JPH03207426A - Method for detoxicating organic semiconductor exhaust gas - Google Patents

Method for detoxicating organic semiconductor exhaust gas

Info

Publication number
JPH03207426A
JPH03207426A JP2000879A JP87990A JPH03207426A JP H03207426 A JPH03207426 A JP H03207426A JP 2000879 A JP2000879 A JP 2000879A JP 87990 A JP87990 A JP 87990A JP H03207426 A JPH03207426 A JP H03207426A
Authority
JP
Japan
Prior art keywords
gas
exhaust gas
activated carbon
organic semiconductor
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000879A
Other languages
Japanese (ja)
Other versions
JP2647723B2 (en
Inventor
Koichi Tomota
友田 孝一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Sanso Co Ltd
Original Assignee
Daido Sanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Sanso Co Ltd filed Critical Daido Sanso Co Ltd
Priority to JP2000879A priority Critical patent/JP2647723B2/en
Publication of JPH03207426A publication Critical patent/JPH03207426A/en
Application granted granted Critical
Publication of JP2647723B2 publication Critical patent/JP2647723B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To completely detoxicate a large amt. of the org. semiconductor exhaust gas by bringing the exhaust gas into contact with activated carbon contg. a metal oxide. CONSTITUTION:When the org. semiconductor exhaust gas is detoxicated, the gas contg. the gaseous org. compd. selected from Si(OC2H5)4, As(OC2H5)3, P(OCH3)3 is firstly filled into a bubbling-type gas supply vessel 2. An inert gas is introduced into the vessel 2 from a bubbling carrier 3 to bubble the liquefied org. gas for the semiconductor, hence the liq. is gasified, and the gas is introduced into a treating cylinder 1 packed with the activated carbon contg. the metal oxide. The exhaust gas is then heated to 0-200 deg.C and introduced into the cylinder 1. As a result, the org. gas for the semiconductor as the exhaust gas is oxidized by the metal oxide in the activated carbon, and the formed oxide is simultaneously chemically adsorbed by the activated carbon.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、有機系半導体排気ガスの有害戒分を無害化
する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for rendering harmful substances in organic semiconductor exhaust gas harmless.

〔従来の技術〕[Conventional technology]

近年、半導体産業における微細加工技術が著しく進歩し
、半導体を加工する際に使用する半導体用ガスもプロセ
スに応じて非常に多様化してきている。上記のような半
導体用ガスとしては、例えば、化学蒸着(CVD)用の
高圧ガスおよびドーピング用特殊材料ガス等がある。と
ころが、最近では、安全性および供給量の点から、S 
i (O C zHs)4, As(OCz Hs)s
 ,  P (OCHi)i ,  B(OCHz)s
等の、常温で液状の有機系半導体用ガスが使用されてき
ている。
In recent years, microfabrication technology in the semiconductor industry has progressed significantly, and the semiconductor gases used when processing semiconductors have become extremely diverse depending on the process. Examples of such semiconductor gases include high-pressure gases for chemical vapor deposition (CVD) and special material gases for doping. However, recently, S
i (OCzHs)4, As(OCzHs)s
, P (OCHi)i , B(OCHz)s
Gases for organic semiconductors that are liquid at room temperature have been used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記有機系半導体用ガスは、SiH< 
,AsH* ,PHs ,Bz Hh等に較べて毒性は
低いと言われているが、有害威分であることには変わり
はないため、上記有機系半導体用ガスを系外に排出する
前に、これらの有害威分を除去し無害化することが必要
となる。そこで、現♂では、液状の有機系半導体用ガス
を、Ar,NZ等でパブリングさせてガス状にし、Na
OH溶樫等と向流接触させる湿式スクラバー法を利用し
]有害戒分を除去することが行われている。とこ2が、
この湿式スクラバー法では、上記有害戒分苓完全に除去
することは不可能であり、分解生戒狛の一部が薬液ミス
トに同伴されて系外へ排出さt.るという現象が生じる
。また、冬期における薬沼の凍結、薬液の管理の煩わし
さ等の問題もある大め、より有効な処理方法の確立が望
まれている。
However, the above gas for organic semiconductors is SiH<
Although it is said to be less toxic than , AsH*, PHs, Bz Hh, etc., it is still harmful, so before discharging the above organic semiconductor gas to the outside of the system, It is necessary to remove these harmful elements and render them harmless. Therefore, at present, the liquid organic semiconductor gas is made into a gas by bubbling with Ar, NZ, etc.
Harmful substances are removed using a wet scrubber method in which the material is brought into countercurrent contact with OH molten oak, etc. The second thing is
With this wet scrubber method, it is impossible to completely remove the above-mentioned harmful substances, and some of the decomposed substances are carried away by the chemical mist and are discharged from the system. This phenomenon occurs. In addition, there are major problems such as freezing of medicinal ponds in winter and the troublesome management of chemical solutions, so it is desired to establish a more effective treatment method.

この発明は、このような事情に鑑みなされたもので、上
記有害或分である有機系半導体排気ガスを完全に処理し
無害化する方法の提供をその目畝とする。
The present invention was made in view of these circumstances, and its purpose is to provide a method for completely treating and rendering harmless the above-mentioned harmful organic semiconductor exhaust gas.

(課題を解決するための手段〕 上記の目的を達威するため、この発明の有機系半導体排
気ガスの無害化方法は、下記の有機化合物(A)をガス
状で含有する排気ガスを、o′c〜200℃の温度下で
、金属酸化物を含有させた活性炭に接触させ、その排気
ガス中の下記有機化合物(A)を上記金属酸化物の作用
により酸化させ、これを活性炭に吸着させて除去し無害
化するという構戒をとる. (A)  Si(OCz Hs)4,AsCOCt H
s)+ ,P ( O C Hz)iおよびB ( O
 C H3)lがらなる群から選ばれた少なくともーっ
の有機化合物。
(Means for Solving the Problems) In order to achieve the above object, the method for detoxifying organic semiconductor exhaust gas of the present invention provides an o The organic compound (A) in the exhaust gas is oxidized by the action of the metal oxide by contacting activated carbon containing a metal oxide at a temperature of ~200°C, and the organic compound (A) is adsorbed onto the activated carbon. (A) Si(OCz Hs)4, AsCOCt H
s) + , P (O C Hz)i and B (O
At least one organic compound selected from the group consisting of C H3)l.

〔作用〕[Effect]

すなわち、本発明者らは、湿式スクラバー法によらず、
上記有害戒分である有機系半導体用ガスを吸着除去させ
ることのできる吸着剤について一連の研究を行った。こ
の研究の過程で、上記有機系半導体用ガスである上記有
害或分(A)をそのまま除去するのではなく、酸化して
酸化物の状態にして除去することを着想した。そして、
これについてさらに研究を重ねた結果、上記酸化物をつ
くるための金属触媒として金属酸化物が好適であり、こ
れをそのまま使用するのではなく、活性炭に含有させ、
この活性炭に上記有機系半導体用ガスを液状ではな<N
z ,Ar等の吹き込みによってガス状にして接触させ
ると、高効率で上記有害威分(A)の除去ができるよう
になることを見い出しこの発明に到達した。
That is, the present inventors did not rely on the wet scrubber method,
A series of studies were conducted on adsorbents that can adsorb and remove the above-mentioned harmful organic semiconductor gases. In the course of this research, we came up with the idea of oxidizing the harmful component (A), which is the organic semiconductor gas, instead of removing it as it is, converting it into an oxide. and,
As a result of further research on this matter, it was found that metal oxides are suitable as metal catalysts for producing the above-mentioned oxides, and instead of using them as they are, they are incorporated into activated carbon.
The above-mentioned organic semiconductor gas is applied to this activated carbon in a non-liquid state <N
The present inventors have discovered that the above-mentioned harmful component (A) can be removed with high efficiency by contacting it in a gaseous state by blowing z, Ar, etc., and have thus arrived at this invention.

つぎに、この発明を詳細に説明する。Next, this invention will be explained in detail.

この発明において、処理対象とする有機系半導体用ガス
は、常温で液状であるSi(OCz HS)4 .As
(OCt HS)3 .  P (OCR3):I ,
 B (OCH,),のような有機化合物(A)である
,この発明は、上記常温で液状である有機系半導体用ガ
スを、Nz ,Ar等の吹き込み(パブリング)によっ
てガス状にし、この有機系半導体用ガスを含有する排気
ガス(残部はNx ,Ar等)を金属酸化物を含有させ
た活性炭粒子に接触反応させて上記排気ガス中の有機系
半導体用ガス(A)を酸化し、この酸化生戒物を活性炭
に吸着させ無害化するものである。
In this invention, the organic semiconductor gas to be treated is Si(OCz HS)4. As
(OCt HS)3. P (OCR3):I,
This invention is an organic compound (A) such as B (OCH, ), which is made by converting the organic semiconductor gas, which is liquid at room temperature, into a gaseous state by bubbling with Nz, Ar, etc. The organic semiconductor gas (A) in the exhaust gas is oxidized by contacting and reacting the exhaust gas containing the organic semiconductor gas (the remainder is Nx, Ar, etc.) with activated carbon particles containing metal oxides. Oxidized biological substances are adsorbed onto activated carbon to render them harmless.

常温で液状である有機系半導体用ガスをガス化するため
に用いるガスは、上記のようなN.,Arに限らず、H
e,Neも使用可能であり、またこれらを適宜混合した
混合ガスも用いることができる。
The gas used to gasify the organic semiconductor gas which is liquid at room temperature is the above-mentioned N. , Ar, H
E and Ne can also be used, and a mixed gas of these can also be used.

上記活性炭に含有させる金属酸化物としては、単一の酸
化物よりも、Zn O,  Cu O,アルキル金属酸
化物からなる複数の金属酸化物が好ましい。このような
複数の金属酸化物の各威分の含有割合としては、例えば
Zn Oが40〜80重量%(以下%と略す),CuO
が15〜50%,アルキル金属酸化物が5〜10%があ
げられ、これが最も好適である。
As the metal oxide to be contained in the activated carbon, a plurality of metal oxides including ZnO, CuO, and alkyl metal oxides are preferable to a single oxide. As for the content ratio of each component of such a plurality of metal oxides, for example, ZnO is 40 to 80% by weight (hereinafter abbreviated as %), CuO
15 to 50%, and 5 to 10% of the alkyl metal oxide, which is most preferred.

この発明に用いる処理装置としては、例えば第1図に示
すものが用いられる.図において、1はアクリル製の処
理筒で、内部に金属酸化物を含有させた活性炭が充填さ
れている。2はバプリング型ガス供給容器で、内部に液
状の上記有機系半導体用ガスを充填するようになってる
.3は上記パブリング型ガス供給容器2内に流量を調節
してN.,Ar等の不活性ガスを供給するパブリングキ
ャリアである。
As the processing apparatus used in this invention, for example, the one shown in FIG. 1 is used. In the figure, reference numeral 1 denotes an acrylic processing cylinder, the inside of which is filled with activated carbon containing metal oxide. 2 is a bubbling type gas supply container, the inside of which is filled with the above-mentioned liquid gas for organic semiconductors. 3 adjusts the flow rate into the bubbling type gas supply container 2 to supply N. This is a pubbling carrier that supplies inert gas such as , Ar, etc.

上記装置を用い、有機系半導体用ガスを処理する場合、
まず、パブリング型ガス供給容器2に、処理対象の液状
有機系半導体用ガスを充填しておく。つぎに、パブリン
グキャリア3から一定の流量の不活性ガスをパブリング
型ガス供給容器2内に送り込んで液状の有機系半導体用
ガスをバプリングすることによりガス状にし、これを処
理筒l内に送り込む。つぎに、上記ガス状の有機系半導
体用ガスと不活性ガスからなる排気ガスをO℃〜200
″Cの温度下の処理筒l内に導く.これにより、上記排
気ガスの有機系半導体用ガスが、上記活性炭の金属酸化
物と反応して酸化され、その酸化物が生或すると同時に
活性炭に化学吸着される。その結果、有機系半導体用ガ
スが乾式的に無害化処理される。
When processing organic semiconductor gas using the above device,
First, the bubbling type gas supply container 2 is filled with a liquid organic semiconductor gas to be treated. Next, a constant flow rate of inert gas is sent from the bubbling carrier 3 into the bubbling-type gas supply container 2 to bubble the liquid organic semiconductor gas to a gaseous state, and this is sent into the processing cylinder l. . Next, the exhaust gas consisting of the above gaseous organic semiconductor gas and inert gas was heated to 0°C to 200°C.
The organic semiconductor gas in the exhaust gas reacts with the metal oxide of the activated carbon and is oxidized, and at the same time as the oxide is produced, it is converted into activated carbon. As a result, the organic semiconductor gas is dry-processed to be rendered harmless.

なお、50℃以上で有機系半導体用ガスを処理する場合
は、第2図に示すように、処理筒lを加熱するための加
熱設備4を設け、処理筒1を上記のアクリル製のものに
代えて、耐熱性のあるステンレス製のものを使用して処
理を行うことがなされる。
In addition, when processing an organic semiconductor gas at a temperature of 50°C or higher, as shown in Fig. 2, a heating equipment 4 for heating the processing cylinder 1 is installed, and the processing cylinder 1 is made of the above-mentioned acrylic. Instead, heat-resistant stainless steel is used for the treatment.

この発明の方法で、有機系半導体用ガスの処理を行う場
合において、処理温度を200℃以上にすると、活性炭
に多量の酸素が混入した際に活性炭が灰化する恐れがあ
り、逆に処理温度を極端に低くすると反応速度が遅くな
り、反応効率の点がら経済的でない。したがって、処理
温度0℃〜30℃の範囲内が処理?ilに加熱の設備も
不要となり経済的である。
When using the method of this invention to process a gas for organic semiconductors, if the processing temperature is set to 200°C or higher, there is a risk that the activated carbon will ash when a large amount of oxygen is mixed into the activated carbon. If it is extremely low, the reaction rate will be slow and it will be uneconomical in terms of reaction efficiency. Therefore, should the processing temperature be within the range of 0°C to 30°C? There is no need for heating equipment for the il, making it economical.

つぎに、実施例について説明する。Next, examples will be described.

〈実施例1〉 内径28s+sのアクリル製処理筒1に、複数の金属酸
化物(Zn060%,Cu035%,アルキル金属酸化
物5%)を含有させた粒径1〜3一一の活性炭32gを
充填した.他方、有機系半導体用ガスとしてSL(OC
z Hs)aをパブリング型ガス供給容器2に充填した
.そして、この容器2内に、パブリングキャリアとなる
N2を流量2Nl/minで供給してパブリングし、こ
れを上記処理筒1に導入して無害化処理した.この場合
、パブリングにより発生したガス中のSi(OCz H
S)4濃度は1970ppmであったところ、処理筒l
の出口のSt(○C.H,),濃度は、FID(水素炎
イオン検出器)ガスクロマトグラフにより分析した結果
、0.05 ppm以下(検出限界)まで低減していた
。この濃度は435分継続した。
<Example 1> An acrylic treatment tube 1 with an inner diameter of 28s+s is filled with 32g of activated carbon with a particle size of 1 to 311 containing a plurality of metal oxides (Zn060%, Cu035%, alkyl metal oxide 5%). did. On the other hand, SL (OC
z Hs)a was filled into the pubbling type gas supply container 2. Then, N2 serving as a bubbling carrier was supplied into this container 2 at a flow rate of 2 Nl/min for bubbling, and this was introduced into the processing cylinder 1 for detoxification treatment. In this case, Si (OCz H
S) 4 concentration was 1970 ppm, processing tube l
As a result of analysis using an FID (Flame Ion Detector) gas chromatograph, the concentration of St (○C.H,) at the outlet of the reactor was found to have decreased to 0.05 ppm or less (detection limit). This concentration lasted for 435 minutes.

く実施例2〉 実施例1と同様の処理筒1に、実施例1と同様の金属酸
化物を含有させた活性炭25.6gを充填した。他方、
有機系半導体用ガスとしてAs(OCz Hs)sをバ
プリング型ガス供給容器2に充填した。そして、この容
器2内に、パブリングキャリアとなるN!を流量2Nj
!/mfnで供給してパブリングし、これを上記処理筒
1に導入して無害化処理した。この場合、バプリングに
より発生したガス中のAsCOCt Hs)s濃度は1
978pp■であったところ、処理筒1の出口のAs(
OCtH,),濃度は、FID(水素炎イオン検出器)
ガスクロマトグラフにより分析した結果、0.05 p
pm以下(検出限界)まで低減していた。この濃度は2
95分継続した. 〈実施例3〉 実施例lと同様の処理筒1に、実施例1と同様の金属酸
化物を含有させた活性炭82gを充填した。他方、有機
系半導体用ガスとしてB (OCH,)3をパブリング
型ガス供給容器2に充填した。
Example 2> A treatment cylinder 1 similar to that in Example 1 was filled with 25.6 g of activated carbon containing the same metal oxide as in Example 1. On the other hand,
The bubbling type gas supply container 2 was filled with As(OCz Hs)s as an organic semiconductor gas. Then, in this container 2, N! which becomes a pub ring carrier! The flow rate is 2Nj
! /mfn, bubbling was carried out, and this was introduced into the processing cylinder 1 for detoxification treatment. In this case, the AsCOCt Hs)s concentration in the gas generated by bubbling is 1
When it was 978pp■, As(
OCtH, ), concentration is FID (Flame Ion Detector)
As a result of analysis by gas chromatography, 0.05 p
It was reduced to below pm (detection limit). This concentration is 2
It lasted 95 minutes. <Example 3> 82 g of activated carbon containing the same metal oxide as in Example 1 was filled in the same processing cylinder 1 as in Example 1. On the other hand, the bubbling type gas supply container 2 was filled with B (OCH,)3 as an organic semiconductor gas.

そして、この容器2内に、パブリングキャリアとなるキ
ャリアガスのNtを流量INj!/mtnで供給してパ
ブリングし、これを上記処理筒1に導入して無害化処理
した。この場合、パブリングにより発生したガス中のB
(OCRs)s濃度は112000ppm  (11.
2%)であったところ、処理筒1の出口のB(OCHs
)s濃度はFID(水素炎イオン検出器)ガスクロマト
グラフにより分析した結果、0.1 ppm以下(検出
限界)まで低減していた.この濃度は57分継続した.
〈実施例4〉 実施例1と同様の処理筒1に、実施例1と同様の金属酸
化物を含有させた活性炭32gを充填した.他方、有機
系半導体用ガスとしてP (OCH,),をバブリング
型ガス供給容器2に充填した。
Then, Nt of the carrier gas which becomes the bubbling carrier is introduced into the container 2 at a flow rate INj! /mtn for bubbling, and introduced into the processing cylinder 1 for detoxification treatment. In this case, B in the gas generated by bubbling
(OCRs) s concentration is 112000 ppm (11.
2%), B(OCHs at the outlet of processing cylinder 1)
)s concentration was analyzed by FID (Flame Ion Detector) gas chromatography, and it was found that it had decreased to 0.1 ppm or less (detection limit). This concentration continued for 57 minutes.
<Example 4> The same processing cylinder 1 as in Example 1 was filled with 32 g of activated carbon containing the same metal oxide as in Example 1. On the other hand, the bubbling type gas supply container 2 was filled with P (OCH,) as an organic semiconductor gas.

そして、この容器2内に、パブリングキャリアとなるキ
ャリアガスのN2を流量1.07N l / m i 
nで供給してパブリングし、これを上記処理筒1に導入
して無害化処理した。この場合、パブリングにより発生
したガス中のP(OCHs)s濃度は8700pp−で
あったところ、処理筒1の出口のP(OCHs)s濃度
をFPD (炎光光度型検出器)ガスクロマトグラフに
より分析した結果、1.8 9pb (検出限界)まで
低減していた.この濃度は65分継続した. 〈実施例5〉 処理筒lをアクリル製のものから内径28m+*のステ
ンレス製のものに代え、この処理筒1に、実施例1と同
様の金属酸化物を含有させた活性炭32gを充填し、こ
の処理筒lを加熱装W4により200℃に加熱した。他
方、有機系半導体用ガスとしてSt(OCz HS)4
をパブリング型ガス供給容器2に充填した.そして、こ
の容器2内に、パブリングキャリアとなるキャリアガス
のNzを流量2Nf/minで供給してパブリングし、
これを上記処理筒1′に導入して無害化処理した。この
場合、パブリングにより発生したガス中のSi(OC.
H%)4濃度は1970ppmであったところ、処理筒
1′の出口のSt(OCz Hs)a濃度をF10(水
素炎イオン検出器)ガスクロマトグラフにより分析した
結果、50ppb以下(検出限界)まで低減していた.
この濃度は490分継続した。
Then, in this container 2, a carrier gas of N2, which becomes a bubbling carrier, was introduced at a flow rate of 1.07 Nl/m i
n, bubbling was carried out, and this was introduced into the processing cylinder 1 and subjected to detoxification treatment. In this case, the P(OCHs)s concentration in the gas generated by bubbling was 8700 pp-, and the P(OCHs)s concentration at the outlet of the processing cylinder 1 was analyzed using an FPD (flame photometric detector) gas chromatograph. As a result, it was reduced to 1.89 pb (detection limit). This concentration continued for 65 minutes. <Example 5> The processing cylinder 1 was replaced from an acrylic one to a stainless steel one with an inner diameter of 28 m+*, and this processing cylinder 1 was filled with 32 g of activated carbon containing the same metal oxide as in Example 1. This processing cylinder 1 was heated to 200° C. using a heating device W4. On the other hand, St(OCz HS)4 is used as an organic semiconductor gas.
was filled into bubbling type gas supply container 2. Then, a carrier gas Nz serving as a pubbling carrier is supplied into the container 2 at a flow rate of 2 Nf/min to perform pubbling.
This was introduced into the treatment tube 1' and treated to render it harmless. In this case, Si (OC.
H%)4 concentration was 1970 ppm, but as a result of analyzing the St(OCz Hs)a concentration at the outlet of processing cylinder 1' using an F10 (flame ion detector) gas chromatograph, it was reduced to 50 ppb or less (detection limit). Was.
This concentration lasted for 490 minutes.

実施例1〜5の処理結果から処理対象ガスの単位充填剤
当たりの処理量(100%換算)を算出すると、表のよ
うな結果となる。なお、処理量算出にあたっては、出口
濃度がS i(O C z H s)aにあっては0.
35ppm ,  As(O Cz Hs)s は0.
045pp一B(OCHs)s は0.1pPII, 
 P ( O C H 3)3 は0.18ppmが検
出された時間を破過時間(充填剤が飽和したと推定され
る時間)とした。
When the processing amount (100% conversion) of the gas to be processed per unit filler is calculated from the processing results of Examples 1 to 5, the results are as shown in the table. In addition, when calculating the throughput, if the outlet concentration is S i (O C z H s) a, 0.
35ppm, As(O Cz Hs)s is 0.
045pp-B(OCHs)s is 0.1pPII,
The time when 0.18 ppm of P (OC H 3) 3 was detected was defined as the breakthrough time (the time when the filler is estimated to be saturated).

〈以下余白) 〔発明の効果〕 以上のように、この発明によれば、大量の有機系半導体
用ガスを金属酸化物を含有させた少量の活性炭で完全に
無害化処理することが可能となる。したがって、ランニ
ングコストが安価で、しかも処理装直をコンパクトにす
ることができ、工業的規模の有機系半導体用ガスの処理
に適するものである。
(Hereinafter in the margin) [Effects of the Invention] As described above, according to the present invention, it is possible to completely detoxify a large amount of organic semiconductor gas with a small amount of activated carbon containing metal oxide. . Therefore, the running cost is low, the processing equipment can be made compact, and it is suitable for processing organic semiconductor gas on an industrial scale.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例に用いる装置の構或図、第
2図は他の実施例に用いる装置の構或図である。
FIG. 1 is a diagram showing the structure of an apparatus used in one embodiment of the present invention, and FIG. 2 is a diagram showing the structure of an apparatus used in another embodiment.

Claims (2)

【特許請求の範囲】[Claims] (1)下記の有機化合物(A)をガス状で含有する排気
ガスを、0℃〜200℃の温度下で、金属酸化物を含有
させた活性炭に接触させ、その排気ガス中の下記有機化
合物(A)を上記金属酸化物の作用により酸化させ、こ
れを活性炭に吸着させて除去し無害化することを特徴と
する有機系半導体排気ガスの無害化方法。 (A)Si(OC_2H_5)_4,As(OC_2H
_5)_3、P(OCH_3)_3およびB(OCH_
3)_3からなる群から選ばれた少なくとも一つの有機 化合物。
(1) Exhaust gas containing the following organic compound (A) in gaseous form is brought into contact with activated carbon containing a metal oxide at a temperature of 0°C to 200°C, and the following organic compound in the exhaust gas is A method for detoxifying organic semiconductor exhaust gas, characterized in that (A) is oxidized by the action of the metal oxide, and is removed and detoxified by adsorption on activated carbon. (A) Si(OC_2H_5)_4, As(OC_2H
_5)_3, P(OCH_3)_3 and B(OCH_
3) At least one organic compound selected from the group consisting of _3.
(2)上記排気ガスのベースとなるガスが、Ar,N_
2,He,NeおよびKrからなる群から選ばれた少な
くとも一つの不活性ガスである請求項(1)記載の有機
系半導体排気ガスの無害化方法。
(2) The base gas of the exhaust gas is Ar, N_
2. The method for detoxifying organic semiconductor exhaust gas according to claim 1, wherein the gas is at least one inert gas selected from the group consisting of He, Ne, and Kr.
JP2000879A 1990-01-06 1990-01-06 Detoxification method of organic semiconductor exhaust gas Expired - Fee Related JP2647723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000879A JP2647723B2 (en) 1990-01-06 1990-01-06 Detoxification method of organic semiconductor exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000879A JP2647723B2 (en) 1990-01-06 1990-01-06 Detoxification method of organic semiconductor exhaust gas

Publications (2)

Publication Number Publication Date
JPH03207426A true JPH03207426A (en) 1991-09-10
JP2647723B2 JP2647723B2 (en) 1997-08-27

Family

ID=11485960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000879A Expired - Fee Related JP2647723B2 (en) 1990-01-06 1990-01-06 Detoxification method of organic semiconductor exhaust gas

Country Status (1)

Country Link
JP (1) JP2647723B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63247639A (en) * 1987-04-03 1988-10-14 Gastec:Kk Capturing material for analysis of gas for production of semiconductor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63247639A (en) * 1987-04-03 1988-10-14 Gastec:Kk Capturing material for analysis of gas for production of semiconductor

Also Published As

Publication number Publication date
JP2647723B2 (en) 1997-08-27

Similar Documents

Publication Publication Date Title
EP1450936B1 (en) Method and apparatus for treating exhaust gas comprising a fluorine compound and carbon monoxide
JP4350081B2 (en) Exhaust gas treatment method and apparatus
JPS6161619A (en) Treatment of waste gas
KR101097240B1 (en) Method and apparatus for treating exhaust gas
JPH02273511A (en) Method for detoxifying halides of nitrogen or carbon
JPH03207426A (en) Method for detoxicating organic semiconductor exhaust gas
JPH0421523B2 (en)
JP3384464B2 (en) Method for treating volatile organic chlorine compounds
JP2000140576A (en) System for making fluorogas-containing mixture harmless
JPS61101231A (en) Removal of fluorine gas
JP3871127B2 (en) Vent gas removal method and treatment agent
JP2000058464A (en) Exhaust gas processing method and device
JPS63291624A (en) Treatment of exhaust gas in dry etching of gallium-arsenide wafer
WO2005077496A1 (en) Method and apparatus for treating gas containing fluorine-containing compounds
JPH06134315A (en) Catalyst for reduction treatment of volatile organic halogen compound
JP2571176B2 (en) Removal method of CVD exhaust gas
JPH04290523A (en) Method and device for treating waste nf3 gas
JP3898279B2 (en) Exhaust gas removal method
JP3908818B2 (en) Exhaust gas treatment method
JPH0260668A (en) Method of decomposing acyclic hydrocarbon halide compound
JP2003326128A (en) Treatment method for exhaust gas containing arsenic or arsenic compound and treatment apparatus therefor
JP2002012565A (en) Method for recycling perfluoro compound
JPH08141359A (en) Method and apparatus for removing harmful material in harmful gas
JP2000107565A (en) Organochlorine gas treatment apparatus
JPH1142422A (en) Device for making ammonia-containing waste gas harmless

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees