JPH03207627A - Method for controlling injection molding machine - Google Patents

Method for controlling injection molding machine

Info

Publication number
JPH03207627A
JPH03207627A JP93090A JP93090A JPH03207627A JP H03207627 A JPH03207627 A JP H03207627A JP 93090 A JP93090 A JP 93090A JP 93090 A JP93090 A JP 93090A JP H03207627 A JPH03207627 A JP H03207627A
Authority
JP
Japan
Prior art keywords
temperature
mold
microcomputer
injection
shot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP93090A
Other languages
Japanese (ja)
Inventor
Yoshiya Taniguchi
吉哉 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Machinery and Metal Co Ltd
Original Assignee
Toyo Machinery and Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Machinery and Metal Co Ltd filed Critical Toyo Machinery and Metal Co Ltd
Priority to JP93090A priority Critical patent/JPH03207627A/en
Publication of JPH03207627A publication Critical patent/JPH03207627A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stably mold a superior product by forming the temp. curve at every shot in a heat sensor arranged region on the basis of the measured data from the heat sensor arranged in the vicinity of the resin filling part in a mold by a microcomputer and reflecting the same in the control of molding. CONSTITUTION:A microcomputer 1 taking charge of the control of the whole of an injection molding machine executes the control of the whole of a molding process such as the opening and closing of a mold, injection, pressure holding, charging or cooling and various operational processings such as the statistical operational processing of measured data. At the time of trial shot operation, the microcomputer 1 controls a solenoid control valve so as to turn the same off or to throttle the flow rate thereof in order to rapidly bring the temp. of a mold to a stable region. After the completion of the trial shot operation, continuous molding operation for molding a product is taken. Even when a temp. curve slightly shows irregularity at every shot, an injection process is started by an injection drive source at the point of time becoming the temp. optimum to the start of injection.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、射出成形機の制御方法に係り、特に金型のキ
ャビテイに出来るだけ近い位置の温度曲線を把握して、
これを成形制御に反映させるようにした射出威形機の制
御方法に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a method for controlling an injection molding machine, in particular, by grasping the temperature curve at a position as close as possible to the mold cavity.
This invention relates to a control method for an injection molding machine that reflects this in molding control.

[従来の技術] 射出成形機による成形作業を自動運転で行う際、−2一 成形された製品が不良品の山となったのでは全く意味が
ないため、製品の品質決定要因となる多数の成形運転条
件はきめ細かく設定されている。そして、成形機全体の
制御を司るマイクロコンピュータ(以下マイコンと称す
)は、予め設定された成形運転条件値に基づき各種セン
サからの計測データを参照して自動運転を実行し、戒形
品を連続的に威形するようになっている。
[Conventional technology] When performing molding work using an injection molding machine in automatic operation, it would be meaningless if the molded products ended up in a pile of defective products. Molding operating conditions are carefully set. Then, the microcomputer (hereinafter referred to as microcomputer) that controls the entire molding machine executes automatic operation by referring to the measurement data from various sensors based on the preset molding operation condition values, and continuously molds the molded product. It has become quite imposing.

ところで、上記した成形運転条件項目の中の金型温度に
関しては、従前さほどの考慮が払われておらず、金型冷
却用の媒体の温度を所定温度にするような制御、或いは
、金型表面温度を測定してこれを一定に保つような制御
がなされているのみであった. [発明が解決しようとする課題] 公知のように射出成形機においては、型開閉、射出・保
圧、チャージ・冷却がサイクル毎に繰り返されるため、
1ショットサイクル内において金型のキャビテイ部分は
昇温、冷却を繰返し、この部位はlショット毎に或る温
度曲線を描く。しかしながら、従来の射出成形機ではl
ショットを通して殆ど温度変化のない前記金型表面温度
は測定しているも、このlショット毎の温度曲線につい
ては何等配慮がなされていなかった。このため、射出速
度、射出圧力、加熱筒温度等の各成形条件を精密にコン
トロールしても、上記した各ショット毎の温度曲線にバ
ラツキが生じると、これが威形品品質に悪影響を与える
という問題があった。
By the way, the mold temperature, which is one of the above-mentioned molding operation conditions, has not been given much consideration in the past. The only controls were to measure the temperature and keep it constant. [Problem to be solved by the invention] As is well known, in an injection molding machine, mold opening/closing, injection/pressure holding, charging/cooling are repeated in each cycle.
Within one shot cycle, the temperature of the cavity portion of the mold is repeatedly increased and cooled, and this portion draws a certain temperature curve for each shot. However, with conventional injection molding machines, l
Although the mold surface temperature, which has almost no temperature change throughout the shot, is measured, no consideration has been given to the temperature curve for each shot. For this reason, even if various molding conditions such as injection speed, injection pressure, and heating cylinder temperature are precisely controlled, if there are variations in the temperature curve for each shot as described above, this will adversely affect the quality of the high-profile product. was there.

因みに研究によると、成形品にQ.Qlmmの寸法差を
発生させる変動ファクターとして、加熱筒温度では3〜
6℃の変動であり、射出樹脂圧力では20kg/(d程
度の変動であるのに対し、金型温度では3℃の変動であ
ると言われている。
Incidentally, research has shown that Q. The variation factor that causes the dimensional difference in Qlmm is 3 to 3 for the heating cylinder temperature.
It is said that the variation is 6°C, and the variation in injection resin pressure is about 20kg/(d, while the variation in mold temperature is 3°C.

また、従来の射出成形機においては、運転開始時(試シ
ョット時)の金型の昇温時間についても考慮が払われて
おらず、金型温度が安定領域に達するまで、140〜1
50ショットという多数のショット数を必要とした。
In addition, in conventional injection molding machines, no consideration is given to the temperature rise time of the mold at the start of operation (during test shots), and it takes 140 to 1
A large number of shots, 50 shots, were required.

本発明は上記の点に鑑み威されたもので、その目的とす
るところは、金型のキャビティ近傍の温度を検出してこ
の部位の1ショット毎の温度曲線を認知し、これを成形
制御に反映させてバラツキなく安定して良品を成形する
ことが可能な射出成形機の制御方法を提供することにあ
る。また、本発明の他の目的とするところは、運転開始
時(試ショット時)に金型温度が安定領域に達するまで
の時間を大幅に短縮可能な射出成形機の制御方法を提供
することにある。
The present invention has been developed in view of the above points, and its purpose is to detect the temperature near the cavity of the mold, recognize the temperature curve for each shot of this area, and use this to control molding. It is an object of the present invention to provide a control method for an injection molding machine that can stably mold good products without variation. Another object of the present invention is to provide a control method for an injection molding machine that can significantly shorten the time it takes for the mold temperature to reach a stable range at the start of operation (during a test shot). be.

[課題を解決するための手段コ 本発明は上記した目的を達威するため、設定された各或
形運転条件値と各センサからの計測情報とに基づき成形
機の各部を駆動制御するマイコンを具備した射出成形機
の制御方法において、例えば、金型内の樹脂充填部(キ
ャビテイ)の近傍(例えば金型内の威形品表面と約lm
離れた位置)に配設された熱センサと、金型内に流され
る冷却用媒体をON/O F F又は流量制御するバル
ブ手段と、前記冷却用媒体の温度を制御する媒体温度制
御手段とを設け、マイコンは前記熱センサからの計測情
報によって連続威形運転中の各ショット毎の(金型内部
)温度曲線を作成・監視し、前記温度監視部位が所定温
度になった時点で射出開始を指示するようにされる。ま
た、前記マイコンは、連続威形運転中の各ショット毎の
前記温度曲線を対比し、各ショットの前記温度曲線が長
期にわたって安定するように、前記媒体温度制御手段に
よって前記冷却用媒体の温度を可変制御するようにされ
る。また、前記マイコンは、運転開始時の試ショット中
には金型温度が安定領域に早く達するように、前記バル
ブ手段をOFF又は流量を絞るように制御する。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the present invention uses a microcomputer to drive and control each part of the molding machine based on each set operating condition value and measurement information from each sensor. In a method for controlling an injection molding machine equipped with the above-mentioned
a thermal sensor disposed at a remote location), a valve means for turning on/off or controlling the flow rate of a cooling medium flowing into the mold, and a medium temperature control means for controlling the temperature of the cooling medium. The microcomputer creates and monitors a temperature curve (inside the mold) for each shot during continuous molding operation based on the measurement information from the heat sensor, and starts injection when the temperature monitoring area reaches a predetermined temperature. be instructed. Further, the microcomputer compares the temperature curve for each shot during continuous high-speed operation, and controls the temperature of the cooling medium by the medium temperature control means so that the temperature curve for each shot is stable over a long period of time. It is made to have variable control. Further, the microcomputer controls the valve means to turn off or reduce the flow rate so that the mold temperature quickly reaches a stable region during a test shot at the start of operation.

[作 用] 第2図は金型内の要部の温度分布シュミレーションを示
す図で、l1は金型、12は金型のキャビテイ内の成形
品(樹脂)、13は金型11内に設けられた冷却用媒体
(例えば50℃の水)の流路であり、キャビティと流路
13との間の金型l1の温度分布は、充填直後には■の
ような温度分布となり、充填5秒後には■のような温度
分布となり、製品(成形品)取り出し直前には■のよう
な温度分布となり、キャビテイ(成形品12)表面から
1mだけ離れた部位の金型温度は1ショット中に約57
〜69℃の変動を示す。このキャビティ表面からlmだ
け離れた部位の金型温度を、例えば熱電対で検出してこ
の計測情報が、射出威形機全体の制御を司るマイコンに
送出され、これによってマイコンは前記温度測定点(温
度監視部位)の時間軸に沿った温度曲線CTを例えば第
3図示の如くリアルタイムで作威する。この温度曲線C
’rは、1ショット毎に射出直後は溶融樹脂から与えら
れる熱量で所定温度まで上昇した後、冷却用媒体に熱を
取り去られて所定温度まで下降するサイクルを繰り返す
[Function] Figure 2 is a diagram showing a temperature distribution simulation of the main parts in the mold, where l1 is the mold, 12 is the molded product (resin) in the cavity of the mold, and 13 is the temperature distribution in the mold 11. Immediately after filling, the temperature distribution of the mold l1 between the cavity and the flow path 13 becomes as shown in ■, and after 5 seconds of filling, Afterwards, the temperature distribution becomes as shown in ■, and just before the product (molded product) is taken out, the temperature distribution becomes as shown in 57
It shows a variation of ~69°C. The mold temperature at a location 1m away from the cavity surface is detected using, for example, a thermocouple, and this measurement information is sent to the microcomputer that controls the entire injection molding machine. For example, a temperature curve CT along the time axis of the temperature monitoring site (temperature monitoring site) is generated in real time as shown in the third diagram. This temperature curve C
Immediately after each shot, 'r is raised to a predetermined temperature by the amount of heat given from the molten resin, and then the heat is removed by the cooling medium and the temperature is lowered to the predetermined temperature, repeating a cycle.

発明者等の実験によれば、従来手法のままでは温度曲線
CTが1ショット毎にバラツキ易く(特に、充填重量や
加熱筒温度にバラツキがあった場合や、長期にわたる連
続成形時おける時間を隔てたショット同士の対比におい
て顕著)、射出開始時点を単純に時間だけで決定するよ
うになすと、射出開始時点における前記温度測定点の温
度(換言するならキャビテイの表面温度)が一定せず、
これによって成形品の品質にバラツキを生じることを見
出した。また、発明者等の実験によれば、射出開始タイ
ミングの前記温度測定点の温度を常に好適温度(例えば
図示の例では約57℃)とすれば、良品が安定して成形
されることを見出した。
According to experiments conducted by the inventors, if the conventional method is used, the temperature curve CT tends to vary from shot to shot (particularly when there is variation in the filling weight or heating cylinder temperature, or when there is a difference in time during continuous molding over a long period of time). If the injection start point is determined simply by time, the temperature at the temperature measurement point (in other words, the surface temperature of the cavity) at the injection start point will not be constant.
It has been found that this causes variations in the quality of molded products. In addition, according to experiments conducted by the inventors, it has been found that good products can be stably molded if the temperature at the temperature measurement point at the injection start timing is always kept at a suitable temperature (for example, about 57°C in the illustrated example). Ta.

そこで前記マイコンは、リアルタイムで作成した温度曲
線CTを監視し、温度測定点の温度が好適温度となった
時点で、射出開始を指示するようにされ、これによって
各ショット毎の温度曲線CTにバラツキがあっても、第
3図でハツチングを施した領域Sの面積が略一定となっ
てバラツキなく良品を成形することが可能となる。
Therefore, the microcomputer monitors the temperature curve CT created in real time, and instructs to start injection when the temperature at the temperature measurement point reaches a suitable temperature, thereby eliminating variations in the temperature curve CT for each shot. Even if there is, the area of the hatched region S in FIG. 3 is approximately constant, making it possible to mold good products without variation.

また、射出側(加熱筒側)の温度や金型冷却用媒体(金
型温調媒体)の温度が一定していても、例えば外気温が
変化することなどにより、温度曲線CTが長期的に見て
変化することが考えられる。
In addition, even if the temperature on the injection side (heating cylinder side) and the temperature of the mold cooling medium (mold temperature control medium) are constant, the temperature curve CT may change over the long term due to changes in the outside temperature, for example. It is possible that it will change depending on what you see.

例えば温度曲線CTにおける1ショット周期が設定値か
ら見て増加傾向にあったり、温度曲線CTにおける最高
温度が高ければ、1ショット周期当りで見て金型に与え
られる熱量QINに対し取り去られる熱量Q。LITが
、QIN>QoU1ぎみの傾向にあると考えられる。そ
こで前記マイコンは、各ショット毎の温度曲線CTを長
期的に監視し、リアルタイムではなくゆるやかではある
が、温度曲線CTを所定値に安定させるように、前記媒
体温度制御手段によって前記冷却用媒体の温度を可変制
御する。すなわち、上記したようなケースでは(例えば
、温度曲線CTにおける1ショット周期が設定値から見
て増加傾向にあったり、温度曲線CTにおける最高温度
が高ければ)、媒体温度を例えば50℃から49℃に変
化させる。
For example, if the one shot period in the temperature curve CT tends to increase from the set value, or if the maximum temperature in the temperature curve CT is high, then the amount of heat Q that is removed per shot period compared to the amount of heat QIN given to the mold. . It is thought that LIT tends to be close to QIN>QoU1. Therefore, the microcomputer monitors the temperature curve CT for each shot over a long period of time, and uses the medium temperature control means to control the temperature of the cooling medium so that the temperature curve CT is stabilized at a predetermined value, although not in real time and gradually. Variable temperature control. That is, in the above-mentioned case (for example, if the one-shot period in the temperature curve CT tends to increase from the set value, or if the maximum temperature in the temperature curve CT is high), the medium temperature may be changed from, for example, 50°C to 49°C. change to

また、運転開始時の試ショット中には金型温度が安定領
域に早く達するようにすることが、時間的ファクター並
びに試ショット(捨て打ち)による材料の無駄削減の観
点から望まれる。そこで、前記マイコンは、運転開始時
の試ショット中には金型温度が安定領域に早く達するよ
うに、前記バルブ手段をOFF又は流量を絞るように制
御し、これによって1ショット当りのQ IN1QOI
JTの関係を、この期間中はQIN>Qou7となるよ
うにして、金型温度を速やかに安定領域まで昇温させる
ようにされる。斯様にすることによって、第4図に示す
ように、従来B線で示すように安定領域に達するまで1
40〜150ショットを要したものが、同図A線で示す
ように数10ショット以下に短縮可能となる。
Furthermore, it is desirable to allow the mold temperature to quickly reach a stable region during the test shot at the start of operation, from the viewpoint of the time factor and reduction of waste of material due to test shots (dump shots). Therefore, the microcomputer controls the valve means to be turned off or the flow rate to be reduced so that the mold temperature quickly reaches the stable region during the test shot at the start of operation, thereby reducing the QIN1QOI per shot.
During this period, the JT relationship is set such that QIN>Qou7, and the mold temperature is quickly raised to a stable region. By doing this, as shown in FIG.
What used to require 40 to 150 shots can now be shortened to a few dozen shots or less, as shown by line A in the figure.

[実施例] 以下、本発明を第1図〜第5図に示した1実施例によっ
て説明する。
[Example] Hereinafter, the present invention will be explained using an example shown in FIGS. 1 to 5.

第1図は射出威形機の金型温調系を示すブロック図であ
る。同図において、1は射出成形機全体の制御などを司
るマイコンで、型開閉、射出・保圧、チャージ・冷却等
の成形行程全体の制御や、測定データの統計演算処理等
の各種演算処理を実行する。該マイコン1の所定の記憶
エリアには、予め入力設定された各種成形条件値が格納
されており、この設定条件データと予め作成された成形
プロセス制御プログラムとに基づき、マイコン1は、射
出威形機の各部に配設された各種センサか− 10 − らの計測情報などを参照しつつ、ドライバ群を介して図
示せぬ型開閉駆動源、射出駆動源、チャージ駆動源等を
駆動制御し、一連の自動或形行程を実行させるようにな
っている。
FIG. 1 is a block diagram showing the mold temperature control system of the injection molding machine. In the figure, 1 is a microcomputer that controls the entire injection molding machine, and controls the entire molding process such as mold opening/closing, injection/holding, charging/cooling, etc., as well as various calculation processes such as statistical calculation of measurement data. Execute. A predetermined storage area of the microcomputer 1 stores various molding condition values input and set in advance, and based on this setting condition data and a molding process control program created in advance, the microcomputer 1 controls the injection molding process. While referring to measurement information etc. from various sensors installed in various parts of the machine, a mold opening/closing drive source, an injection drive source, a charge drive source, etc. (not shown) are drive-controlled via a group of drivers, A series of automatic shaping steps are executed.

11は前記した金型で、該金型11内にはキャビテイ表
面に出来るだけ近い位置、すなわち本実施例においては
、前記第2図で示したようにキャビティ表面(威形品表
面)から1閣だけ離れた位置に熱電対からなる熱センサ
2が配設されている。
Reference numeral 11 denotes the mold described above, and the mold 11 is located at a position as close as possible to the cavity surface, that is, in this embodiment, one cabinet from the cavity surface (prestigious product surface) as shown in FIG. A thermal sensor 2 consisting of a thermocouple is disposed at a position separated by the same distance.

該熱センサ2による計測情報は、マイコン1に送出され
、前記した如く熱センサ2を配設した部位のく金型)温
度曲線CTがマイコン1によって例えば前記第3図のよ
うに作成・認知されるようになっている。また、金型1
1内に設けられた前記冷却用媒体(水または油等)の通
路13には、モータ3で駆動されるボンプ4から供給さ
れる冷却用媒体が、ヒータ5、電磁制御バルブ6を介し
て流されるようになっており、安定状態にある連続成形
運転時には金型11内を通った冷却用媒体は逆止弁7を
経由してボンブ4に戻されるようになっている。
The measurement information by the thermal sensor 2 is sent to the microcomputer 1, and the microcomputer 1 creates and recognizes the temperature curve CT of the area where the thermal sensor 2 is installed, as shown in FIG. 3, for example. It has become so. Also, mold 1
A cooling medium supplied from a pump 4 driven by a motor 3 flows through the cooling medium (water, oil, etc.) passage 13 provided in the cooling medium 1 through a heater 5 and an electromagnetic control valve 6. During continuous molding operation in a stable state, the cooling medium that has passed through the mold 11 is returned to the bomb 4 via the check valve 7.

前記電磁制御バルブ6は、ON/○FF制御機能と絞り
機能とを具備しており、前記マイコン1によってドライ
バ8を介して制御される。なお、電磁制御バルブ6をO
FF制御した際には、冷却用媒体は金型11を経由しな
いで、逆止弁7を経由してボンプ4に戻る。9は、前記
ヒータ5と電磁制御バルブ6との間の流路に配設された
熱電対よりなる熱センサで、該熱センサ9で計測された
冷却用媒体の計温情報は、マイコン1からの指令値によ
ってヒータ5を駆動するサーボアンプ10に入力され、
該サーボアンプ10はマイコン1の指示する温度に冷却
用媒体温度が一致するようにヒータ5を駆動制御する。
The electromagnetic control valve 6 has an ON/FF control function and an aperture function, and is controlled by the microcomputer 1 via a driver 8. Note that the electromagnetic control valve 6 is
When performing FF control, the cooling medium does not pass through the mold 11 but returns to the pump 4 via the check valve 7. Reference numeral 9 denotes a thermal sensor consisting of a thermocouple disposed in the flow path between the heater 5 and the electromagnetic control valve 6. Temperature information of the cooling medium measured by the thermal sensor 9 is sent from the microcomputer 1. The command value is input to the servo amplifier 10 that drives the heater 5,
The servo amplifier 10 drives and controls the heater 5 so that the temperature of the cooling medium matches the temperature instructed by the microcomputer 1.

なお、第1図において、14は、タンク15に冷却用媒
体を逃す際に用いられる制御バルブである。
In addition, in FIG. 1, 14 is a control valve used when releasing the cooling medium to the tank 15.

上述した構成において、金型温度が溶融樹脂からの熱で
温められていない運転開始時、すなわち試ショット運転
時には、前記マイコン1は、金型温度が安定領域に早く
達するように、前記電磁制御バルブ6をOFF又は流量
を絞るように制御して金型11に供給される冷却用媒体
量をカットまたは制限する。これによって1ショット当
りに溶融樹脂から金型11に与えられる熱量Q INと
冷却用媒体で奪われる熱量Q。LITとの関係を、この
期間中はQ..>Q.υ〒となるようにして、金型温度
を速やかに安定領域まで昇温させる。よって、先に第4
図を用いて説明した如く、従来に較べて、金型温度が安
定領域(例えば、前記温度曲線CTにおける最低温度が
約57℃となり、温度曲線CTが各ショットで略一様と
なる領域)となるまでの試ショット数が大幅に低減でき
、立上り時間を大幅に削減できる上、試ショット(捨て
打ち)による材料の無駄も大きく削減可能となる。
In the above-described configuration, at the start of operation when the mold temperature is not warmed by heat from the molten resin, that is, during test shot operation, the microcomputer 1 controls the electromagnetic control valve so that the mold temperature quickly reaches a stable region. 6 is turned off or the flow rate is controlled to cut or limit the amount of cooling medium supplied to the mold 11. As a result, the amount of heat Q IN is given to the mold 11 from the molten resin per shot, and the amount of heat Q is taken away by the cooling medium. Regarding the relationship with LIT, Q. .. >Q. The mold temperature is quickly raised to a stable range so that υ〒. Therefore, first
As explained using the diagram, compared to the conventional method, the mold temperature is in a stable region (for example, a region where the lowest temperature in the temperature curve CT is approximately 57°C and the temperature curve CT is approximately uniform for each shot). It is possible to significantly reduce the number of test shots required to achieve the desired result, significantly reduce the start-up time, and also greatly reduce wasted material due to test shots (discarded shots).

上記した試ショット終了後は、製品を成形するための連
続成形運転に移行する。第5図は、この連続成形運転時
における1ショット分(1サイクル分)の前記温度測定
点における(金型)温度曲線C’rの詳細パターンと、
スクリュー先端樹脂圧曲線Ps、射出速度曲線Vs、金
型内樹脂圧曲線Pmとを同時に示す説明図である。同図
において縦軸は、スクリュー先端樹脂圧においては−1
0.00〜70.OOkg/cffl,金型温度におい
ては0.00〜so.oo℃、射出速度においては−1
0.00−100.0in/sec ,金型内樹脂圧に
おいては−100.0−700.0kg/allの範囲
をそれぞれフルスケールとして示している。なお、同図
においては、威形される製品を円板とし、冷却用媒体(
金型温調媒体)温度を50±0.5℃とした場合の計測
データが示されている。
After the above-mentioned test shot is completed, the continuous molding operation for molding the product is started. FIG. 5 shows a detailed pattern of the (mold) temperature curve C'r at the temperature measurement point for one shot (one cycle) during this continuous molding operation,
It is an explanatory view showing a screw tip resin pressure curve Ps, an injection speed curve Vs, and an in-mold resin pressure curve Pm at the same time. In the figure, the vertical axis is -1 for the resin pressure at the screw tip.
0.00~70. OOkg/cffl, 0.00 to so. at mold temperature. oo℃, -1 at injection speed
The range of 0.00-100.0 in/sec and the resin pressure in the mold is -100.0-700.0 kg/all, respectively, as full scale. In addition, in the same figure, the product to be shaped is a disk, and the cooling medium (
The measurement data is shown when the temperature (mold temperature control medium) is 50±0.5°C.

本実施例では、1ショット毎に前記温度曲線CTが多少
バラツキを示しても、前記マイコンlは温度曲線CTを
常時監視し、前記温度測定点における金型温度が例えば
57+0.5℃となった時点(射出開始に最適の温度と
なった時点)で、図示せぬ射出駆動源(例えば射出シリ
ンダ)をして射出行程を開始させるようになっており、
第5図にはこの射出開始時点Tsが時間スケールのO.
OOで示されている。斯様にすることによって、第3図
を用いて先に説明したように、第3図でハッチングを施
した領域Sの面積、すなわち、溶融樹脂がキャビティに
完全に充填し終わるまでの良品威形管理に肝要な温度上
昇特性線を一定にすることが出来、安定して良品を成形
することが可能となる(なお、こうすることにより、サ
イクル時間がショット毎に微小バラツキを示すが、実用
上は何等問題はない)。
In this embodiment, even if the temperature curve CT shows some variation for each shot, the microcomputer 1 constantly monitors the temperature curve CT, and the mold temperature at the temperature measurement point becomes, for example, 57+0.5°C. At this point (when the temperature reaches the optimum temperature for starting injection), an injection drive source (for example, an injection cylinder) not shown is used to start the injection process.
FIG. 5 shows that this injection start time Ts is 0 on the time scale.
Indicated by OO. By doing this, as explained earlier using FIG. 3, the area of the hatched area S in FIG. It is possible to keep the temperature rise characteristic line, which is important for control, constant, and it is possible to stably mold good products. There is no problem).

また、前記マイコン1は、各ショットの温度曲線C7の
データを格納しており、この保持データを統計演算処理
して、相当期間において温度曲線データが設定データか
ら見て過熱ぎみの方向への遷移傾向を示すものであるか
、冷却ぎみの方向への遷移傾向を示すものであるを監視
している。すなわち例えば、温度曲線データが設定デー
タから見て過熱ぎみの方向への遷移傾向を示すものであ
るなら、1ショット周期当りで見て金型に与えられる熱
量QINに対し取り去られる熱量Q。IJTが、Q.N
>QoIJTぎみの傾向にあると考えられるので、マイ
コン1は、リアルタイムではなくゆるやかではあるが、
温度曲線C7を所定値に安定させるように、前記ヒータ
5によって冷却用媒体の温度を例えば50℃から49℃
となるように可変制御する。このようにすることによっ
て、温度曲線CTを長期的見て概略安定した一様な変化
を示すものに制御することが可能となる。
Further, the microcomputer 1 stores the data of the temperature curve C7 of each shot, and performs statistical calculation processing on this stored data to determine whether the temperature curve data changes in the direction of overheating in a considerable period of time as seen from the setting data. We are monitoring whether there is a trend or a transition trend towards cooling. That is, for example, if the temperature curve data shows a tendency to transition toward overheating as seen from the setting data, the amount of heat Q that is removed per shot period relative to the amount of heat QIN given to the mold. IJT, Q. N
>Since it is thought that there is a tendency towards QoIJT, microcontroller 1 is not real-time and is slow, but
In order to stabilize the temperature curve C7 at a predetermined value, the temperature of the cooling medium is adjusted from 50° C. to 49° C., for example, by the heater 5.
variably controlled so that By doing so, it becomes possible to control the temperature curve CT to show a generally stable and uniform change in the long term.

[発明の効果コ 以上のように本発明によれば、金型のキャビティ近傍の
温度を検出してこの部位の1ショット毎の温度曲線を認
知し、これを成形制御に反映させてバラツキなく安定し
て良品を成形することが可能となり、また、運転開始時
(試ショット時)に金型温度が安定領域に達するまでの
時間を大幅に短縮可能な射出成形機の制御方法を提供で
き、該種射出威形機にあってその産業的価値は多大であ
る。
[Effects of the Invention] As described above, according to the present invention, the temperature near the mold cavity is detected, the temperature curve for each shot in this area is recognized, and this is reflected in molding control to ensure stability without variation. In addition, it is possible to provide a control method for an injection molding machine that can significantly shorten the time it takes for the mold temperature to reach a stable range at the start of operation (during a test shot). As an impressive seed injection machine, its industrial value is enormous.

【図面の簡単な説明】[Brief explanation of drawings]

図面は何れも本発明のl実施例に係り、第1図は射出成
形機の金型温調系を示すブロック図、第2図は金型内の
要部の温度分布の様子を時間別に示す説明図、第3図は
連続するショットにおける温度曲線を示す説明図、第4
図は運転開始時に金型温度が安定領域まで遷移する様子
を示す説明図、第5図は連続成形運転時における1ショ
ット分の温度曲線の詳細パターンをスクリュー先端樹脂
圧曲線,射出速度曲線,金型内樹脂圧曲線と対比して示
す説明図である。 1・・・・・・マイクロコンピュータ(マイコン)、2
・・・・・・熱センサ、3・・・・・・モータ、4・・
・・・・ボンブ、5・・・・・・ヒータ、6・・・・・
・電磁制御バルブ、7・・・・・・逆止弁、8・・・・
・・ドライバ、9・・・・・・熱センサ、1o・・・・
・・サーボアンプ、l1・・・・・・金型、12・・・
・・・威形品、l3・・・・・・流路。
The drawings all relate to embodiments of the present invention; Fig. 1 is a block diagram showing the mold temperature control system of an injection molding machine, and Fig. 2 shows the temperature distribution of main parts in the mold over time. Explanatory diagram, Figure 3 is an explanatory diagram showing temperature curves in successive shots, Figure 4 is an explanatory diagram showing temperature curves in consecutive shots.
The figure is an explanatory diagram showing how the mold temperature transitions to the stable region at the start of operation. Figure 5 shows the detailed pattern of the temperature curve for one shot during continuous molding operation, including the screw tip resin pressure curve, injection speed curve, It is an explanatory view shown in comparison with an in-mold resin pressure curve. 1...Microcomputer (microcomputer), 2
...Thermal sensor, 3...Motor, 4...
... Bomb, 5 ... Heater, 6 ...
・Solenoid control valve, 7...Check valve, 8...
...Driver, 9...Thermal sensor, 1o...
...Servo amplifier, l1...Mold, 12...
...Majestic item, l3...Flow path.

Claims (4)

【特許請求の範囲】[Claims] (1)設定された各成形運転条件値と各センサからの計
測情報とに基づき成形機の各部を駆動制御するマイクロ
コンピュータを具備した射出成形機において、前記マイ
クロコンピュータは、金型内の樹脂充填部の近傍に配設
した熱センサからの計測情報によって、該熱センサ配設
部位における各ショット毎の温度曲線を作成し、該温度
曲線を成形制御に反映させるようにしたことを特徴とす
る射出成形機の制御方法。
(1) In an injection molding machine equipped with a microcomputer that drives and controls each part of the molding machine based on each set molding operation condition value and measurement information from each sensor, the microcomputer controls the resin filling in the mold. The injection method is characterized in that a temperature curve is created for each shot at the part where the heat sensor is installed based on measurement information from a heat sensor placed near the part, and the temperature curve is reflected in molding control. How to control a molding machine.
(2)請求項1記載において、前記マイクロコンピュー
タは連続成形運転中の各ショット毎の前記温度曲線を監
視し、前記温度監視部位が所定温度になった時点で射出
開始を指示することを特徴とする射出成形機の制御方法
(2) In claim 1, the microcomputer monitors the temperature curve for each shot during continuous molding operation, and instructs to start injection when the temperature monitoring area reaches a predetermined temperature. How to control an injection molding machine.
(3)請求項1記載において、金型内に流される冷却用
媒体をON/OFF又は流量制御するバルブ手段を具備
し、前記マイクロコンピュータは、運転開始時の試ショ
ット中には金型温度が安定領域に早く達するように、前
記バルブ手段をOFF又は流量を絞るように制御するこ
とを特徴とする射出成形機の制御方法。
(3) In claim 1, the microcomputer is provided with a valve means for controlling ON/OFF or flow rate of a cooling medium flowing into the mold, and the microcomputer is configured to control the mold temperature during a test shot at the start of operation. A method for controlling an injection molding machine, comprising controlling the valve means to turn off or reduce the flow rate so as to quickly reach a stable region.
(4)請求項1記載において、金型内に流される冷却用
媒体の温度を制御する媒体温度制御手段を具備し、前記
マイクロコンピュータは、連続成形運転中の各ショット
毎の前記温度曲線が長期にわたって安定するように、前
記媒体温度制御手段によって前記冷却用媒体の温度を可
変制御するようにしたことを特徴とする射出成形機の制
御方法。
(4) In claim 1, the microcomputer further comprises medium temperature control means for controlling the temperature of the cooling medium flowing into the mold, and the microcomputer is configured to control the temperature curve for each shot during continuous molding operation over a long period of time. 1. A method of controlling an injection molding machine, characterized in that the temperature of the cooling medium is variably controlled by the medium temperature control means so that the temperature of the cooling medium is stable over a period of time.
JP93090A 1990-01-09 1990-01-09 Method for controlling injection molding machine Pending JPH03207627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP93090A JPH03207627A (en) 1990-01-09 1990-01-09 Method for controlling injection molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP93090A JPH03207627A (en) 1990-01-09 1990-01-09 Method for controlling injection molding machine

Publications (1)

Publication Number Publication Date
JPH03207627A true JPH03207627A (en) 1991-09-10

Family

ID=11487404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP93090A Pending JPH03207627A (en) 1990-01-09 1990-01-09 Method for controlling injection molding machine

Country Status (1)

Country Link
JP (1) JPH03207627A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006007617A (en) * 2004-06-25 2006-01-12 Olympus Corp Injection molding device and method
WO2007007779A1 (en) * 2005-07-12 2007-01-18 Sumitomo Heavy Industries, Ltd. Molding apparatus, method of manufacturing the same and method of molding
JP2009292062A (en) * 2008-06-05 2009-12-17 Toyo Mach & Metal Co Ltd Molding machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5286456A (en) * 1976-01-12 1977-07-18 Sumitomo Heavy Industries Injection molding machine controller
JPS6490720A (en) * 1987-10-02 1989-04-07 Komatsu Mfg Co Ltd Temperature control method of injection mold

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5286456A (en) * 1976-01-12 1977-07-18 Sumitomo Heavy Industries Injection molding machine controller
JPS6490720A (en) * 1987-10-02 1989-04-07 Komatsu Mfg Co Ltd Temperature control method of injection mold

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006007617A (en) * 2004-06-25 2006-01-12 Olympus Corp Injection molding device and method
WO2007007779A1 (en) * 2005-07-12 2007-01-18 Sumitomo Heavy Industries, Ltd. Molding apparatus, method of manufacturing the same and method of molding
JP2009292062A (en) * 2008-06-05 2009-12-17 Toyo Mach & Metal Co Ltd Molding machine

Similar Documents

Publication Publication Date Title
EP0748680B1 (en) Temperature regulating system, method and apparatus
EP1091842B1 (en) Automated molding technology for thermoplastic injection molding
CN111065506B (en) System and method for standardized PID control across injection molding machines
JP3425208B2 (en) Mold temperature control method
US5540577A (en) Injection molding machine capable of reducing the work required to an operator
EP1389517B1 (en) Method of controlling a shut-off nozzle with heating unit and cooling unit for hot runner systems of injection molding machines
JP2003522654A (en) Dynamic feed control system
US20090057938A1 (en) Closed Loop Control for an Injection Unit
JP2736757B2 (en) Mold clamping force control method for injection molding machine
CA2660482C (en) Thermal management of extruder of molding system
JP7205225B2 (en) Molding condition determination support device and injection molding machine
JPH0681697B2 (en) Injection molding startup method and apparatus
JPH03207627A (en) Method for controlling injection molding machine
JP2000052396A (en) Device and method for controlling injection molding
US20200094461A1 (en) Device for assisting molding condition determination and injection molding apparatus
JPH01200925A (en) Method for molding plastic lens
JP3605499B2 (en) Mold temperature control device
JPH03187721A (en) Control of mold temperature
KR20140007796A (en) Method for producing a molded plastics part
JP4340366B2 (en) Casting method
JPS63257620A (en) Controlling device for mold temperature
JP6656780B1 (en) Injection nozzle temperature control method
JP2555374B2 (en) Temperature control method for injection mold
JP2828801B2 (en) Injection molding machine
JPH02162007A (en) Method for molding molded item