples and comparative examples are shown below. In the Examples and Comparative Examples, various raw materials were dried using methods suitable for each. Film-forming ability was also confirmed by solidifying the raw material.

実施例1 アルミシャーレに三官能性ポリオキシアルキレングリセ
リン(第−工業製品型、数平均分子量1.003 、 
 n=8.9 、  nは三官能性ポリエチレンオキシ
ドが有するEOloHのモル比を示す)を1 g (E
O=20.7mmol 、 OH=3mmol )をと
り、これに過塩素酸リチウムのテトラヒドロフラン溶液
(濃度0.01 g/mu)を2.2ml (過酸化リ
チウム0.022g = 0.207mmo+ )を加
え、さらに、ヘキサメチレンジイソシアネート0.25
23g (1,5mmol 、 NOC=3mzol 
)を加え、攪拌した。この液状組成物を窒素雰囲気下7
5°C121時間加熱、架橋してフィルムを得た。
Example 1 Trifunctional polyoxyalkylene glycerin (No. 1 industrial product type, number average molecular weight 1.003,
1 g (E
O = 20.7 mmol, OH = 3 mmol), 2.2 ml of a tetrahydrofuran solution of lithium perchlorate (concentration 0.01 g/mu) (lithium peroxide 0.022 g = 0.207 mmo+) was added thereto, Furthermore, hexamethylene diisocyanate 0.25
23g (1.5mmol, NOC=3mzol
) and stirred. This liquid composition was mixed under nitrogen atmosphere for 7 days.
A film was obtained by heating and crosslinking at 5°C for 121 hours.

得られたフィルムの比電導度(σ)を複数インピーダン
ス法(室温)で測定した結果、4.4×10 =S /
 cmの値を得た。以下これらの結果を表1に示す。
The specific conductivity (σ) of the obtained film was measured using the multiple impedance method (room temperature) and was found to be 4.4×10 = S /
The value in cm was obtained. These results are shown in Table 1 below.

実施例2〜5 実施例1において、表1に示すヘキサメチレンジイソシ
アネートと過塩素酸リチウムの添加量を変えた以外は、
実施例1と同様に行なった。
Examples 2 to 5 In Example 1, except that the amounts of hexamethylene diisocyanate and lithium perchlorate shown in Table 1 were changed,
The same procedure as in Example 1 was carried out.

比較例1 実施例1において、表1に示すヘキサメチレンジイソシ
アネートに変えて芳香族のジイソシアネートであるトル
イレン2.4−ジイソシアネートを用いた以外は、実施
例3と同様に行なった。
Comparative Example 1 The same procedure as in Example 3 was carried out except that in Example 1, toluylene 2,4-diisocyanate, which is an aromatic diisocyanate, was used instead of hexamethylene diisocyanate shown in Table 1.

実施例6〜9 実施例1において三官能性ポリオキシアルキレングリセ
リンとして分子l 1300  (第−工業製品型n=
9.2)のものを用い、表2に示すヘキサメチレンジイ
ソシアネートと過塩素酸リチウムの添加量を変えた以外
は、実施例1と同様に行なった。
Examples 6 to 9 In Example 1, as trifunctional polyoxyalkylene glycerin, molecule l 1300 (No. 1 industrial product type n=
9.2) was used, and the same procedure as in Example 1 was performed except that the amounts of hexamethylene diisocyanate and lithium perchlorate shown in Table 2 were changed.

表  1Table 1

Claims (1)

【特許請求の範囲】 下記一般式 ▲数式、化学式、表等があります▼ で表わされる数平均分子量4,000未満の三官能性ポ
リオキシアルキレングリセリンとアルキレンジイソシア
ネートとを反応させて得られる架橋型樹脂と無機イオン
塩とからなることを特徴とする固体電解質組成物。
[Claims] A crosslinked resin obtained by reacting a trifunctional polyoxyalkylene glycerin with a number average molecular weight of less than 4,000 represented by the following general formula ▲ Numerical formula, chemical formula, table, etc. ▼ and an alkylene diisocyanate. A solid electrolyte composition comprising: and an inorganic ionic salt.
JP61198177A 1986-08-26 1986-08-26 Solid electrolyte composition Granted JPS6355811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61198177A JPS6355811A (en) 1986-08-26 1986-08-26 Solid electrolyte composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61198177A JPS6355811A (en) 1986-08-26 1986-08-26 Solid electrolyte composition

Publications (2)

Publication Number Publication Date
JPS6355811A true JPS6355811A (en) 1988-03-10
JPH0588482B2 JPH0588482B2 (en) 1993-12-22

Family

ID=16386753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61198177A Granted JPS6355811A (en) 1986-08-26 1986-08-26 Solid electrolyte composition

Country Status (1)

Country Link
JP (1) JPS6355811A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0224975A (en) * 1988-07-14 1990-01-26 Hitachi Maxell Ltd Lithium ion conducting polymer electrolyte
JPH02138364A (en) * 1988-11-18 1990-05-28 Japan Carlit Co Ltd:The Solid-state polyelectrolyte and its production
JPH0488057A (en) * 1990-08-01 1992-03-19 Tajima Inc Electrically conductive polyurethane composition and method for imparting conductivity to substrate
WO1997012412A1 (en) * 1995-09-29 1997-04-03 Showa Denko K.K. Film for separator of electrochemical apparatus, and production method and use thereof
US6096456A (en) * 1995-09-29 2000-08-01 Showa Denko K.K. Film for a separator of electrochemical apparatus, and production method and use thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0224975A (en) * 1988-07-14 1990-01-26 Hitachi Maxell Ltd Lithium ion conducting polymer electrolyte
JPH02138364A (en) * 1988-11-18 1990-05-28 Japan Carlit Co Ltd:The Solid-state polyelectrolyte and its production
JPH0488057A (en) * 1990-08-01 1992-03-19 Tajima Inc Electrically conductive polyurethane composition and method for imparting conductivity to substrate
WO1997012412A1 (en) * 1995-09-29 1997-04-03 Showa Denko K.K. Film for separator of electrochemical apparatus, and production method and use thereof
US6096456A (en) * 1995-09-29 2000-08-01 Showa Denko K.K. Film for a separator of electrochemical apparatus, and production method and use thereof

Also Published As

Publication number Publication date
JPH0588482B2 (en) 1993-12-22

Similar Documents

Publication Publication Date Title
US5731104A (en) Batteries, conductive compositions, and conductive films containing organic liquid electrolytes and plasticizers
US4620944A (en) Macromolecular material of ionic conduction for producing electrolytes or electrodes
TW320784B (en)
US6015638A (en) Batteries, conductive compositions, and conductive films containing organic liquid electrolytes and plasticizers
US5041346A (en) Ion conductors
US5527639A (en) Galvanic cell
JPH03115359A (en) Ionically conductive material and preparation thereof
US5159001A (en) Ion-conductive polymer electrolyte
JPH06509811A (en) Perhalogenated sultone-derived monomer and polymer obtained from the monomer
JPH06140052A (en) Gel-like electrolyte
US5098589A (en) Ion-conductive polymer electrolyte
JPH05202281A (en) Ionically conductive polyelectrolyte
JPS62249361A (en) Organic solid electrolyte
JPH11306856A (en) Polymer solid electrolyte
JPS6355811A (en) Solid electrolyte composition
JP2762145B2 (en) Ion conductive polymer electrolyte
JPH02291603A (en) Ion conductive polymer electrolyte and battery using it
JPH06187822A (en) Polymeric solid electrolyte
JP2001055441A (en) Ion-conductive molecule, ionic conductor and production of ionic conductor
JP2790467B2 (en) Polymer solid electrolyte and method for producing the same
JPS6355810A (en) Ion conducting solid electrolyte composition
JP2813832B2 (en) Ion conductive polymer electrolyte
JPS62140306A (en) Solid electrolyte composition
JP2941812B2 (en) Polymer solid electrolyte
JPH02105855A (en) Ionically conductive composition