JPH0335060A - Polymer solid electrolyte - Google Patents

Polymer solid electrolyte

Info

Publication number
JPH0335060A
JPH0335060A JP1170565A JP17056589A JPH0335060A JP H0335060 A JPH0335060 A JP H0335060A JP 1170565 A JP1170565 A JP 1170565A JP 17056589 A JP17056589 A JP 17056589A JP H0335060 A JPH0335060 A JP H0335060A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
solid polymer
electrolyte according
polyether
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1170565A
Other languages
Japanese (ja)
Inventor
Shuichi Ido
秀一 井土
Hiroshi Imachi
宏 井町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP1170565A priority Critical patent/JPH0335060A/en
Publication of JPH0335060A publication Critical patent/JPH0335060A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a polymer solid electrolyte which is suitable for electrochemical devices such as a primary cell or an electrochemical sensor by using a comb-shaped polymer of a specific polyether, an alkali or alkaline earth metal salt and a solvent dissolving the salt. CONSTITUTION:(A) A comb-shaped polymer obtained by reaction of a polyether which has a structure in which the H on the one terminal OH group of the polyether is substituted with methyl or ethyl group and the H on the other terminal OH group is substituted with a group of formula I (R1 is H, methyl, phenyl) or formula II (R2 is methyl or phenyl), and bears reactive double bonds with a low-molecular monomer bearing a reactive double bond, is admixed to (B) an alkali metal or alkaline earth metal and/or an organic ammonium salt and (C) a solvent which can dissolve component B to give the subject composition.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、−次電池、二次電池1エレクトロクロミフク
デイスプレイ、電気化学センサー、イオントフォレVス
、及びコンデンサーその他の電気化学的デバイスに用い
る高分子固体電解質に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to solid polymers used in secondary batteries, secondary batteries, electrochromic displays, electrochemical sensors, iontophores, capacitors, and other electrochemical devices. It concerns electrolytes.

従来技術とその問題点 アルカリ金属塩、アルカリ土類金薦塩等を溶解させたポ
リ丈−テρをゲル化したものは、比較的高いイオン伝導
性を示すことから、固体電解質としての応用面で広く関
心を集めている。
Conventional technology and its problems Gelled polyester ρ in which alkali metal salts, alkaline earth metal salts, etc. are dissolved exhibits relatively high ionic conductivity, so it is difficult to apply as a solid electrolyte. is attracting wide interest.

ポリエーテμとしては、ポリエチレンオキシドまたは、
エチレンオキノドとプロピレンオキシドのコポリマーが
、最も広く使われている。
As polyether μ, polyethylene oxide or
Copolymers of ethylene oxide and propylene oxide are the most widely used.

ポリエーテμを固体電解質として用いる方法としては、
大きく分けて3つの方法が広く行われている。その−1
は、常温で固体である高分子量のポリエチレンオキシド
に3JIllFlを溶解し、そのまま使用する方法であ
る。この方法は、合成反応や、架橋反応などを一切含ま
ないため材料のl11jIl!も容易であり、製膜性も
比較的よい。しかし、低温で使用する場合には、ポリエ
ーテμ鎖の結晶化のために伝導度が低くなるという欠点
がある。その2は、比較的低分子量のポリエーテμを架
橋させることにより、固体とする方法である。この方法
は、ポリエーテルの結晶化を防ぎ、分子鎖の運動性を高
める目的で架橋を行うものである。この方法は、低温で
結晶化しやすいポリエチレンオキシドの低温での伝導度
の向上には、大きい効果を示す。しかし、高分子鎖の運
動性は架liにより抑制されるので低い。
As a method of using polyether μ as a solid electrolyte,
Broadly speaking, three methods are widely used. Part-1
This is a method in which 3JIllFl is dissolved in high molecular weight polyethylene oxide that is solid at room temperature and used as is. This method does not involve any synthesis reaction or crosslinking reaction, so the l11jIl! It is also easy to form a film, and the film-forming property is also relatively good. However, when used at low temperatures, the conductivity is low due to crystallization of the polyether μ chains. The second method is to form a solid by crosslinking relatively low molecular weight polyether μ. In this method, crosslinking is performed for the purpose of preventing crystallization of polyether and increasing the mobility of molecular chains. This method is highly effective in improving the low-temperature conductivity of polyethylene oxide, which tends to crystallize at low temperatures. However, the mobility of the polymer chains is low because it is suppressed by the bridge Li.

その3は、比較的低分子量のポリエーテμを、主鎖とな
るべき分子鎖にグラフトし、櫛形ポリマーとする方法で
ある。櫛形ポリマーは、寓温で機械的強度が弱いという
欠点があるが、これらのうちで最もイオン伝導度は高い
The third method is to graft relatively low molecular weight polyether μ onto the molecular chain that is to become the main chain to form a comb-shaped polymer. Although comb-shaped polymers have the disadvantage of low mechanical strength at low temperatures, they have the highest ionic conductivity among them.

最近の研究では、伝導度の最も高い、櫛形ポリマーを用
いる提案が増えている。代表的なものとしては、特開昭
61−254626号公報に記載の如く、主鎖隘ポリフ
ォスフ1ゼンを用いたもの、特開昭65−170857
号公報に記載の如く1主鎖にポリシロキサンを用いたも
のなどがある。これらのものは、主鎖として−P−N−
1又は−81−0−を用いており、電池などの酸化還元
雰囲気では不安定となる。
Recent research has increasingly proposed using comb-shaped polymers, which have the highest conductivity. Typical examples include those using main chain polyphosph-1zene as described in JP-A-61-254626, and JP-A-65-170857.
There are those using polysiloxane in one main chain as described in Japanese Patent Publication No. These have -P-N- as the main chain.
1 or -81-0-, which is unstable in an oxidation-reduction atmosphere such as a battery.

発明の目的 本発明は、上記問題点に鑑みなされたものであり1化学
的1または電気化学的な安完性に優れ、生産性に優れた
、イオン伝導度の高い高分子固体電解質を提供すること
を目的とするものである。
OBJECTS OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and provides a solid polymer electrolyte with excellent chemical or electrochemical stability, excellent productivity, and high ionic conductivity. The purpose is to

発明の構成 本発明は、王妃目的を達成するべく、ポリエーテ〃ジオ
ー〃の片末端の水酸基の水素を、メチ〃基箋又はエチ〃
基で置換した構造を持ち、もう一方の末端の水酸基の水
素を、下記の一般式〔I〕、又は式〔II〕で置換した
#I造を持つ反応性二重結合を 持つポリエーテμ(ム)に反応性二重結合を反応させて
なる櫛形ポリマー、または反応性二重結合を持つポリエ
ーテ/I/(ム)に反応性二重結合を持つ低分子量のモ
ノマー(B)を混合したものを反応させてなる櫛形ポリ
マーに、アルカリ金属塩、アルカリ土類金jI塩、及び
有機アンモニウム塩の中から選ばれる1種以上の塩と骸
塩を溶解することができる溶剤を含ませてなることを特
徴とする高分子固体電解質に係るものである。
Structure of the Invention In order to achieve the objective, the present invention replaces the hydrogen of the hydroxyl group at one end of polyether diol with methoxy or ethyl
polyether μ(mu) having a reactive double bond with #I structure in which the hydrogen of the hydroxyl group at the other end is substituted with the following general formula [I] or formula [II]. ) with a reactive double bond, or a mixture of polyether/I/(mu) with a reactive double bond and a low molecular weight monomer (B) with a reactive double bond. The comb-shaped polymer obtained by the reaction contains a solvent capable of dissolving the skeleton salt and one or more salts selected from alkali metal salts, alkaline earth gold jI salts, and organic ammonium salts. This relates to a characteristic polymer solid electrolyte.

ポリエーテルジオ−〃がポリエチレンオキシドの場合、
高温でのイオン伝導度に優れているが、低温ではW端に
低いイオン伝導度を示す。
When polyether di-〃 is polyethylene oxide,
It has excellent ionic conductivity at high temperatures, but exhibits low ionic conductivity at the W edge at low temperatures.

これは、室温以下の低温でポリエチレンオキシドの鎖が
結晶化し、イオンの移動速度が低下するためであると考
えられている0ボリエーテ〜ジオ−〃がプロピレンオキ
シドの場合、ポリエチレンオキシドのような結晶状態は
見られず、常にアモ〃ファス状態をとるかへイオン伝導
度は低い。これは、塩の解離度が十分でないためである
と考えられている。一方、ポリエーテμジオー〃がエチ
レンオキシドとプロピレンオキシドのコポリマー構造の
場合、低温でも結晶化し&<<、ポリエチレンオキシド
単独のものに比べて、室温以下の低温でのイオン伝導性
に優れている。特に、プロピレンオキシドの七〃比率を
30メ以下にすると、イオン伝導度は高くなる・ ポリエーテルジオーμの片末端の水酸基は、反応性が高
く二次電池の負極金員と反応し、固体電解質め劣化の原
因となる。骸水酸基の水素を、安定なエチル基、または
エチル基、又はその他の1〃キρ基に置換した構造(し
ておくと、負極金属との反応を防ぐことができる。
This is thought to be because the chains of polyethylene oxide crystallize at low temperatures below room temperature, reducing the ion movement speed. The ionic conductivity is low because it is always in an amorphous state. This is thought to be because the degree of dissociation of the salt is insufficient. On the other hand, when polyether μdiode has a copolymer structure of ethylene oxide and propylene oxide, it crystallizes even at low temperatures and has excellent ionic conductivity at low temperatures below room temperature, compared to polyethylene oxide alone. In particular, when the propylene oxide ratio is set to 30 or less, the ionic conductivity increases.The hydroxyl group at one end of polyether diol μ is highly reactive and reacts with the negative electrode metal of the secondary battery, forming a solid electrolyte. This may cause deterioration. A structure in which the hydrogen of the skeleton hydroxyl group is replaced with a stable ethyl group, an ethyl group, or another 1-kiρ group (if this is done, reaction with the negative electrode metal can be prevented).

反応性二重結合を持つポリエーテμは、ポリエーテμジ
オー〃と、反応性二重結合を持つ基のハロゲン化物とを
、塩基性条件下で反応させて得る。ハロゲン化物のハロ
ゲンは、OX、 Br。
Polyether μ having a reactive double bond is obtained by reacting polyether μ diol with a halide of a group having a reactive double bond under basic conditions. The halogen of the halide is OX, Br.

工が一般的に用いられる。反応性二重結合を持つ基とは
1アリp基、Vンナミp基1クロチ〃基1メタリ〃基で
ある。この反応方法は、ウィリアムソン合成法として、
よく知られているものである・ 反応性二重結合を持つポリエーテμのみを反応させてな
る櫛形ポリマーは、下肥の一般式で表される構造をとる
。跋柵形ポリマーは、主鎖、側鎖ともにすべて安定なo
−o、a−o−oの結合からなっており、かつ活性な酸
素、活性な水素を持っていない。そのため、該櫛形ポリ
マーは、化学的、または電気化学的に極めて安定である
。また、骸櫛形ポリマーは耐酸化性、耐還元性に優れて
いるため、二次電池の固体電解質として用いた場合でも
、繰り返し充放電に対して安定である。
commonly used. The groups having a reactive double bond are one p group, one p group, one cloth group, and one metal group. This reaction method is known as the Williamson synthesis method.
A well-known comb-shaped polymer made by reacting only polyether μ with reactive double bonds has a structure expressed by the general formula of Shimohi. The main chain and side chains of the cross-bar polymer are all stable o
-o, a-o-o bonds, and does not have active oxygen or active hydrogen. Therefore, the comb-shaped polymer is extremely stable chemically or electrochemically. Furthermore, since the skeleton comb polymer has excellent oxidation resistance and reduction resistance, it is stable against repeated charging and discharging even when used as a solid electrolyte of a secondary battery.

反応性二重結合を持つポリエーテμを単独で硬化させた
だけでも、化学的または電気化学的に安定な櫛形ポリマ
ーが得られるが、硬化に長時間を要する。より反応性の
高い反応性モノマーである、アクリル酸、アクリル酸メ
チ〃、メIクリ〃酸−メタクリA/aメチル、アクリp
アミド〜N、N−ジメチμアクリ〃アミド、ゲタジエン
、イソプレン、スチレンなどを混合するといずれも硬化
時間を偽から1/1oまで頬部することが可能である。
A chemically or electrochemically stable comb-shaped polymer can be obtained by curing only polyether μ having reactive double bonds, but curing takes a long time. More reactive monomers such as acrylic acid, methacrylic acid, methacrylic acid-methacrylate A/a methyl, acrylic acid
By mixing amide to N,N-dimethymu acrylamide, getadiene, isoprene, styrene, etc., it is possible to shorten the curing time from false to 1/1 degree.

反応性モノマーを混合したもののうち、化学的、または
電気化学的安走性の点では、ゲタジエン、またはスチレ
ンを混合し硬化させたものがもっとも優れている。反応
性モノマーの混合比率は限定しないが、10vt%から
50wt%が適当である。また、結晶性−の高いポリエ
チレンオキシドを側鎖として用いる場合、スチレンを多
めcrji合することにより、側鎖の結晶化によるイオ
ン伝導度の低下を防ぐことができる。結晶性の低いヲン
〆ムコポリマーを側鎖として用いる場合、反応性モノマ
ーの比率を低くしたほうが、イオン伝導度は高くなるO 壌を溶解することができる溶剤は、テトラヒドロフラン
12−メチルテトラヒドロフラン、1.3−ジオキソフ
ン%4,4−ジメチ/I/−1゜3−ジオキサ2% r
−ブチロツクトン、エチVンカーポネート、プルピレン
カーボネート、ブチレンカーボネート、ス〃ホッン、3
−メチ〃スμホヲンへt6rt、−ブチ〃エーテIW 
、i!go −ブチ〃エーテ〃、1.2ジメトキVエタ
ン、1゜2エトキシメトキシエタン、メチ〃ジグフイム
、メチ〃トリグライム、メチ〃テトヲグライム、エチμ
グフィム、エチ〃ジグフイふ、などがある・ 櫛形ポリマーに含まれる〜アルカリ金属塩、アルカリ土
類金属塩、又は有機アンモニウム塩としては、Li0I
O4,Li、B]r4.L+1.ム1116゜Li01
’5SO3,IJiP]r6. Lid、 LiBr 
LISONNax、Li2B100110. l1lO
F3002.NaBrNa5ON、 KS(3N、 M
gO14,M&’(0104)2゜(OH3)aNBF
4. (OH3)4NBr、 (02H5)4NO10
4゜(02H5)4NI  (03H7)4MBr、 
(n−04H?)410104゜(n O+Ht)4N
Z、 (n−05H11)4NIが好ましいが、限定は
しない。
Among the mixtures of reactive monomers, those obtained by mixing and curing getadiene or styrene are the most excellent in terms of chemical or electrochemical stability. Although the mixing ratio of the reactive monomers is not limited, a suitable range is from 10 vt% to 50 wt%. In addition, when polyethylene oxide with high crystallinity is used as a side chain, a decrease in ionic conductivity due to crystallization of the side chain can be prevented by adding a large amount of styrene. When a water-based copolymer with low crystallinity is used as a side chain, the lower the proportion of reactive monomers, the higher the ionic conductivity.Solvents that can dissolve oxygen are tetrahydrofuran, 12-methyltetrahydrofuran, 1. 3-Dioxofurne%4,4-dimethy/I/-1゜3-dioxa2% r
-Butylocton, ethylene carbonate, propylene carbonate, butylene carbonate, carbonate, 3
-Methi〃μhoon t6rt, -buti〃ete IW
, i! go -butyete, 1.2 dimethoxyV ethane, 1゜2 ethoxymethoxyethane, methoxy methoxymethane, methoxy triglyme, methoxy triglyme, ethyl μ
There are Li0I, Echi〃Jigfifu, etc. - Alkali metal salts, alkaline earth metal salts, or organic ammonium salts contained in comb-shaped polymers include Li0I
O4, Li, B]r4. L+1. Mu1116゜Li01
'5SO3, IJiP] r6. Lid, LiBr
LISONNax, Li2B100110. l1lO
F3002. NaBrNa5ON, KS (3N, M
gO14,M&'(0104)2゜(OH3)aNBF
4. (OH3)4NBr, (02H5)4NO10
4゜(02H5)4NI (03H7)4MBr,
(n-04H?)410104゜(n O+Ht)4N
Z, (n-05H11)4NI is preferred, but not limited.

反応性二重結合を持つポリエーテルを反応させる方法と
しては、加熱する方法、紫外線1及び/又は可視光線を
照射する方法、電子線を照射する方法のいずれの方法で
もよい。加熱する方法の場合、フジカル反応開始剤とし
て、ベンシイ〃べ〃オキシド1アゾビスインブチロニト
リμ等を加えておくと、反応を容易に起こすことができ
る。また、紫外線、及び/又は可視光線を照射する方法
の場合、光開始剤として1ベンゾイン、ベンゾフェノン
、アセトフェノン、α−フェニ〃アセトフェノン等を加
えておくと、反応を容易に起こすことができる。
The polyether having reactive double bonds may be reacted by any of the following methods: heating, irradiation with ultraviolet 1 and/or visible light, and irradiation with electron beams. In the case of the heating method, the reaction can be easily caused by adding benzybe oxide 1 azobisin butyronitrium μ as a physical reaction initiator. In addition, in the case of a method of irradiating with ultraviolet rays and/or visible light, the reaction can be easily caused by adding 1-benzoin, benzophenone, acetophenone, α-phenylacetophenone, etc. as a photoinitiator.

実施例 以下、本発明の詳細について、実施例(より説明する。Example Hereinafter, the details of the present invention will be explained in more detail in Examples.

実施例1゜ ポリエチレンオキVドアリ〃メチ〃エーテル(アリ〃エ
ーテル化率98%、平均分子量390)10重量部に、
6重量部の過塩素酸リチウム、10重量部のプロピレン
カーボネイト、0.01重量部のベンゾフェノンを、均
一に混合溶解した@この混合物をガラス板上にキャスト
し、ア〃ゴン気流中10の紫外線ランプで15備の距離
から8分間照射し、100#llのフィルムを得た。こ
の膜のイオン伝導度を、複素インピーダンス法で測定し
た結果、25℃で5.OX 10−’ S備−1であっ
た。この膜を2枚の金属リチウム箔(200p#l)′
Qはさんで80℃120μム、A−の電流密度で200
時間の通電試験を行った0その結果、膜の液化などの劣
化は見られず実用土の問題はなかった。
Example 1 10 parts by weight of polyethylene oxide V-ary methyl ether (ary etherification rate 98%, average molecular weight 390),
6 parts by weight of lithium perchlorate, 10 parts by weight of propylene carbonate, and 0.01 part by weight of benzophenone were uniformly mixed and dissolved. This mixture was cast on a glass plate and heated with an ultraviolet lamp of 10 times in an Agon gas stream. The film was irradiated for 8 minutes from a distance of 15 mm to obtain a 100 #ll film. The ionic conductivity of this membrane was measured using the complex impedance method and was found to be 5.5% at 25°C. It was OX 10-'S-1. Spread this film on two sheets of metal lithium foil (200p#l)'
80℃ 120μm between Q and 200μm with current density of A-
As a result of conducting an electric current test for 0 hours, no deterioration such as liquefaction of the membrane was observed, and there were no problems with practical soil.

実施例Z ポリプロピレンオキVドアリ〃メチpエーテ、A/(ア
リ〃エーテ〃化率98≦1平均分子量590)10重量
部に、6重量部の過塩素酸リチウムと110重量部のプ
ロピレンカーボネイト、0.01重量部のベンゾフェノ
ンを、均一に混合溶解した。この混合物を実施例1と同
様にして8分間紫外#照射し、100声清のフィルムを
得た。この膜のイオン伝導度を、複素インピーダンス法
で測定した結果、25℃で4.OX 10−’ 8cm
 ’であった。この膜に〜実施例1と同様の通電試験を
行った。その結果、膜の液化などの劣化は見られず実用
上の問題はなかった。
Example Z To 10 parts by weight of polypropylene oxide V-arymethypate, A/(aryte conversion ratio 98≦1 average molecular weight 590), 6 parts by weight of lithium perchlorate and 110 parts by weight of propylene carbonate, 0 01 parts by weight of benzophenone was uniformly mixed and dissolved. This mixture was irradiated with ultraviolet light for 8 minutes in the same manner as in Example 1 to obtain a 100-voice clear film. The ionic conductivity of this membrane was measured using the complex impedance method and was found to be 4. OX 10-' 8cm
'Met. This film was subjected to the same current application test as in Example 1. As a result, no deterioration such as liquefaction of the membrane was observed, and there were no practical problems.

実施例3゜ エチレンオキシド単位とプロピレンオキシド単位の七〃
比率が8:2のランダムコポリマージオ−〃のアリ〃メ
チ〃エーテlv(アリ〃エーテμ化率99%平均分子量
390)10重量部に、6重量部の過塩素酸リチウムと
、10重量部のプロピレンカーボネイト%0.01重量
部のベンゾフェノンを、均一に混合溶解した。この混合
物を実施例1と同様にして8分間紫外線照射し、100
pHlのフィルムを得た。この膜のイオン伝導度は、2
5℃て8.OX 10−’ 8cya−’を示した。こ
の膜に一実施例1と同様の通電試験を行った・その結果
〜展の液化などの劣化は見られず実用上の問題はなかっ
た。
Example 3〃 Ethylene oxide unit and propylene oxide unit 7〃
6 parts by weight of lithium perchlorate and 10 parts by weight were added to 10 parts by weight of a random copolymer geo-〃 with a ratio of 8:2 (ary ether μ ratio 99% average molecular weight 390). Propylene carbonate and 0.01 parts by weight of benzophenone were uniformly mixed and dissolved. This mixture was irradiated with ultraviolet light for 8 minutes in the same manner as in Example 1, and
A film of pHl was obtained. The ionic conductivity of this membrane is 2
5℃ 8. OX 10-'8cya-' was shown. This film was subjected to the same current test as in Example 1. As a result, no deterioration such as liquefaction of the film was observed, and there were no practical problems.

実施例4゜ ポリエチレンオキシドVンナミμメチμエーデ/1/(
vンナミ〃エーテp化率98%、平均分子量390)1
0重量部に、6重量部の過塩素酸リチウムと、10重量
部のプロピレンカーボネイト、0.5重量部のアゾビス
イソブチロニトリμを均一に混合溶解した。この混合物
を、実施例1と同様紙して20分間照射し、100p”
のフィルムを得た。この膜のイオン伝導度を、複素イン
ピーダンス法で測定した結果、25℃で7.OX 10
−’ 81” ’てあった・コノ膜cS*施例1.と同
様の通電を行ったが、液化などの劣化は見られず、実用
上の問題はなかった。
Example 4゜Polyethylene oxide Vnnamiμmethyμade/1/(
vnnami Ete p conversion rate 98%, average molecular weight 390) 1
0 parts by weight, 6 parts by weight of lithium perchlorate, 10 parts by weight of propylene carbonate, and 0.5 parts by weight of azobisisobutyronitrium μ were uniformly mixed and dissolved. This mixture was applied to paper as in Example 1 and irradiated for 20 minutes to give 100p''
obtained the film. The ionic conductivity of this membrane was measured using the complex impedance method and was found to be 7. OX10
-'81''''Conomembrane cS*Electrification was carried out in the same manner as in Example 1. However, no deterioration such as liquefaction was observed, and there were no practical problems.

実施例5゜ ポリエチVンオキVドアリ〃メチ〃エーテル(アリμエ
ーテ〃化率98%、平均分子量390)7重量部に、3
重量部のスチレンと、10重量部のプロピレンカーボネ
イト、0.01重量部のベンゾフェノンと、6重量部の
過塩素酸リチウムを均一に混合した。この混合物に実施
例1と同様にして4分間照射し%100111’のフィ
μムを得た。この膜のイオン伝導度を、複素インピーダ
ンス法で測定した結果、25℃で5.0X10−’5c
ta’であった。この膜に、実施例1と同様の通電試験
を行った。その結果、膜の液化などの劣化は見られず実
用上の問題はなかった。
Example 5 To 7 parts by weight of polyethylene V-doyl methane ether (aluminum ether conversion rate 98%, average molecular weight 390), 3 parts by weight
Parts by weight of styrene, 10 parts by weight of propylene carbonate, 0.01 parts by weight of benzophenone, and 6 parts by weight of lithium perchlorate were uniformly mixed. This mixture was irradiated for 4 minutes in the same manner as in Example 1 to obtain a film of %100111'. The ionic conductivity of this membrane was measured using the complex impedance method and was found to be 5.0X10-'5c at 25℃.
It was ta'. This film was subjected to the same current test as in Example 1. As a result, no deterioration such as liquefaction of the membrane was observed, and there were no practical problems.

実施例6゜ ポリエチレンオキVドアリμメチpエーテμ(アリμエ
ーテμ化率98%、平均分子量390)7重量部に、5
重量部のメタクリ〃酸メチμと〜10重量部のプロピレ
ンカーボネート、0.01重量部のベンゾフェノンと、
6重量部の過塩素酸リチウムを均一に混合した。この混
合物に実施例1と同様にして2分間照射し、10011
#Iのフィμムを得た。この膜のイオン伝導度を、複索
インピーダンス法で測定した結果、25℃で4、OX 
10−’ Sew ’であった0この膜に一1実施例1
と同様の通電試論を行った。その結果1膜の液化などの
劣化は見られず実用上の問題はなかった@ 実施例7゜ ポリエチレンオキシドアリルメチ〃エーテμ(アリ〃エ
ーテμ化率98噂、平均分子量390)10重量部(,
6重量部の過塩素酸リチウム、10重置部のプロピレン
カーボネート、を均一に混合溶解した。この混合物をガ
ラヌ板上にキャストし、ア〃ゴン気流中で、加速電圧3
00keV s電子線電流10111ム、電子線量15
0メガラツドで電子線照射を行い、100p#lのフィ
μムを得た。この膜のイオン伝導度を、複素インピーダ
ンス法で測定した結果、25℃で6.0×10−10−
4Sc1であった。この膜に実施例1と同様の通電試験
を行った。その結果、膜の液化などの劣化は見られず実
用上の問題はなかった。
Example 6 5 parts by weight of polyethylene oxide
Parts by weight of methiμ methacrylic acid, ~10 parts by weight of propylene carbonate, 0.01 parts by weight of benzophenone,
6 parts by weight of lithium perchlorate were mixed uniformly. This mixture was irradiated for 2 minutes as in Example 1 and 10011
#I film was obtained. The ionic conductivity of this membrane was measured using the multi-strand impedance method and was found to be 4, OX at 25°C.
10-'Sew' was 0 to this membrane-1 Example 1
A similar energization theory was conducted. As a result, no deterioration such as liquefaction of the membrane was observed, and there were no practical problems.@Example 7゜Polyethylene oxide allylmethyate μ (allyate μ conversion rate rumored to be 98, average molecular weight 390) 10 parts by weight ( ,
6 parts by weight of lithium perchlorate and 10 parts by weight of propylene carbonate were uniformly mixed and dissolved. This mixture was cast on a galanu plate and placed under an accelerating voltage of 3 in an Agon air stream.
00keV s Electron beam current 10111 μm, electron dose 15
Electron beam irradiation was performed at 0 megarads to obtain a 100 p#l film. The ionic conductivity of this membrane was measured using the complex impedance method and was found to be 6.0×10−10− at 25°C.
It was 4Sc1. This film was subjected to the same current test as in Example 1. As a result, no deterioration such as liquefaction of the membrane was observed, and there were no practical problems.

実施例& ポリエチレンオキVドアリ〃メチ〃エーテμ(アリ〃エ
ーテ〃化率98%、平均分子量390)10重量部に、
6重量部の過塩素酸リチウムと〜10重量部のプロピレ
ンカーボネート、0.5重量部のアゾビスイソブチロビ
トリμを均一に混合溶解した。この混合物をガヲヌ板上
にキャストシ、窒素気流中、80℃で5時間加熱し、1
00μ調のフィμムを、得た・この膜のイオン伝導度を
、複素インピーダンス法で測定した結果、25℃で5.
0X10−’ac1m’であったOこの膜c。
Example & 10 parts by weight of polyethylene oxide V-arymethyate μ (aryte conversion rate 98%, average molecular weight 390),
6 parts by weight of lithium perchlorate, ~10 parts by weight of propylene carbonate, and 0.5 parts by weight of azobisisobutyrovitri μ were uniformly mixed and dissolved. This mixture was cast on a board and heated at 80°C for 5 hours in a nitrogen stream.
A film of 00μ tone was obtained.The ionic conductivity of this film was measured using the complex impedance method, and the result was 5.
This film was 0x10-'ac1m'.

実施例1.と同様の通電を行ったが、液化などの劣化は
見られず、実用土の問題はなかった。
Example 1. The soil was energized in the same manner as above, but no deterioration such as liquefaction was observed, and there were no problems with practical soil.

実施例9゜ ポリエチレンオキVドアリ〃メチルエーテμ(アリpエ
ーテ〃化率98%、平均分子量590)10重量部(,
6重量部の過塩葉酸リチウムと、0.5重量部のアゾビ
スイソブチロニトリルと、0.01重量部のベンゾフェ
ノンを均一に混合溶解した。この混合物を、窒素気流中
、80℃で攪拌しながら2時間加熱してオリゴマーを1
0重量部のプロピレンカーボネートを加えて得た。
Example 9〈Polyethylene oxide V-aryl methyl ether μ (aryl p-ether conversion rate 98%, average molecular weight 590) 10 parts by weight (,
6 parts by weight of lithium perchlorate folate, 0.5 parts by weight of azobisisobutyronitrile, and 0.01 parts by weight of benzophenone were uniformly mixed and dissolved. This mixture was heated at 80°C in a nitrogen stream for 2 hours with stirring to remove 1 oligomer.
Obtained by adding 0 parts by weight of propylene carbonate.

このオリゴマーを実施例1と同様にして4分間照射し、
100p”のフィμムを得た。この膜のイオン伝導度を
、複素インピーダンス法で測定した結果、25℃”Q 
6.OX 10−’ 8cm  ’ テあった。この膜
(、実施例1.と同様の通電を行ったが、液化などの劣
化は見られず、実用上の問題はなかった。
This oligomer was irradiated for 4 minutes in the same manner as in Example 1,
A film of 100 p" was obtained. The ionic conductivity of this film was measured using the complex impedance method.
6. OX 10-'8cm' Te was there. This film was energized in the same manner as in Example 1, but no deterioration such as liquefaction was observed, and there were no practical problems.

発明の効果 上述した如く、本発明は、化学的、又は電気化学的な安
定性に優れ、生産性の優れた、イオン伝導性の高い鳥分
子固体電解質を提供することができるので、その工業的
価値は極めて大である@
Effects of the Invention As described above, the present invention can provide a bird molecule solid electrolyte with excellent chemical or electrochemical stability, excellent productivity, and high ionic conductivity. The value is extremely great @

Claims (1)

【特許請求の範囲】 1)ポリエーテルジオールの片末端の水酸基の水素を、
メチル基、又はエチル基で置換した構造を持ち、もう一
方の末端の水酸基の水素を、下記の一般式〔 I 〕、又
は式〔II〕で置換した構造を持つ反応性二重結合を持つ
ポリエーテル(A)を反応させてなる櫛形ポリマー、ま
たは反応性二重結合を持つポリエーテル(A)に反応性
二重結合を持つ低分子量のモノマー(B)を混合したも
のを反応させてなる櫛形ポリマーが、アルカリ金属塩、
アルカリ土類金属塩、及び有機アンモニウム塩の中から
選ばれる1種以上の塩と該塩を溶解することができる溶
剤を含むことを特徴とする高分子固体電解質。 −CH_2−CH=CHR_1・・・・・・・・・〔
I 〕(R_1は−H、又は−CH_3、又は▲数式、化
学式、表等があります▼)▲数式、化学式、表等があり
ます▼・・・・・・・・・・・〔II〕 (R_2は−CH_3、又は▲数式、化学式、表等があ
ります▼) 2)ポリエーテルジオールがポリエチレンオキシドであ
る請求項1記載の高分子固体電解質。 3)ポリエーテルジオールがポリプロピレンオキシドで
ある請求項1記載の高分子固体電解質。 4)ポリエーテルジオールがエチレンオキシドとアルキ
レンオキシドとのコポリマーである請求項1記載の高分
子固体電解質。 5)アルキレンオキシドがプロピレンオキシドである請
求項4記載の高分子固体電解質。 6)コポリマーがランダムコポリマーである請求項5記
載の高分子固体電解質。 7)プロピレンオキシドがモル比率で30%以下である
請求項6記載の高分子固体電解質。 8)低分子量のモノマーが、アクリル酸、アクリル酸メ
チル、メタクリル酸、メタクリル酸メチル、アクリルア
ミド、N,N−ジメチルアクリルアミド、ブタジエン、
イソプレン、スチレンからなる群から選ばれる化合物で
ある請求項1記載の高分子固体電解質。 9)AまたはAとBの混合物を、紫外線、及び/又は可
視光線の照射により反応させてなる請求項1記載の高分
子固体電解質。 10)AまたはAとBの混合物を、電離性放射線の照射
により反応させてなる請求項1記載の高分子固体電解質
。 11)AまたはAとBの混合物を、加熱により反応させ
てなる請求項1記載の高分子固体電解質。
[Claims] 1) The hydrogen of the hydroxyl group at one end of the polyether diol is
Polymer having a reactive double bond, which has a structure substituted with a methyl group or an ethyl group, and the hydrogen of the hydroxyl group at the other end is substituted with the following general formula [I] or formula [II]. A comb-shaped polymer obtained by reacting an ether (A), or a comb-shaped polymer obtained by reacting a mixture of a polyether (A) having a reactive double bond and a low molecular weight monomer (B) having a reactive double bond. The polymer is an alkali metal salt,
A solid polymer electrolyte comprising one or more salts selected from alkaline earth metal salts and organic ammonium salts and a solvent capable of dissolving the salts. -CH_2-CH=CHR_1・・・・・・・・・
I] (R_1 is -H, or -CH_3, or ▲There are mathematical formulas, chemical formulas, tables, etc.▼)▲There are mathematical formulas, chemical formulas, tables, etc.▼・・・・・・・・・・・・ [II] (R_2 2) The solid polymer electrolyte according to claim 1, wherein the polyether diol is polyethylene oxide. 3) The solid polymer electrolyte according to claim 1, wherein the polyether diol is polypropylene oxide. 4) The solid polymer electrolyte according to claim 1, wherein the polyether diol is a copolymer of ethylene oxide and alkylene oxide. 5) The solid polymer electrolyte according to claim 4, wherein the alkylene oxide is propylene oxide. 6) The solid polymer electrolyte according to claim 5, wherein the copolymer is a random copolymer. 7) The solid polymer electrolyte according to claim 6, wherein the molar ratio of propylene oxide is 30% or less. 8) The low molecular weight monomer is acrylic acid, methyl acrylate, methacrylic acid, methyl methacrylate, acrylamide, N,N-dimethylacrylamide, butadiene,
The solid polymer electrolyte according to claim 1, which is a compound selected from the group consisting of isoprene and styrene. 9) The solid polymer electrolyte according to claim 1, wherein A or a mixture of A and B is reacted by irradiation with ultraviolet light and/or visible light. 10) The solid polymer electrolyte according to claim 1, wherein A or a mixture of A and B are reacted by irradiation with ionizing radiation. 11) The solid polymer electrolyte according to claim 1, which is obtained by reacting A or a mixture of A and B by heating.
JP1170565A 1989-06-30 1989-06-30 Polymer solid electrolyte Pending JPH0335060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1170565A JPH0335060A (en) 1989-06-30 1989-06-30 Polymer solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1170565A JPH0335060A (en) 1989-06-30 1989-06-30 Polymer solid electrolyte

Publications (1)

Publication Number Publication Date
JPH0335060A true JPH0335060A (en) 1991-02-15

Family

ID=15907198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1170565A Pending JPH0335060A (en) 1989-06-30 1989-06-30 Polymer solid electrolyte

Country Status (1)

Country Link
JP (1) JPH0335060A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07204984A (en) * 1994-01-21 1995-08-08 Fsi Internatl Inc Temperature controller using circulation coolant and temperature control method thereof
JP2009057565A (en) * 2000-05-18 2009-03-19 Natl Starch & Chem Investment Holding Corp Curable electron donor compound

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02186561A (en) * 1989-01-12 1990-07-20 Yuasa Battery Co Ltd Polymer solid state electrolyte
JPH0324162A (en) * 1989-06-21 1991-02-01 Yuasa Battery Co Ltd Solid polyelectrolyte
JPH0324163A (en) * 1989-06-21 1991-02-01 Yuasa Battery Co Ltd Solid polyelectrolyte
JPH0334164A (en) * 1989-06-30 1991-02-14 Toshiba Corp Hard disk device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02186561A (en) * 1989-01-12 1990-07-20 Yuasa Battery Co Ltd Polymer solid state electrolyte
JPH0324162A (en) * 1989-06-21 1991-02-01 Yuasa Battery Co Ltd Solid polyelectrolyte
JPH0324163A (en) * 1989-06-21 1991-02-01 Yuasa Battery Co Ltd Solid polyelectrolyte
JPH0334164A (en) * 1989-06-30 1991-02-14 Toshiba Corp Hard disk device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07204984A (en) * 1994-01-21 1995-08-08 Fsi Internatl Inc Temperature controller using circulation coolant and temperature control method thereof
US6308776B1 (en) 1994-01-21 2001-10-30 Fsi International, Inc. Temperature control apparatus with recirculated coolant
US6854514B2 (en) 1994-01-21 2005-02-15 Fsi International, Inc. Temperature control apparatus and method with recirculated coolant
JP2009057565A (en) * 2000-05-18 2009-03-19 Natl Starch & Chem Investment Holding Corp Curable electron donor compound

Similar Documents

Publication Publication Date Title
Kobayashi et al. Poly [lithium methacrylate-co-oligo (oxyethylene) methacrylate] as a solid electrolyte with high ionic conductivity
JP2987474B2 (en) Solid electrolyte
JP2914388B2 (en) Polymer solid electrolyte
JPH01307103A (en) Macromolecular solid electrolyte
JP3930575B2 (en) Copolymer, process for its production and use of said copolymer for producing ion-conducting materials
JPH10245427A (en) Block-graft copolymer and self-crosslinked solid electrolyte produced using the same, and its production
JPH11506561A (en) Polymer electrolyte compositions based on thiol-ene chemistry
TWI283085B (en) Electrolyte compositions
JPH10510090A (en) Ion conductive polymer
JPS62249361A (en) Organic solid electrolyte
JP3216106B2 (en) Polymer solid electrolyte
CN109768322A (en) Sodium-ion battery polymer electrolyte matrix and film, preparation method and application
JPH0335060A (en) Polymer solid electrolyte
JPH04147571A (en) Lithium battery
JP2004162019A (en) Electrolyte composition
JP3843505B2 (en) Polymer electrolyte and battery
JPH0324162A (en) Solid polyelectrolyte
JPH0324163A (en) Solid polyelectrolyte
JPH02186561A (en) Polymer solid state electrolyte
JPH06511285A (en) Copolymers of oxirane and dioxolane, methods for their production and ionically conductive materials containing them
JP3495870B2 (en) Block-graft copolymer, method for producing crosslinked polymer solid electrolyte using the same, and crosslinked polymer solid electrolyte
JPH03297006A (en) High polymer solid electrolyte
JPH06279647A (en) Polymer solid electrolyte
JPH1017709A (en) Composition capable of forming solid electrolyte
JPH03200863A (en) Ionically conductive polyelectrolyte