JPH0421523B2 - - Google Patents

Info

Publication number
JPH0421523B2
JPH0421523B2 JP59240084A JP24008484A JPH0421523B2 JP H0421523 B2 JPH0421523 B2 JP H0421523B2 JP 59240084 A JP59240084 A JP 59240084A JP 24008484 A JP24008484 A JP 24008484A JP H0421523 B2 JPH0421523 B2 JP H0421523B2
Authority
JP
Japan
Prior art keywords
gas
silane
activated carbon
toxic
toxic gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59240084A
Other languages
Japanese (ja)
Other versions
JPS61118117A (en
Inventor
Fumio Ito
Masanobu Kobayashi
Toshuki Abe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Sanso Co Ltd
Original Assignee
Taiyo Sanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Sanso Co Ltd filed Critical Taiyo Sanso Co Ltd
Priority to JP59240084A priority Critical patent/JPS61118117A/en
Publication of JPS61118117A publication Critical patent/JPS61118117A/en
Publication of JPH0421523B2 publication Critical patent/JPH0421523B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、シラン、アルシン、ホスフイン、ジ
ボラン等の有毒ガス成分を含むガス、特に半導体
製造プロセスにおいて排出されるガスを無害化処
理する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for detoxifying gases containing toxic gas components such as silane, arsine, phosphine, and diborane, particularly gases emitted during semiconductor manufacturing processes. be.

従来の技術 半導体製造プロセスにおいては、結晶成長、ド
ーピング、膜生成などの目的に使用したシラン、
アルシン、ホスフイン、ジボランなどのガスが水
素、窒素、ヘリウム、アルゴンなどのバランスガ
スと共に排出される。シラン、アルシン、ホスフ
イン、ジボランなどのガスは有毒であるため、排
出ガスを大気中に放散する前にその中に含まれる
有毒ガスを除去する必要がある。
Conventional technology In the semiconductor manufacturing process, silane, which is used for crystal growth, doping, film formation, etc.
Gases such as arsine, phosphine, and diborane are exhausted along with balance gases such as hydrogen, nitrogen, helium, and argon. Gases such as silane, arsine, phosphine, and diborane are toxic, so it is necessary to remove the toxic gases contained in the exhaust gases before they are released into the atmosphere.

これら有毒ガスを除去する方法として、従来
種々の方法が知られているが、その多くは単独の
有毒ガス成分を除去するものであり、シラン、ア
ルシン、ホスフイン、ジボランなどの多種の成分
が混在している場合には適用できないことが多か
つた。
Various methods have been known to remove these toxic gases, but most of them remove a single toxic gas component, whereas many methods remove a mixture of various components such as silane, arsine, phosphine, and diborane. It was often not applicable in cases where

そこで、多種の有毒ガスが混在している場合の
排出ガスの処理方法として、(A)燃焼炉による燃焼
酸化方法、さらに詳しくは、半導体製造の際発生
する有毒ガス成分を含むガスを都市ガスおよび空
気と混合してから燃焼し、ついで燃焼ガスを冷却
してから、燃焼物を活性炭に吸収させるか吸収液
に吸収させる方法(たとえば特開昭49−54268号
公報)、(B)シランの如き自然発火性のガスをまず
燃焼させ、ついで他の有毒ガス成分を適当な吸着
剤を用いて除去する方法、などが提案されてい
る。
Therefore, as a treatment method for exhaust gas when various types of toxic gases are mixed, (A) combustion oxidation method using a combustion furnace, more specifically, gas containing toxic gas components generated during semiconductor manufacturing is treated with city gas A method of mixing with air and burning, then cooling the combustion gas, and then absorbing the combustion products into activated carbon or absorption liquid (for example, Japanese Patent Application Laid-open No. 49-54268), (B) silane, etc. A method has been proposed in which pyrophoric gas is first combusted, and then other toxic gas components are removed using an appropriate adsorbent.

発明が解決しようとする問題点 しかしながら、上記(A)の方法は、運転操作が複
雑であること、運転コストが過大であることなど
の問題があつた。
Problems to be Solved by the Invention However, the above method (A) has problems such as complicated operating operations and excessive operating costs.

また、上記(B)の方法は、シランの燃焼酸化物で
あるSiO2の微粒子が後の工程の吸着剤に付着し
て目詰りなどのトラブルを招くことが多いため、
シランの燃焼酸化物除去のための複雑な工程を組
込まねばならず、必ずしも有効な方法とは言えな
いものであつた。
In addition, in method (B) above, fine particles of SiO 2 , which is a combustion oxide of silane, often adhere to the adsorbent in the subsequent process, causing problems such as clogging.
This method requires a complicated process for removing combustion oxides of silane, and cannot necessarily be said to be an effective method.

本発明は、このような従来の問題点を解決する
ことを目的になされたものである。
The present invention has been made to solve these conventional problems.

問題点を解決するための手段 本発明は、 「シラン、アルシン、ホスフイン、ジボラン等
の有毒ガス成分を含むガスを無害化処理するにあ
たり、 吸着強化剤を添着した活性炭にガスを接触させ
て、ガス中のシラン以外の有毒ガス成分を除去す
る第一工程を遂行し、 ついで、該第一工程から導出されたガスをシラ
ン処理系に導いて、ガス中のシランを除去する第
二工程を遂行すること を特徴とする有毒ガス成分を含むガスの処理方
法。
Means for Solving the Problems The present invention provides a method for detoxifying gases containing toxic gas components such as silane, arsine, phosphine, and diborane by bringing the gas into contact with activated carbon impregnated with an adsorption enhancer. A first step of removing toxic gas components other than silane in the gas is carried out, and then the gas derived from the first step is led to a silane treatment system to carry out a second step of removing silane from the gas. A method for processing gas containing toxic gas components, characterized by:

をその要旨とするものであり、このようにまずシ
ラン以外の有毒ガス成分の処理を行い、ついでシ
ランの処理を行うという特定の工程配列を採用す
ることにより、上記問題点を完全に解決するに至
つた。
By adopting a specific process sequence in which toxic gas components other than silane are first treated, and then silane is treated, the above problems can be completely solved. I've reached it.

以下本発明の方法を詳細に説明する。 The method of the present invention will be explained in detail below.

第一工程 本発明においては、まず、吸着強化剤を添着し
た活性炭にシラン、アルシン、ホスフイン、ジボ
ラン等の有毒ガス成分を含むガスを接触させて、
ガス中のシラン以外の有毒ガス成分を除去する第
一工程を遂行する。
First step In the present invention, first, activated carbon impregnated with an adsorption enhancer is brought into contact with a gas containing toxic gas components such as silane, arsine, phosphine, diborane, etc.
The first step is to remove toxic gas components other than silane from the gas.

有毒ガスとしては、ケイ素、ヒ素、リン、ホウ
素、セレン、ゲルマニウム、ハロゲン等の元素の
水素化物やハロゲン化物などがあげられ、特にシ
ラン、アルシン、ホスフイン、ジボランが典型的
なものとしてあげられる。
Poisonous gases include hydrides and halides of elements such as silicon, arsenic, phosphorus, boron, selenium, germanium, and halogen, with typical examples being silane, arsine, phosphine, and diborane.

これらの有毒ガスを含むガスとしては、半導体
製造プロセスにおいて結晶成長、ドーピング、膜
生成などの目的に使用した後の排出ガスがあげら
れる。このガスは、通常、シラン、アルシン、ホ
スフイン、ジボランなどの有毒ガスを少量成分と
して含み、水素、窒素、ヘリウム、アルゴンなど
のバランスガスを多量成分として含む。
Examples of gases containing these toxic gases include exhaust gases used for purposes such as crystal growth, doping, and film formation in semiconductor manufacturing processes. This gas usually contains toxic gases such as silane, arsine, phosphine, diborane, etc. as minor components, and balance gases such as hydrogen, nitrogen, helium, argon, etc. as major components.

そのほか、光フアイバーやいわゆるニユーセラ
ミツクスの製造工程から出る排ガス、コークス
炉・高炉・転炉から発生するガス、石油留分分解
ガス、天然ガス、地下水汲上げに伴なつて湧出す
るガスなども、その中に含まれる有毒ガス成分除
去のため、本発明の方法を適用することができ
る。
In addition, exhaust gases from the manufacturing process of optical fibers and so-called new ceramics, gases generated from coke ovens, blast furnaces, and converter furnaces, petroleum fraction cracking gas, natural gas, and gases that gush out from pumping up groundwater are also included. The method of the present invention can be applied to remove toxic gas components contained therein.

吸着強化剤としては、 (a) 銅化合物、たとえば、炭酸塩、塩基性炭酸
塩、硝酸塩、硫酸塩、リン酸塩、有機酸塩、水
酸化物、酸化物、ハロゲン化物など、 (b) 銅化合物と、アルカリ金属化合物、アルカリ
土類金属化合物、アルミニウム、チタン、バナ
ジウム、クロム、マンガン、鉄、コバルト、ニ
ツケル、亜鉛、カドミウム、鉛の各化合物から
選ばれた化合物との併用、 (c) 重クロム酸塩、 (d) アンモニア性クロム酸銀、 (e) 過マンガン酸塩、 (f) 硝酸銀、 (g) 鉄化合物、 などが例示される。
Adsorption enhancers include (a) copper compounds, such as carbonates, basic carbonates, nitrates, sulfates, phosphates, organic acid salts, hydroxides, oxides, halides, etc.; (b) copper; combination of the compound with a compound selected from alkali metal compounds, alkaline earth metal compounds, aluminium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, zinc, cadmium, lead compounds, (c) heavy Examples include chromate, (d) ammoniacal silver chromate, (e) permanganate, (f) silver nitrate, and (g) iron compounds.

活性炭としては、ヤシ殻、石炭、コークス、木
炭、石油ピツチ等を原料として製造された活性炭
が用いられ、その形状は破砕状、各種成形状、繊
維状など任意である。
Activated carbon manufactured from raw materials such as coconut shells, coal, coke, charcoal, and petroleum pit is used as the activated carbon, and its shape may be arbitrary, such as crushed, various molded shapes, and fibrous.

上記のような吸着強化剤を上記活性炭に添着さ
せることにより、吸着強化剤添着活性炭が得られ
る。この添着活性炭と有毒ガス成分を含むガスと
を接触させることにより、ガス中のシラン以外の
有毒ガス成分が吸着除去される。
By impregnating the above-described adsorption enhancer with the activated carbon, an adsorption enhancer-impregnated activated carbon can be obtained. By bringing the impregnated activated carbon into contact with a gas containing toxic gas components, toxic gas components other than silane in the gas are adsorbed and removed.

なお、添着活性炭の種類によつては、空気(酸
素)の存在下に高い吸着能を発揮するものと、空
気(酸素)が混入しなくても吸着能の高いものと
がある。そこで、前者の添着活性炭を用い、かつ
ガス中に酸素が含まれていないときは、ガスと添
着活性炭との接触に先立ち、ガス中に空気を導入
することが要求される。ただしそのようにする
と、シランが酸化してSiO2となつて添着活性炭
に付着し、吸着塔の目詰まりの原因となることが
あるので、シランの濃度がある限度以下になるま
で不活性ガスで系を希釈することが望ましい。
Note that, depending on the type of impregnated activated carbon, some exhibit high adsorption capacity in the presence of air (oxygen), while others exhibit high adsorption capacity even when air (oxygen) is not mixed. Therefore, when the former impregnated activated carbon is used and the gas does not contain oxygen, it is required to introduce air into the gas prior to the contact between the gas and the impregnated activated carbon. However, if this is done, the silane may oxidize and become SiO 2 and adhere to the impregnated activated carbon, causing clogging of the adsorption tower. It is desirable to dilute the system.

上記添着活性炭による吸着処理は、工業的に
は、吸着塔に添着活性炭を充填してそこにガスを
導入する方式が有利である。この場合、複数の塔
を並設して、一の塔にガスを供給して吸着処理を
行つている間に、他の塔の添着活性炭の取換えま
たは賦活を行うようにする。また、破過点に達す
る前に塔の切換えを行う必要があるので、塔の適
当な位置に感知器を付設したりするなど適当な破
過点認知手段を講ずることが望ましい。
For the adsorption treatment using impregnated activated carbon, industrially, it is advantageous to use a method in which an adsorption tower is filled with impregnated activated carbon and gas is introduced therein. In this case, a plurality of towers are arranged in parallel, and while gas is being supplied to one tower to perform adsorption treatment, the impregnated activated carbon in the other towers is replaced or activated. Furthermore, since it is necessary to switch towers before reaching the breakthrough point, it is desirable to take appropriate means for recognizing the breakthrough point, such as installing a sensor at an appropriate position on the tower.

第二工程 本発明においては、上記第一工程から導出され
たガスをシラン処理系に導いて、ガス中のシラン
を除去する。
Second Step In the present invention, the gas derived from the first step is introduced into a silane treatment system to remove silane from the gas.

シラン処理系としては、ガスをシラン処理剤と
接触させる方法、燃焼法によりガス中のシランを
除去する方法をはじめ種々の方法が採用される
が、ガスをシラン処理剤と接触させる方法が工業
的には有利である。
Various methods are used for the silane treatment system, including a method in which gas is brought into contact with a silane treatment agent, and a method in which silane is removed from the gas by a combustion method. It is advantageous for

シラン処理剤を用いる場合の処理剤としては、
水酸化ナトリウム、水酸化カリウムなどの水酸化
アルカリの水溶液が好ましく、この際水酸化アル
カリと共に、塩化ナトリウム、塩化カリウム、塩
化アンモニウム、塩化カルシウム、硫酸ナトリウ
ム、硫酸アンモニウム、硝酸ナトリウムなどの無
機塩を併用することもできる。第一工程から導出
されたガスとこの処理剤水溶液との接触は、工業
的には、ジエツトスクラバー、ロータリーアトマ
イザーなどの装置を用いて行うことが有利であ
る。
When using a silane treatment agent, the treatment agent is:
Aqueous solutions of alkali hydroxides such as sodium hydroxide and potassium hydroxide are preferred; in this case, inorganic salts such as sodium chloride, potassium chloride, ammonium chloride, calcium chloride, sodium sulfate, ammonium sulfate, and sodium nitrate are used together with the alkali hydroxides. You can also do that. Industrially, it is advantageous to bring the gas derived from the first step into contact with the aqueous treatment agent solution using a device such as a jet scrubber or a rotary atomizer.

実施例 次に実施例をあげて、本発明の方法をさらに説
明する。
Examples Next, examples will be given to further explain the method of the present invention.

実施例 1 第1図は本発明の方法の一例を示したフローシ
ートであり、この実施例は、添着活性炭として空
気を混入しなくても吸着能の高いものを用いる場
合に適している。
Example 1 FIG. 1 is a flow sheet showing an example of the method of the present invention, and this example is suitable when using impregnated activated carbon that has a high adsorption capacity without mixing air.

点線で囲まれた1はシラン以外の有毒ガス成分
を捕集する第一工程を示し、点線で囲まれた2は
シランを処理する第二工程を示す。
1 surrounded by a dotted line indicates a first step of collecting toxic gas components other than silane, and 2 surrounded by a dotted line indicates a second step of treating silane.

3は反応炉であり、ここから導出するシラン、
アルシン、ホスフイン、ジボランなどを含むガス
は、必要に応じて設ける真空ポンプ4やフイルタ
ー5を経て、第一工程1に導入される。
3 is a reactor, from which silane is derived,
A gas containing arsine, phosphine, diborane, etc. is introduced into the first step 1 via a vacuum pump 4 and a filter 5, which are provided as necessary.

第一工程1は、装置的には2基の吸着塔6,6
およびそれに付随の配管・バルブ類からなる。
The first step 1 consists of two adsorption towers 6 and 6 in terms of equipment.
Consists of the associated piping and valves.

吸着塔6には吸着強化剤添着活性炭が充填して
あり、一方の吸着塔6に導入されたガスはここで
添着活性炭と接触して、アルシン、ホスフイン、
ジボランなどシラン以外の有毒ガス成分が吸着除
去される。一方の吸着塔6が破過点に達する直前
にガスの流れはもう一方の吸着塔6に切換えら
れ、先の吸着塔6の内容物は新しい添着活性炭と
取換えられるか、あるいは賦活に供される。管路
7は装置各部の洗浄のための管路であり、ここか
ら不活性ガス、たとえば窒素ガスが導入される。
8は不活性ガスを吸湿させるための水槽であり、
必要に応じ設けられる。
The adsorption tower 6 is filled with activated carbon impregnated with an adsorption enhancer, and the gas introduced into one of the adsorption towers 6 comes into contact with the impregnated activated carbon to produce arsine, phosphine,
Poisonous gas components other than silane such as diborane are adsorbed and removed. Just before one adsorption tower 6 reaches its breakthrough point, the gas flow is switched to the other adsorption tower 6, and the contents of the previous adsorption tower 6 are replaced with fresh impregnated activated carbon or subjected to activation. Ru. The conduit 7 is a conduit for cleaning various parts of the apparatus, and an inert gas such as nitrogen gas is introduced from this conduit.
8 is a water tank for absorbing moisture from inert gas;
It will be established as necessary.

第二工程2は、装置的にはジエツト式スクラバ
ー9およびそれに付随の機器・配管からなる。
The second step 2 consists of a jet type scrubber 9 and associated equipment and piping.

スクラバー9にはたとえば水酸化ナトリウムの
水溶液10が入れられており、この水溶液はポン
プ11により、スクラバー9の一端側上部に送ら
れて、ノズル12から噴出される。この噴出は、
水溶液を噴霧状にすると共に、系を陰圧にしてガ
スをスクラバー9内に吸引する役割を果たす。噴
霧状となつた水溶液と該ノズル12の近くに導入
されてきたガスとは接触して、ガス中のシランが
除去される。スクラバー9の他端側上部空間から
は、処理後のガスがブロアー13により排出され
る。14は飛沫が系外に同伴するのを防ぐ充填物
である。
The scrubber 9 contains, for example, an aqueous solution 10 of sodium hydroxide, and this aqueous solution is sent to the upper part of one end of the scrubber 9 by a pump 11 and is ejected from a nozzle 12. This eruption is
It plays the role of atomizing the aqueous solution and drawing gas into the scrubber 9 by making the system negative pressure. The sprayed aqueous solution comes into contact with the gas introduced near the nozzle 12, and the silane in the gas is removed. The treated gas is discharged from the upper space on the other end side of the scrubber 9 by a blower 13 . 14 is a filling that prevents droplets from being entrained outside the system.

スクラバー9はバツチ運転することもできる
が、連続運転するときは、スクラバー9に新しい
水酸化ナトリウム水溶液を一定割合で補充すると
共に、水溶液10の一部を外部に排出する。
The scrubber 9 can be operated in batches, but when operated continuously, the scrubber 9 is replenished with fresh sodium hydroxide aqueous solution at a constant rate and a portion of the aqueous solution 10 is discharged to the outside.

上記装置を用い、かつ添着活性炭として武田薬
品工業株式会社製APRC−2を用いて、シラン
5000ppm、アルシン1000ppm、ホスフイン
1000ppmおよびジボラン1000ppmを含む水素ガス
の処理を行つたが、円滑に操作を行うことがで
き、しかも、第二工程からの排出ガス中の有毒ガ
ス成分の濃度を、大気中へ安全に排出しうるレベ
ル以下に低減することができた。
Using the above apparatus and using APRC-2 manufactured by Takeda Pharmaceutical Company Limited as the impregnated activated carbon,
5000ppm, arsine 1000ppm, phosphine
Hydrogen gas containing 1000ppm and diborane was processed, and the operation was smooth and the concentration of toxic gas components in the exhaust gas from the second process could be safely discharged into the atmosphere. We were able to reduce it below the level.

実施例 2 第2図は本発明の方法の他の一例を示したフロ
ーシートであり、この実施例は、添着活性炭とし
て空気の存在下に高い吸着能を発揮するものを用
いる場合に適している。
Example 2 Figure 2 is a flow sheet showing another example of the method of the present invention, and this example is suitable when using impregnated activated carbon that exhibits high adsorption capacity in the presence of air. .

この実施例では、管路15から空気を導入して
おり、これにより吸着塔6に充填した添着活性炭
の吸着活性が高められる。しかし、空気の混入は
ガス中のシランの酸化を招いて、生成したSiO2
が吸着塔6の目詰まりの原因となり、吸着塔6の
円滑な運転を阻害するおそれがあるので、管路1
5からの空気混入に至る前に、希釈用の不活性ガ
ス、たとえば窒素ガスを管路16より導入する。
シランの酸化を生ずる濃度はおよそ5000ppm以上
であるので、ガス中のシラン濃度がそれ以下にな
るように不活性ガスで希釈するのである。
In this embodiment, air is introduced through the pipe 15, thereby increasing the adsorption activity of the impregnated activated carbon filled in the adsorption tower 6. However, the inclusion of air causes oxidation of the silane in the gas, resulting in the formation of SiO 2
may cause clogging of the adsorption tower 6 and impede the smooth operation of the adsorption tower 6.
Before air is mixed in from 5, an inert gas for dilution, such as nitrogen gas, is introduced through pipe 16.
Since the concentration of silane that causes oxidation is approximately 5000 ppm or more, the gas is diluted with an inert gas so that the silane concentration in the gas is less than that.

第2図中他の構成および引用符号の意味は第1
図の場合と同様であるので、説明を省略する。
The meanings of other structures and quotation marks in Figure 2 are as follows.
Since it is the same as the case shown in the figure, the explanation will be omitted.

上記装置を用い、かつ添着活性炭として武田薬
品工業株式会社製APRC−1を用いて、シラン
5000ppm、アルシン1000ppm、ホスフイン
1000ppmおよびジボラン1000ppmを含む水素ガス
の処理を行つた。なお、供給ガスには、それが吸
着塔6に至る前に、管路16から窒素ガスを導入
してシラン濃度が1000ppm以下になるように希釈
すると共に、管路15からは空気を導入した。ガ
ス処理操作は円滑に行うことができ、しかも、第
二工程からの排出ガス中の有毒ガス成分の濃度
を、大気中へ安全に排出しうるレベル以下に低減
することができた。
Using the above apparatus and APRC-1 manufactured by Takeda Pharmaceutical Company Limited as impregnated activated carbon, silane
5000ppm, arsine 1000ppm, phosphine
Hydrogen gas containing 1000ppm and diborane 1000ppm was treated. Note that before the supplied gas reached the adsorption tower 6, nitrogen gas was introduced through the pipe 16 to dilute the silane concentration to 1000 ppm or less, and air was introduced through the pipe 15. The gas treatment operation could be carried out smoothly, and the concentration of toxic gas components in the exhaust gas from the second step could be reduced to a level that could be safely discharged into the atmosphere.

作 用 実施例1および第1図においては、反応炉3か
ら送られてきた有毒ガス成分を含むガスは、吸着
塔6で添着活性炭と接触してアルシン、ホスフイ
ン、ジボラン等シラン以外の有毒ガス成分が吸着
除去され、ついで、スクラバー9で噴霧状の水酸
化ナトリウム水溶液と接触してシランが除去さ
れ、反応炉3から導出されたガス中に含まれる有
毒ガス成分は全て除去される。
Effect In Example 1 and FIG. 1, the gas containing toxic gas components sent from the reactor 3 comes into contact with the impregnated activated carbon in the adsorption tower 6 to remove toxic gas components other than silane such as arsine, phosphine, and diborane. is adsorbed and removed, and then silane is removed by contact with a sprayed aqueous sodium hydroxide solution in a scrubber 9, and all toxic gas components contained in the gas discharged from the reactor 3 are removed.

また、実施例2および第2図においては、反応
炉3から送られてきた有毒ガス成分を含むガス
は、吸着炉6に至る前に管路16から導入された
不活性ガスにより希釈され、ついで管路15から
導入された空気と混合して吸着塔6に送られ、そ
こで添着活性炭と接触してアルシン、ホスフイ
ン、ジボラン等シラン以外の有毒ガス成分が吸着
除去され、ついでスクラバー9で噴霧状の水酸化
ナトリウム水溶液と接触してシランが除去され、
反応炉3から導出されたガス中に含まれる有毒ガ
ス成分は全て除去される。
Furthermore, in Example 2 and FIG. 2, the gas containing toxic gas components sent from the reactor 3 is diluted with an inert gas introduced from the pipe line 16 before reaching the adsorption furnace 6, and then It is mixed with air introduced from pipe 15 and sent to adsorption tower 6, where it comes into contact with impregnated activated carbon to adsorb and remove toxic gas components other than silane, such as arsine, phosphine, and diborane. Silane is removed by contacting with an aqueous sodium hydroxide solution,
All toxic gas components contained in the gas discharged from the reactor 3 are removed.

発明の効果 本発明においては、従来の方法とは異なり、ま
ず第一工程でアルシン、ホスフイン、ジボランな
どシラン以外の有毒ガス成分を添着活性炭により
除去し、ついで第二工程でシランを除去するとい
う工程配列を採用したため、多種の有毒ガス成分
を含むガスであつても、効率良く有毒ガス成分を
除去することができる。また、従来のようにシラ
ン除去工程を先に設けたために生ずる吸着塔の目
詰まりなどのトラブルが防止され、長期間にわた
り円滑にガス中の有毒ガス成分除去の操作を行う
ことができる。
Effects of the Invention In the present invention, unlike conventional methods, toxic gas components other than silane such as arsine, phosphine, and diborane are first removed using impregnated activated carbon in the first step, and then silane is removed in the second step. Since the array is adopted, even if the gas contains various types of toxic gas components, the toxic gas components can be efficiently removed. Further, troubles such as clogging of the adsorption tower caused by the prior art silane removal process are prevented, and the removal of toxic gas components from the gas can be carried out smoothly over a long period of time.

また、一の系統から排出される有毒ガスは単独
成分であるが、他の系統と頻繁に切替られて他の
種類の有毒ガス成分が排出されるような場合にも
本発明の方法は有利である。つまり、従来であれ
ば有毒ガス成分に合せてそれに見合う数の処理設
備を設けると共に、排出ガスの切換えに応じて処
理系を選択しなければならないところ、本発明に
あつては、上記のような第一工程および第二工程
をそのまま実行すればよい。たとえばシランだけ
を有毒ガス成分として含むガスの場合は、第一工
程においては吸着塔6内をガスが通過するだけで
充填してある添着活性炭には影響を与えず、第二
工程においてシランが除去される。このように本
発明は、有毒ガス成分の種類が異なるものに切換
えられるたびにそれに応ずる対策をとる必要がな
いので、コントロール面でも装置コストの点でも
有利である。
The method of the present invention is also advantageous in cases where the toxic gas emitted from one system is a single component, but the system is frequently switched to other systems and other types of toxic gas components are emitted. be. In other words, in the past, it was necessary to install a corresponding number of treatment facilities according to the toxic gas components, and to select a treatment system according to the change of exhaust gas, but in the present invention, the above-mentioned The first step and the second step may be performed as they are. For example, in the case of a gas containing only silane as a toxic gas component, the gas only passes through the adsorption tower 6 in the first step without affecting the impregnated activated carbon, and the silane is removed in the second step. be done. As described above, the present invention is advantageous in terms of control and equipment cost, since it is not necessary to take measures every time the type of toxic gas component is switched to a different type.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法の一例を示したフローシ
ートであり、第2図は本発明の方法の他の一例を
示したフローシートである。 1……第一工程、2……第二工程、3……反応
炉、4……真空ポンプ、5……フイルター、6…
…吸着塔、7……管路、8……水槽、9……スク
ラバー、10……水溶液、11……ポンプ、12
……ノズル、13……ブロアー、14……充填
物、15,16……管路。
FIG. 1 is a flow sheet showing one example of the method of the present invention, and FIG. 2 is a flow sheet showing another example of the method of the present invention. DESCRIPTION OF SYMBOLS 1...First process, 2...Second process, 3...Reactor, 4...Vacuum pump, 5...Filter, 6...
...Adsorption tower, 7...Pipe line, 8...Water tank, 9...Scrubber, 10...Aqueous solution, 11...Pump, 12
... Nozzle, 13 ... Blower, 14 ... Filler, 15, 16 ... Pipe line.

Claims (1)

【特許請求の範囲】[Claims] 1 シラン、アルシン、ホスフイン、ジボラン等
の有毒ガス成分を含むガスを無害化処理するにあ
たり、吸着強化剤を添着した活性炭にガスを接触
させて、ガス中のシラン以外の有毒ガス成分を除
去する第一工程を遂行し、ついで、該第一工程か
ら導出されたガスをシラン処理系に導いて、ガス
中のシランを除去する第二工程を遂行することを
特徴とする有毒ガス成分を含むガスの処理方法。
1. When detoxifying gas containing toxic gas components such as silane, arsine, phosphine, and diborane, a first step is to remove toxic gas components other than silane from the gas by bringing the gas into contact with activated carbon impregnated with an adsorption enhancer. of a gas containing a toxic gas component, the method comprises carrying out one step, and then conducting a second step of introducing the gas derived from the first step into a silane treatment system to remove silane from the gas. Processing method.
JP59240084A 1984-11-14 1984-11-14 Treatment of gas containing poisonous gaseous component Granted JPS61118117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59240084A JPS61118117A (en) 1984-11-14 1984-11-14 Treatment of gas containing poisonous gaseous component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59240084A JPS61118117A (en) 1984-11-14 1984-11-14 Treatment of gas containing poisonous gaseous component

Publications (2)

Publication Number Publication Date
JPS61118117A JPS61118117A (en) 1986-06-05
JPH0421523B2 true JPH0421523B2 (en) 1992-04-10

Family

ID=17054242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59240084A Granted JPS61118117A (en) 1984-11-14 1984-11-14 Treatment of gas containing poisonous gaseous component

Country Status (1)

Country Link
JP (1) JPS61118117A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1196983B (en) * 1986-07-23 1988-11-25 Enichem Agricoltura Spa PROCEDURE FOR THE PRODUCTION OF SILICON TETRAFLUORIDE
DE3869301D1 (en) * 1987-08-31 1992-04-23 Japan Pionics METHOD FOR PURIFYING GAS CONTAINING TOXIC COMPONENTS.
US5674462A (en) * 1994-07-25 1997-10-07 Calgon Carbon Corporation Method for the removal of non-metal and metalloid hydrides
JP5940885B2 (en) * 2012-05-16 2016-06-29 Sumco Techxiv株式会社 Exhaust gas treatment equipment
US20130330257A1 (en) 2012-06-11 2013-12-12 Calgon Carbon Corporation Sorbents for removal of mercury
JP6368465B2 (en) * 2013-09-06 2018-08-01 株式会社日本触媒 Exhaust gas treatment method
CA2995357C (en) 2015-08-11 2023-12-19 Calgon Carbon Corporation Enhanced sorbent formulation for removal of mercury from flue gas
JP2018103156A (en) * 2016-12-28 2018-07-05 大陽日酸株式会社 Waste gas treatment column, waste gas treatment apparatus, and waste gas treatment method

Also Published As

Publication number Publication date
JPS61118117A (en) 1986-06-05

Similar Documents

Publication Publication Date Title
JP2795504B2 (en) Dry exhaust gas control method
US5607496A (en) Removal of mercury from a combustion gas stream and apparatus
EP1450936B1 (en) Method and apparatus for treating exhaust gas comprising a fluorine compound and carbon monoxide
AU2002244966B2 (en) Desulfurizer and method of desulfurization
EP1180389A2 (en) Removal of nitrogen oxides from gas streams
EP0194366B1 (en) Method of cleaning exhaust gases
KR0158680B1 (en) Process for removing gaseous hydrides from a solid support comprising metallic oxides
EP0930091B1 (en) Method of treating exhaust gas
JPH0421523B2 (en)
CA2173288A1 (en) Method to remove organic halogenated molecules from gaseous currents and relative plant
JPH04277005A (en) Exhaust gas treatment apparatus of urban garbage incinerator
JP2003240226A (en) Exhaust gas processing device and processing method
JPH0889757A (en) Treatment of waste gas from refuse incineration furnace
EP0922484B1 (en) Method for treating incineration flue gas
CN207581406U (en) A kind of waste water treatment system
JPH10180038A (en) Waste gas simultaneous treating device and method thereof
JPS63185431A (en) Removal of silicon hydride and gas treatment apparauts used therein
CN109173710A (en) Under a kind of low temperature in catalytic eliminating coal-fired flue-gas nonvalent mercury system and method
KR102472334B1 (en) Dust collector for the simultaneous treatment of dust and volatile organic compounds from exhaust gas
JP3898279B2 (en) Exhaust gas removal method
JPH08117555A (en) Method and apparatus for treating mercury vapor
KR102474635B1 (en) Exhaust gas treatment liquid for simultaneous reduction sulfur oxide and nitrogen oxide in exhaust gas, and exhaust gas treatment method using same
JPH07328378A (en) Treatment of exhaust gas
CA2179000C (en) Removal of mercury from a combustion gas stream
JPH06262038A (en) Method for treatment of exhaust gas

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees