JPH03206669A - Solar cell - Google Patents

Solar cell

Info

Publication number
JPH03206669A
JPH03206669A JP2002276A JP227690A JPH03206669A JP H03206669 A JPH03206669 A JP H03206669A JP 2002276 A JP2002276 A JP 2002276A JP 227690 A JP227690 A JP 227690A JP H03206669 A JPH03206669 A JP H03206669A
Authority
JP
Japan
Prior art keywords
layer
epitaxial growth
solar cell
silicon substrate
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002276A
Other languages
Japanese (ja)
Inventor
Mikio Deguchi
幹雄 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002276A priority Critical patent/JPH03206669A/en
Publication of JPH03206669A publication Critical patent/JPH03206669A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain a high conversion efficiency without damaging a mechanical strength even when an active layer is made thin by a method wherein a reflection layer and a transverse-direction epitaxial growth operation are used. CONSTITUTION:An Si oxide film 2 is formed on the surface of an Si substrate 1 and is patterned. Then, an wavy surface is obtained by an anisotropic etching operation. The film 2 is removed. An Si oxide film 2 to be used as a reflection layer is formed; it is patterned; opening parts 3 are formed. An epitaxial growth layer 4 is formed on the surface of the Si substrate 1 exposed in the opening parts 3 by a transverse-direction epitaxial growth operation; the whole surface of the film 2 is covered. P or the like is diffused from the surface; an n-type diffusion layer 5 is formed; electrodes are formed on the surface and the rear to form a solar cell.

Description

【発明の詳細な説明】 〔産業上の利用分野] この発明は、入射する光のエネルギーを高い変換効率で
電気エネルギーに変換することのできる太陽電池に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a solar cell that can convert incident light energy into electrical energy with high conversion efficiency.

[従来の技術] 第4図(a)〜(d)は、従来の高効率太陽電池の一例
の構造を、その製造過程にしたがって示した断面概略図
である。第4図において、1は単結晶シリコン基板(以
下、シリコン基板と略称する)、2はシリコン酸化膜、
5は拡散層である。
[Prior Art] FIGS. 4(a) to 4(d) are schematic cross-sectional views showing the structure of an example of a conventional high-efficiency solar cell according to its manufacturing process. In FIG. 4, 1 is a single crystal silicon substrate (hereinafter abbreviated as silicon substrate), 2 is a silicon oxide film,
5 is a diffusion layer.

シリコン基板1は、p型で、面方位は<100〉であり
、その両面をシリコン酸化膜2で覆うO(第4図(a)
)。次いで、シリコン酸化膜2を写真製版その他の手法
によりパターニングし、その一部を残してエッチング除
去し、シリコン基板1の両面に一定の間隔をおいて、表
裏で互い違いとなるようにバターニングする(第4図(
b))。次に、シリコン基板1の両面から、KOHなど
を用いて異方性エッチングする(第4図(C))。シリ
コン基板1は面方位が<100>であるので、異方性エ
ッチングにより、面方位(111)の面が現れる。この
エッチングにより、シリコン基板1を厚さが約50um
となるようにする。その後、残ったシリコン酸化膜2を
除去し、表面にリンなどの不純物を拡散させてn型の拡
散層5を設け(第4図(d)) 、さらに表面および裏
面に電極(図示せず)を形成して太陽電池とする。
The silicon substrate 1 is p-type and has a <100> plane orientation, and both sides of the silicon substrate 1 are covered with silicon oxide films 2 (see FIG. 4(a)).
). Next, the silicon oxide film 2 is patterned by photolithography or other methods, and a part of it is removed by etching, and patterning is performed on both sides of the silicon substrate 1 at regular intervals, alternating between the front and back sides. Figure 4 (
b)). Next, anisotropic etching is performed from both sides of the silicon substrate 1 using KOH or the like (FIG. 4(C)). Since the silicon substrate 1 has a <100> plane orientation, a plane with a (111) plane orientation appears by anisotropic etching. This etching reduces the silicon substrate 1 to a thickness of approximately 50 um.
Make it so that Thereafter, the remaining silicon oxide film 2 is removed, impurities such as phosphorus are diffused on the surface to form an n-type diffusion layer 5 (FIG. 4(d)), and electrodes (not shown) are formed on the front and back surfaces. to form a solar cell.

このようにして形成した太陽電池は、これに表面から光
が入射するとシリコン基板1内に入った光はその表面と
裏面の間で反射を繰り返しながら内部で吸収され、また
、シリコン基板1の表面で反射した光も再度シリコン基
板1に入射するため、入射した光を効率的に吸収するこ
とができる。この構造では、光の閉じ込め効果による実
効的なシリコン基板1の厚さは、実際の厚さの約4倍以
上になる。たとえば、50umの厚さのもので約200
ILm以上の厚さの平板状のシリコン基板を用いた場合
に相当する光吸収量が得られる。
When light enters the solar cell formed in this way from the surface, the light entering the silicon substrate 1 is absorbed internally while repeating reflection between the front and back surfaces, and the surface of the silicon substrate 1 Since the light reflected by the silicon substrate 1 also enters the silicon substrate 1 again, the incident light can be efficiently absorbed. In this structure, the effective thickness of the silicon substrate 1 due to the light confinement effect is about four times or more than the actual thickness. For example, for a 50 um thick one, it will cost about 200 um.
A light absorption amount equivalent to that obtained when using a flat silicon substrate having a thickness of ILm or more can be obtained.

にもかかわらず、実際の太陽電池の厚さは薄いので、光
の吸収により発生したキャリアが電極に達するまでに消
滅して失われる割合が小さくなり、その結果、太陽電池
としての性能が向上する。
However, since the actual thickness of solar cells is thin, the percentage of carriers generated by light absorption that are annihilated and lost before reaching the electrodes is reduced, resulting in improved performance as a solar cell. .

しかしながら、この構造ではシリコン基板1そのものを
約50LLmの薄膜状に加工しているので、機械的強度
が弱く容易に破損してしまうため、取り扱いが困難であ
る。
However, in this structure, the silicon substrate 1 itself is processed into a thin film having a thickness of about 50 LLm, which has low mechanical strength and is easily damaged, making it difficult to handle.

また、結晶を波状の形態に加工しているので、角の部分
に応力が集中し、この部分に結晶欠陥が生じ易くなって
太陽電池の特性が損なわれる。
Furthermore, since the crystal is processed into a wavy shape, stress is concentrated at the corner portions, making crystal defects more likely to occur in these portions, impairing the characteristics of the solar cell.

[発明が解決しようとする課題] 従来の太陽電池は以上のように構成されているので、機
械的強度に劣り、プロセス上の取り扱いが困難で、理論
予測通りの高効率が得られないなどの課題があった。
[Problems to be solved by the invention] Conventional solar cells are constructed as described above, and therefore have problems such as poor mechanical strength, difficulty in handling in the process, and inability to obtain high efficiency as predicted by theory. There was an issue.

この発明は、以上のような課題を解決するためになされ
たもので、波状の構造としても機械的強度を損なうこと
なく、高い変換効率の実現可能な太陽電池を得ることを
目的とする。
This invention was made to solve the above problems, and aims to obtain a solar cell that can achieve high conversion efficiency even when it has a wavy structure without impairing mechanical strength.

[課題を解決するための手段] この発明における太陽電池は、単結晶または多結晶シリ
コン基板の一主面を異方性エッチングし、その表面に反
射層を設け、前記反射層の一部に設けた開口部からの横
方向エピタキシャル成長により、前記反射層上に活性層
として用いるエピタキシャル成長層を形成したものであ
る。
[Means for Solving the Problems] The solar cell of the present invention includes anisotropic etching of one main surface of a single crystal or polycrystalline silicon substrate, a reflective layer provided on the surface, and a reflective layer provided on a part of the reflective layer. An epitaxial growth layer used as an active layer is formed on the reflective layer by lateral epitaxial growth from the opening.

[作用] この発明においては、反射層と横方向エピタキシャル成
長を用いることにより、活性層を薄膜化しても機械的強
度を損なうことがなく、高い変換効率を得ることができ
る。
[Function] In the present invention, by using a reflective layer and lateral epitaxial growth, even if the active layer is made thin, mechanical strength is not impaired and high conversion efficiency can be obtained.

[実施例] 第1図(a)〜(g)は、この発明による太陽電池の一
実施例の構造をその製造過程にしたがって示した断面図
である。この図において、1は単結晶シリコン基板(以
下、シリコン基板と略称する)、2はシリコン酸化膜、
3はこのシリコン酸化膜2に設けられた開口部、4は横
方向エピタキシャル成長によって形成されたエピタキシ
ャル成長層、5は拡散層である。
[Example] FIGS. 1(a) to 1(g) are cross-sectional views showing the structure of an example of a solar cell according to the present invention according to its manufacturing process. In this figure, 1 is a single crystal silicon substrate (hereinafter abbreviated as silicon substrate), 2 is a silicon oxide film,
3 is an opening provided in this silicon oxide film 2, 4 is an epitaxial growth layer formed by lateral epitaxial growth, and 5 is a diffusion layer.

シリコン基板1は高不純物濃度低抵抗のp型で面方位は
<100>である。シリコン基板1の表面にシリコン酸
化膜2を形成し(第1図(a)) 、写真製版その他の
手法によりシリコン酸化膜2をパターニングし、その一
部を残してエッチング除去する(第1図(b))。次に
、K○H等により異方性エッチングを行うと、従来例に
ついて述べたと同様の波状の表面が得られる。ただし、
この発明の場合にはシリコン基板1の裏面は全面を酸化
膜で覆い、異方性エッチングは行わない(第1図(C)
)。エッチングのマスクとして用いたシリコン酸化膜2
のパターンは一旦除去し、新たに反射層として用いるた
めのシリコン酸化膜2を設ける(第1図(d))。シリ
コン酸化膜2の一部に、写真製版その他の手法によって
パターニングし、一部を除去して開口部3を設ける(第
1図(e))。
The silicon substrate 1 is a p-type with high impurity concentration and low resistance, and the surface orientation is <100>. A silicon oxide film 2 is formed on the surface of a silicon substrate 1 (FIG. 1(a)), and the silicon oxide film 2 is patterned by photolithography or other methods, and is etched away leaving a part of it (FIG. 1(a)). b)). Next, by performing anisotropic etching using K○H or the like, a wavy surface similar to that described for the conventional example is obtained. however,
In the case of this invention, the entire back surface of the silicon substrate 1 is covered with an oxide film, and anisotropic etching is not performed (Fig. 1(C)).
). Silicon oxide film 2 used as an etching mask
The pattern is removed once, and a new silicon oxide film 2 is provided to be used as a reflective layer (FIG. 1(d)). A part of the silicon oxide film 2 is patterned and removed by photolithography or other methods to form an opening 3 (FIG. 1(e)).

さらに、気相法あるいは液相法などの手法により、開口
部3に露出したシリコン基板1の表面をシードとして横
方向エピタキシャル成長によってビタキシャル成長層4
を形成する(第1図(f))。この際、開口部3に露出
したシリコン基板1の表面は、異方性エッチングによっ
て現れた(1.11)面であるので、これをシードとし
たエピタキシャル成長では、アスベクト比、すなわち成
長したエピタキシャル成長層4の層厚に対する開口部3
からシリコン酸化膜2上へ横方向に成長した長さの比を
大きくすることができ、シリコン酸化膜2の全面を容易
にエピタキシャル成長層4で覆うことが可能である。エ
ピタキシャル成長層4はp型で厚さ約50iLmに成長
する。続いて、表面からリンなどを拡散しn型の拡散層
5を形成し(第1図(g)) 、さらに、表面および裏
面に電極(図示せず)を設けて太陽電池とする。
Furthermore, by a method such as a vapor phase method or a liquid phase method, a bitaxially grown layer 4 is formed by lateral epitaxial growth using the surface of the silicon substrate 1 exposed in the opening 3 as a seed.
(Fig. 1(f)). At this time, since the surface of the silicon substrate 1 exposed in the opening 3 is a (1.11) plane that appeared by anisotropic etching, in epitaxial growth using this as a seed, the aspect ratio, that is, the grown epitaxial growth layer 4 opening 3 for the layer thickness of
The ratio of the length of the silicon oxide film 2 grown laterally on the silicon oxide film 2 can be increased, and the entire surface of the silicon oxide film 2 can be easily covered with the epitaxially grown layer 4. The epitaxial growth layer 4 is p-type and grows to a thickness of about 50 iLm. Subsequently, phosphorus or the like is diffused from the surface to form an n-type diffusion layer 5 (FIG. 1(g)), and electrodes (not shown) are provided on the front and back surfaces to form a solar cell.

太陽電池としての活性層となるエピタキシャル成長層4
は、その厚さが50μmと薄膜であるが、従来例に示し
たようにこれが機械的に自己保持している必要はなく、
シリコン基板1と一体となっており全体の機械的強度は
十分強く、製造プロセスにおいて取り扱う上で障害とな
ることはない。しかも、幾何学的な構造は、従来例に示
したのと全く同一であるので、従来例について述べたと
同様の太陽電池としての波型構造の特長が有効に活用で
きる。また、活性層はシリコン基板1上に形成され、直
接これに応力が加わらないので、応力に起因する欠陥が
生じず、太陽電池の特性を損なうことがない。また、高
不純物濃度低抵抗のシリコン基板1は、太陽電池の裏面
側の電極としての役割をも受持っている。
Epitaxial growth layer 4 that becomes an active layer as a solar cell
is a thin film with a thickness of 50 μm, but it does not need to be mechanically self-supporting as shown in the conventional example.
Since it is integrated with the silicon substrate 1, its mechanical strength as a whole is sufficiently strong, and there is no problem in handling it in the manufacturing process. Furthermore, since the geometrical structure is exactly the same as that shown in the conventional example, the features of the wave-shaped structure as a solar cell similar to those described in the conventional example can be effectively utilized. Furthermore, since the active layer is formed on the silicon substrate 1 and stress is not directly applied to it, defects due to stress will not occur and the characteristics of the solar cell will not be impaired. The silicon substrate 1 with high impurity concentration and low resistance also plays a role as an electrode on the back side of the solar cell.

さらに、この発明の場合、波状構造の加工は、活性層で
あるエピタキシャル成長層4を形成する以前にシリコン
基板1に対して行うので、異方性エッチングだけではな
く、機械的摩擦を用いることができる。すなわち、第1
図(C)の工程で、波状構造の斜面部に現われる面を、
正確な<111〉面から、傾けることができる。例えば
、シリコン基板1の波状構造をその頂角が67″になる
ように加工し、その上にエピタキシャル成長を行うと、
エピタキシャル成長層4は(1 1 1>面を表面に出
しながら成長するため、エピタキシャル成長層4のなす
頂角は70.5°となるので、第2図に示す構造を実現
することができる。この場合、光閉じ込め効率はさらに
改善され、実効的な光路長は、エピタキシャル成長層4
の厚さの20倍以上となる。
Furthermore, in the case of the present invention, processing of the wavy structure is performed on the silicon substrate 1 before forming the epitaxial growth layer 4, which is the active layer, so that not only anisotropic etching but also mechanical friction can be used. . That is, the first
In the process shown in Figure (C), the surface that appears on the slope of the wavy structure is
It can be tilted from the exact <111> plane. For example, if the wavy structure of the silicon substrate 1 is processed so that its apex angle is 67'' and epitaxial growth is performed on it,
Since the epitaxial growth layer 4 grows with the (1 1 1> plane exposed on the surface, the apex angle of the epitaxial growth layer 4 is 70.5°, so the structure shown in FIG. 2 can be realized. In this case , the optical confinement efficiency is further improved, and the effective optical path length is increased by the epitaxial growth layer 4.
The thickness is 20 times or more.

なお、上記実施例では、p型のシリコン基板1上にp型
のエピタキシャル成長層4を設け、その表面にn型の拡
散層5を設けた場合について示したが、n型のシリコン
基板1上にn型のエピタキシャル成長層4を設け、その
表面にp型の拡散層を設けても同様の効果が得られる。
In the above embodiment, a p-type epitaxial growth layer 4 is provided on a p-type silicon substrate 1, and an n-type diffusion layer 5 is provided on the surface of the p-type epitaxial growth layer 4. A similar effect can be obtained by providing an n-type epitaxial growth layer 4 and providing a p-type diffusion layer on its surface.

また、エビタキシャ成長層4の反射層(シリコン酸化膜
2)との界面側にエピタキシャル成長層4と同じ導電型
の高不純物濃度の層を設けると、さらに、太陽電池の特
性が向上する。また、反射層としては、シリコン酸化膜
2を用いた場合について示したが、シリコン窒化膜や酸
化膜と窒化膜の積層膜を用いてもよく、その材質は限定
しない。シリコン窒化膜を用いると、横方向エピタキシ
ャル成長を行う際、酸化膜の場合に比べて、アスペクト
比を大きくすることができる利点がある。また、金属膜
を反射層として用いてもよい。この場合には活性層(エ
ピタキシャル成長層4)とシリコン基板1との電気的接
続が良好となる利点がある。また、図には開口部3を波
状構造の斜面部の中央付近に1箇所ずつ設けたように描
いたが、開口部3の位置や、大きさ,形状,間隔などは
規定しない。さらに、太陽電池としてのp−n接合の形
成には、不純物拡散による方法について記したが、他の
方法であってもよく、例えば微結晶薄膜を用いたヘテロ
接合などであってもよい。
Furthermore, if a layer with a high impurity concentration of the same conductivity type as the epitaxial growth layer 4 is provided on the interface side of the epitaxial growth layer 4 with the reflective layer (silicon oxide film 2), the characteristics of the solar cell are further improved. Further, although the case where the silicon oxide film 2 is used as the reflective layer is shown, a silicon nitride film or a laminated film of an oxide film and a nitride film may be used, and the material thereof is not limited. The use of a silicon nitride film has the advantage that the aspect ratio can be increased when performing lateral epitaxial growth, compared to the case of an oxide film. Alternatively, a metal film may be used as the reflective layer. In this case, there is an advantage that the electrical connection between the active layer (epitaxially grown layer 4) and the silicon substrate 1 is improved. Further, although the drawings show that the openings 3 are provided one at a time near the center of the slope portion of the wavy structure, the position, size, shape, interval, etc. of the openings 3 are not specified. Furthermore, although a method using impurity diffusion has been described for forming a pn junction as a solar cell, other methods may be used, such as a heterojunction using a microcrystalline thin film.

さらに、上記実施例では、単結晶基板上に波状構造を形
成した場合について示したが、多結晶基板を用いても類
似の効果を得ることができる。
Further, in the above embodiment, a case where a wavy structure is formed on a single crystal substrate is shown, but similar effects can be obtained even if a polycrystalline substrate is used.

第3図(a)〜(f)は多結晶基板を基にしてこの発明
を適用した場合について、製造過程にしたがって示した
断面図である。
FIGS. 3(a) to 3(f) are cross-sectional views showing the manufacturing process when the present invention is applied based on a polycrystalline substrate.

多結晶シリコン基板11は第3図(a)のように多数の
結晶粒界6によって区切られた単結晶粒の集合体である
。この表面を、例えばKOHなどを用いて異方性エッチ
ングすると、各結晶粒の(1 1 1)面が優先的に現
れる(第3図(b))。この表面に反射層として、例え
ばシリコン酸化膜2を設け(第3図(c)) 、これに
開口部3を開け(第3図(d)) 、エピタキシャル成
長を行う。異方性エッチングを行わない場合には、多結
晶シリコン基板11の表面には様々な結晶方位の面が現
れているため、横方向のエピタキシャル成長が有効に行
われないのに対し、この場合には、シードとなる開口部
3に露出したシリコン表面には(111.)面が優先的
に現れているので、横方向エピタキシャル成長が活発と
なり、シリコン酸化膜2全面を覆うことが可能となる(
第3図(e))。その後、拡散層5を設け(第3図(f
)).電極を形成して太陽電池とする。あるいは第3図
(f)の工程の後に、この上にアモルファスシリコンの
pin構造の太陽電池を形成し、積層型の太陽電池とし
てもよい。
The polycrystalline silicon substrate 11 is an aggregate of single crystal grains separated by a large number of grain boundaries 6, as shown in FIG. 3(a). When this surface is anisotropically etched using, for example, KOH, the (1 1 1) plane of each crystal grain appears preferentially (FIG. 3(b)). For example, a silicon oxide film 2 is provided as a reflective layer on this surface (FIG. 3(c)), an opening 3 is formed in this (FIG. 3(d)), and epitaxial growth is performed. If anisotropic etching is not performed, planes with various crystal orientations appear on the surface of the polycrystalline silicon substrate 11, so lateral epitaxial growth cannot be effectively performed. Since the (111.) plane preferentially appears on the silicon surface exposed in the opening 3 serving as a seed, lateral epitaxial growth becomes active and it becomes possible to cover the entire surface of the silicon oxide film 2 (
Figure 3(e)). After that, a diffusion layer 5 is provided (Fig. 3(f)
)). Electrodes are formed to form a solar cell. Alternatively, after the step shown in FIG. 3(f), an amorphous silicon pin-structured solar cell may be formed thereon to form a stacked solar cell.

〔発明の効果1 以上説明したように、この発明は、単結晶または多結晶
シリコン基板の一主面を異方性エッチングし、その表面
に反射層を設け、前記反射層の一部に設けた開口部から
の横方向エピタキシャル成長により、前記反射層上に活
性層として用いるエピタキシャル成長層を形成したので
、波状の光閉じ込め構造としても、機械的強度を損なう
ことなく、高性能の太陽電池を得ることができる。
[Effect of the invention 1 As explained above, the present invention provides a method in which one main surface of a single crystal or polycrystalline silicon substrate is anisotropically etched, a reflective layer is provided on the surface, and a reflective layer is provided on a part of the reflective layer. Since the epitaxial growth layer used as the active layer is formed on the reflective layer by lateral epitaxial growth from the opening, a high-performance solar cell can be obtained even with a wavy optical confinement structure without sacrificing mechanical strength. can.

【図面の簡単な説明】[Brief explanation of drawings]

第■図(a)〜(g)はこの発明の一実施例による太陽
電池の構造を製造過程にしたがって示した断面図、第2
図はこの発明の他の実施例を示す断面図、第3図(a)
〜(f)はこの発明のさらに他の実施例による太陽電池
の構造を製造過程にしたがって示した断面図、第4図(
a)〜(d)は従来の太陽電池の構造を製造過程にした
がって示した断面概略図である。 図中、1はシリコン基板、2はシリコン酸化膜、3は開
口部、4はエピタキシャル成長層、5は拡散層、6は結
晶粒界である。 なお、各図中の同一符号は同一または相当部分を示す。
Figures (a) to (g) are cross-sectional views showing the structure of a solar cell according to an embodiment of the present invention according to the manufacturing process;
The figure is a sectional view showing another embodiment of the present invention, FIG. 3(a)
-(f) are cross-sectional views showing the structure of a solar cell according to still another embodiment of the present invention according to the manufacturing process, and FIG.
a) to (d) are schematic cross-sectional views showing the structure of a conventional solar cell according to the manufacturing process. In the figure, 1 is a silicon substrate, 2 is a silicon oxide film, 3 is an opening, 4 is an epitaxial growth layer, 5 is a diffusion layer, and 6 is a crystal grain boundary. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims]  単結晶または多結晶シリコン基板の一主面を異方性エ
ッチングし、その表面に反射層を設け、前記反射層の一
部に設けた開口部からの横方向エピタキシャル成長によ
り、前記反射層上に活性層として用いるエピタキシャル
成長層を形成したことを特徴とする太陽電池。
One principal surface of a single-crystalline or polycrystalline silicon substrate is anisotropically etched, a reflective layer is provided on the surface, and an active layer is formed on the reflective layer by lateral epitaxial growth from an opening provided in a part of the reflective layer. A solar cell characterized by forming an epitaxially grown layer used as a layer.
JP2002276A 1990-01-08 1990-01-08 Solar cell Pending JPH03206669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002276A JPH03206669A (en) 1990-01-08 1990-01-08 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002276A JPH03206669A (en) 1990-01-08 1990-01-08 Solar cell

Publications (1)

Publication Number Publication Date
JPH03206669A true JPH03206669A (en) 1991-09-10

Family

ID=11524846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002276A Pending JPH03206669A (en) 1990-01-08 1990-01-08 Solar cell

Country Status (1)

Country Link
JP (1) JPH03206669A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05218466A (en) * 1992-02-05 1993-08-27 Sanyo Electric Co Ltd Manufacture of photovoltaic element
US5482568A (en) * 1994-06-28 1996-01-09 Hockaday; Robert G. Micro mirror photovoltaic cells

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05218466A (en) * 1992-02-05 1993-08-27 Sanyo Electric Co Ltd Manufacture of photovoltaic element
US5482568A (en) * 1994-06-28 1996-01-09 Hockaday; Robert G. Micro mirror photovoltaic cells

Similar Documents

Publication Publication Date Title
US5024953A (en) Method for producing opto-electric transducing element
TWI323040B (en)
JP3924327B2 (en) Solar cell having slight shading and manufacturing method thereof
US8822260B2 (en) Asymmetric surface texturing for use in a photovoltaic cell and method of making
EP0666602B1 (en) Method of manufacturing a GaAs solar cell on a Si substrate
EP1054458A2 (en) Production method of photoelectric conversion device, and photoelectric conversion device produced by the method
JPH0795602B2 (en) Solar cell and manufacturing method thereof
JP2017505989A (en) Integration of epitaxial lift-off solar cells with a small parabolic concentrator by printing method
JPH0536997A (en) Photovoltaic device
JP2878031B2 (en) Thin solar cell and manufacturing method
JPH03206669A (en) Solar cell
JP2866982B2 (en) Solar cell element
JPH03276682A (en) Semiconductor device
JPS5996722A (en) Thin film semiconductor device
US10304977B1 (en) High performance ultra-thin solar cell structures
JPS62237768A (en) Manufacture of compound semiconductor sorar battery
US20130082357A1 (en) Preformed textured semiconductor layer
JPH0722632A (en) Polycrystalline silicon solar cell and its manufacture
JPH0334583A (en) Semiconductor device
JP2749228B2 (en) Method for manufacturing photovoltaic element
JPS5935189B2 (en) Koden Henkan Soshinoseizouhouhou
JP2934072B2 (en) Solar cell manufacturing method
JP2997366B2 (en) Solar cell element
JPH0121556Y2 (en)
JPH0945945A (en) Solar cell element and fabrication thereof