JPH0121556Y2 - - Google Patents

Info

Publication number
JPH0121556Y2
JPH0121556Y2 JP1984132158U JP13215884U JPH0121556Y2 JP H0121556 Y2 JPH0121556 Y2 JP H0121556Y2 JP 1984132158 U JP1984132158 U JP 1984132158U JP 13215884 U JP13215884 U JP 13215884U JP H0121556 Y2 JPH0121556 Y2 JP H0121556Y2
Authority
JP
Japan
Prior art keywords
substrate
orientation flat
solar cell
semiconductor substrate
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984132158U
Other languages
Japanese (ja)
Other versions
JPS6146727U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13215884U priority Critical patent/JPS6146727U/en
Publication of JPS6146727U publication Critical patent/JPS6146727U/en
Application granted granted Critical
Publication of JPH0121556Y2 publication Critical patent/JPH0121556Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Description

【考案の詳細な説明】 〈技術分野〉 本考案は太陽電池素子基板、特にその半導体基
板に形成するオリエンテーシヨンフラツトの改良
に関するものである。
[Detailed Description of the Invention] <Technical Field> The present invention relates to an improvement of an orientation flat formed on a solar cell element substrate, particularly a semiconductor substrate thereof.

〈従来技術〉 半導体基板を製造するための半導体基板は、多
くは結晶成長によつて作製したシリコン単結晶イ
ンゴツトからウエハ状に切り出し、適宜表面研摩
等を施こすことによつて半導体製造工程に供され
ている。
<Prior art> Semiconductor substrates for manufacturing semiconductor substrates are often cut into wafer shapes from silicon single crystal ingots produced by crystal growth, and then subjected to appropriate surface polishing etc. to be used in the semiconductor manufacturing process. has been done.

単結晶太陽電池素子にもシリコン単結晶基板が
用いられるが、基板の結晶方位としてはウエハ表
面が〈100〉になるものが選ばれる。即ち〈100〉
基板は、エツチング液を選ぶことによつて表面を
のこぎり歯状の凹凸に加工することができ、これ
が太陽電池の受光表面での反射を抑える役目を果
して光電変換効率のアツプを図ることができる。
Single-crystal silicon substrates are also used in single-crystal solar cell elements, but the crystal orientation of the substrate is chosen so that the wafer surface is <100>. That is <100>
By selecting an etching solution, the surface of the substrate can be processed into sawtooth-like irregularities, which serves to suppress reflections on the light-receiving surface of the solar cell, thereby increasing photoelectric conversion efficiency.

単結晶インゴツトから切り出されたシリコン基
板は円盤状を呈するため、基板の方位表示及び位
置合せ等に利用するため円形基板1の一部がオリ
エンテーシヨンフラツト2として直線状に切り欠
かれている。該オリエンテーシヨンフラツト2は
通常(011)に形成されている。上記〈100〉面を
もつシリコン単結晶基板を用いて半導体装置を製
造した場合、製造工程の途中等で生じる割れの方
位を調べると、上記オリエンテーシヨンフラツト
2に垂直か平行な方向になつている。
Since a silicon substrate cut out from a single crystal ingot has a disk shape, a part of the circular substrate 1 is cut out in a straight line as an orientation flat 2 for use in indicating the orientation and alignment of the substrate. . The orientation flat 2 is generally (011) formed. When a semiconductor device is manufactured using a silicon single crystal substrate having the above <100> plane, if the direction of cracks that occur during the manufacturing process is examined, the direction will be perpendicular or parallel to the orientation flat 2. ing.

処で上述のように〈100〉シリコン単結晶基板
を用いて太陽電池素子を作製する場合、最近では
コスト低減等の理由からスクリーン印刷技術を利
用して基板表面に電極材料を塗布し、これを焼成
することによつて電極を形成している。このよう
にスクリーン印刷によつて電極を形成する際、印
刷方向は作業性等を考慮してオリエンテーシヨン
フラツトに垂直或いは平行となる関係が選ばれて
おり、この印刷方向が半導体基板の割れ方向と一
致していることから作業中に割れが発生して歩留
りを低下させる原因になつていた。
However, as mentioned above, when producing solar cell elements using <100> silicon single crystal substrates, recently, for reasons such as cost reduction, screen printing technology is used to apply electrode material to the substrate surface. The electrodes are formed by firing. When forming electrodes by screen printing in this way, the printing direction is chosen to be perpendicular or parallel to the orientation flat in consideration of workability, etc., and this printing direction prevents cracking of the semiconductor substrate. Because the direction is the same, cracks occur during work, causing a decrease in yield.

〈考案の目的〉 本考案は上記従来の半導体基板の欠点を改良
し、電極形成のためのスクリーン印刷工程等にお
いて生じ易い太陽電池素子基板の割れを防ぐこと
ができる太陽電池素子基板を提供する。
<Purpose of the invention> The present invention improves the drawbacks of the conventional semiconductor substrates described above and provides a solar cell element substrate that can prevent cracking of the solar cell element substrate that is likely to occur during the screen printing process for forming electrodes.

〈実施例〉 第1図において、p又はnの所定の導電型を示
すシリコン単結晶半導体基板3は〈100〉面の方
位に加工されている。該半導体基板3に対して、
〔011〕方位とは90゜以下の範囲の所定角度θ、好
ましくは45゜の関係にある端面にオリエンテーシ
ヨンフラツト4が形成されている。即ち、半導体
基板3の割れ易い方位を避けて、その中間の方位
にオリエンテーシヨンフラツト4が形成される。
<Embodiment> In FIG. 1, a silicon single crystal semiconductor substrate 3 exhibiting a predetermined conductivity type of p or n is processed to have a <100> plane orientation. For the semiconductor substrate 3,
[011] An orientation flat 4 is formed on the end face at a predetermined angle θ within a range of 90° or less, preferably 45°. That is, the orientation flat 4 is formed in an intermediate direction, avoiding the direction in which the semiconductor substrate 3 is likely to break.

上記半導体基板3は高効率太陽電池素子とする
ため、研摩された少なくとも受光表面に微細なの
こぎり歯状の凹凸が形成されている。該凹凸の加
工は、〈100〉シリコン単結晶基板をNaOHや
KOH等のアルカリ水溶液に晒すことによつて形
成される。
In order to make the semiconductor substrate 3 a high-efficiency solar cell element, fine sawtooth-like irregularities are formed on at least the polished light-receiving surface. To process the unevenness, a <100> silicon single crystal substrate is processed using NaOH or
Formed by exposure to an alkaline aqueous solution such as KOH.

表面に凹凸をもつシリコン単結晶基板3は、光
電変換機能をもたせるべく表面にpn接合が形成
される。該pn接合は、半導体基板3が示すp又
はn型導電性と逆の導電性を示す不純物雰囲気中
で加熱するか、或いは加熱処理によつて酸化物を
生成し反射防止膜になり得る溶液に予め逆の導電
性を示す不純物を添加し、この溶液を半導体基板
表面に塗布して加熱し、加熱と共に表面を逆導電
型に変換することによつて形成される。
A pn junction is formed on the surface of the silicon single crystal substrate 3 having an uneven surface so as to have a photoelectric conversion function. The p-n junction is heated in an impurity atmosphere exhibiting conductivity opposite to the p- or n-type conductivity exhibited by the semiconductor substrate 3, or heated in a solution that can generate an oxide and become an antireflection film through heat treatment. It is formed by adding an impurity exhibiting opposite conductivity in advance, applying this solution to the surface of the semiconductor substrate and heating it, and converting the surface to the opposite conductivity type while heating.

pn接合が形成された半導体基板面は、スクリ
ーン印刷によりp側及びn側電極材料が印刷さ
れ、焼成によつて半導体基板とオーミツクコンタ
クトした電極が形成され、太陽電池素子となる。
On the surface of the semiconductor substrate on which the p-n junction has been formed, p-side and n-side electrode materials are printed by screen printing, and electrodes in ohmic contact with the semiconductor substrate are formed by firing, thereby forming a solar cell element.

上記電極材料をスクリーン印刷する工程は、半
導体基板のオリエンテーシヨンフラツト4によつ
て位置合せされるため、印刷方向としては、従来
の工程とは異なつて矢印A又はBの方向に行わ
れ、従つて半導体基板が割れることはほとんどな
い。
The process of screen printing the electrode material is aligned by the orientation flat 4 of the semiconductor substrate, so the printing direction is different from the conventional process and is performed in the direction of arrow A or B. Therefore, the semiconductor substrate is almost never cracked.

〈効 果〉 以上本考案によれば、(100)結晶のシリコン単
結晶円形基板の周囲を切り欠いて形成するオリエ
ンテーシヨンフラツトを、(011)方位からずらし
て形成することにより、半導体装置製造工程中に
生じる基板の割れや破損を防ぐことができ、太陽
電池素子基板の歩留りを高めることができる。
<Effects> According to the present invention, the orientation flat formed by cutting out the periphery of the (100) silicon single crystal circular substrate is shifted from the (011) direction, thereby making it possible to improve semiconductor devices. Cracks and damage to the substrate that occur during the manufacturing process can be prevented, and the yield of solar cell element substrates can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案による一実施例を示す平面図、
第2図は従来の半導体基板平面図である。 3……シリコン結晶半導体基板、4……オリエ
ンテーシヨンフラツト、A,B……スクリーン印
刷方向。
FIG. 1 is a plan view showing an embodiment of the present invention;
FIG. 2 is a plan view of a conventional semiconductor substrate. 3...Silicon crystal semiconductor substrate, 4...Orientation flat, A, B...Screen printing direction.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 100面をもつシリコン単結晶基板に、011面から
90゜以内の所定角度ずれた位置にオリエンテーシ
ヨンフラツトを形成し、前記100面の受光表面に
微細な凹凸を形成するとともに、前記011面から
所定角度ずれた位置のオリエンテーシヨンフラツ
トに垂直あるいは平行な方向に印刷されたスクリ
ーン印刷による電極を形成してなることを特徴と
する太陽電池素子基板。
From 011 plane to silicon single crystal substrate with 100 planes
An orientation flat is formed at a position shifted by a predetermined angle within 90 degrees, and minute irregularities are formed on the light receiving surface of the 100 plane, and an orientation flat is formed at a position shifted by a predetermined angle from the 011 plane. 1. A solar cell element substrate comprising screen-printed electrodes printed in vertical or parallel directions.
JP13215884U 1984-08-29 1984-08-29 Solar cell element substrate Granted JPS6146727U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13215884U JPS6146727U (en) 1984-08-29 1984-08-29 Solar cell element substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13215884U JPS6146727U (en) 1984-08-29 1984-08-29 Solar cell element substrate

Publications (2)

Publication Number Publication Date
JPS6146727U JPS6146727U (en) 1986-03-28
JPH0121556Y2 true JPH0121556Y2 (en) 1989-06-27

Family

ID=30690720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13215884U Granted JPS6146727U (en) 1984-08-29 1984-08-29 Solar cell element substrate

Country Status (1)

Country Link
JP (1) JPS6146727U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049285A (en) * 2010-08-26 2012-03-08 Shin Etsu Chem Co Ltd Substrate for solar cell and the solar cell
JP6797999B2 (en) * 2019-12-13 2020-12-09 株式会社東京精密 Wafer chamfering method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58162027A (en) * 1982-03-19 1983-09-26 Matsushita Electronics Corp Semiconductor wafer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58162027A (en) * 1982-03-19 1983-09-26 Matsushita Electronics Corp Semiconductor wafer

Also Published As

Publication number Publication date
JPS6146727U (en) 1986-03-28

Similar Documents

Publication Publication Date Title
US9379270B2 (en) Bifacial crystalline silicon solar panel with reflector
JP3271990B2 (en) Photovoltaic device and method for manufacturing the same
JP3838979B2 (en) Solar cell
EP0334330A2 (en) Opto-electric transducing element and method for producing the same
US20220278246A1 (en) Bifacial crystalline silicon solar panel with reflector
US20150325714A1 (en) Structures and methods for high-efficiency pyramidal three-dimensional solar cells
EP0507420A1 (en) Method for Manufacturing a Solar Cell
JP2000332270A (en) Photoelectric transferer and manufacture thereof
TW201515244A (en) Solar cell and solar cell module
RU2569902C2 (en) Substrate for solar cell and solar cell
JP2989373B2 (en) Method for manufacturing photoelectric conversion device
JPH0121556Y2 (en)
JP2011228529A (en) Solar battery cell and manufacturing method thereof
JP3652128B2 (en) Method for manufacturing solar cell element
CN208538871U (en) A kind of p-type back contacts solar cell
JPH03276682A (en) Semiconductor device
JPH0529638A (en) Manufacture of photoelectric transducer
JP5541409B2 (en) Manufacturing method of solar cell
JP2001313401A (en) Photoelectric conversion device
JP4149678B2 (en) Solar cell
JP4431712B2 (en) Manufacturing method of solar cell
JP2981098B2 (en) Method for manufacturing photoelectric conversion element
JPH03206669A (en) Solar cell
JP4540177B2 (en) Method for manufacturing photoelectric conversion device
JPS61188975A (en) Manufacture of thin gaas solar cell