JPH0320633A - Multipoint-signal measuring apparatus - Google Patents
Multipoint-signal measuring apparatusInfo
- Publication number
- JPH0320633A JPH0320633A JP15609389A JP15609389A JPH0320633A JP H0320633 A JPH0320633 A JP H0320633A JP 15609389 A JP15609389 A JP 15609389A JP 15609389 A JP15609389 A JP 15609389A JP H0320633 A JPH0320633 A JP H0320633A
- Authority
- JP
- Japan
- Prior art keywords
- switch
- resistance
- terminal
- switches
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005259 measurement Methods 0.000 abstract description 19
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 abstract description 11
- 230000000694 effects Effects 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 description 6
- 230000003321 amplification Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 102100024455 DNA repair protein SWI5 homolog Human genes 0.000 description 1
- 101000832371 Homo sapiens DNA repair protein SWI5 homolog Proteins 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Landscapes
- Measuring Temperature Or Quantity Of Heat (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
- Measurement Of Current Or Voltage (AREA)
Abstract
Description
【発明の詳細な説明】
く産業上の利用分野〉
本発明は、多点信号測定装置に関するものであって、詳
しくは、ill温抵抗体.熱電対および直流電圧信号を
含む複数チャンネルの信号をスイッチを介して選択的に
切り換えて測定できる装置に関するものである.
く従来の技術〉
多点信号測定装置の一種に、3端子を有する複数の測温
抵抗体をスイッチを介して選択的に切り換えるように構
成された多点温度測定装置がある。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a multi-point signal measuring device, and more specifically, to a multi-point signal measuring device. This relates to a device that can selectively switch and measure multiple channels of signals, including thermocouple and DC voltage signals, via a switch. BACKGROUND ART One type of multipoint signal measuring device is a multipoint temperature measuring device configured to selectively switch a plurality of resistance temperature sensors each having three terminals via a switch.
第4図は、従来のこのような装置の一例を示す回路図で
ある.図において、Rtは3@子1゛a〜T cを有す
る複数の測温抵抗体である.a,bは一端が各測温抵抗
体Rtの第1の端子Taに接続され連動して選択的に駆
動される複数の第1,第2のスイッチ、dは一端が各測
温抵抗体Rtの第2の端子Tbに接続され第1,第2の
ス゛イッチa.bと連動して選択的に駆動される複数の
第3のスイッチ、d〜gは一端が各測温抵抗体Rtの第
3の端子1゛cに接続され第1.第2,第3のスイッチ
a〜Cと連動して選択的に駆動される複数の第4〜第7
のスイッチであり、これら第4〜第7のスイッチd−g
はオン抵抗を小さくするために並列に接続されている。FIG. 4 is a circuit diagram showing an example of such a conventional device. In the figure, Rt is a plurality of resistance temperature sensors having 3@1'a to Tc. a and b are a plurality of first and second switches whose one end is connected to the first terminal Ta of each resistance temperature detector Rt and are selectively driven in conjunction; d is a plurality of switches whose one end is connected to the first terminal Ta of each resistance temperature detector Rt; is connected to the second terminal Tb of the first and second switches a. A plurality of third switches d to g are selectively driven in conjunction with the first and second switches d to g, each of which has one end connected to the third terminal 1c of each resistance temperature detector Rt. A plurality of fourth to seventh switches that are selectively driven in conjunction with the second and third switches a to C.
These fourth to seventh switches d-g
are connected in parallel to reduce on-resistance.
iは一端が第1のスイッチaの池端に接続されfl!!
端が共通電位点に接続された定電流源である,Atは第
1の演算増幅器であり、非反転入力端子は第2のスイッ
ヂbの他端に接続され反転入力端子は入力端子に接続さ
れている。A2は第2の演算増幅器であり、非反転入力
端子は第3のスイッチCの他端に接続され、反転入力端
子は抵抗Raを介して第1の演算増幅器A1の出力端子
に接続されるとともに抵抗Rbを介して自身の出力端子
に接続されている.第4〜第7のスイッチd〜gの池端
は共通電位点に接続されている.rは測温抵抗体Rtの
リード線抵抗を示している.
このような構成において、各スイッチa〜gは測温抵抗
#:Rt単位で選択的にオン,オフ駆動される。One end of i is connected to the terminal of the first switch a, and fl! !
A constant current source whose end is connected to a common potential point, At is a first operational amplifier, a non-inverting input terminal is connected to the other end of the second switch b, and an inverting input terminal is connected to the input terminal. ing. A2 is a second operational amplifier, whose non-inverting input terminal is connected to the other end of the third switch C, and whose inverting input terminal is connected to the output terminal of the first operational amplifier A1 via a resistor Ra. It is connected to its own output terminal via a resistor Rb. The terminals of the fourth to seventh switches d to g are connected to a common potential point. r indicates the lead wire resistance of the resistance temperature detector Rt. In such a configuration, each of the switches a to g is selectively driven on and off in units of temperature measuring resistance #:Rt.
ここで、定電流源の出力@流をi、第2のスイッチbの
出力電圧を■A、第3のスイッチCの出力電圧をVB、
第4〜第7のスイッチd〜gの並列オン抵抗をrcとす
ると、
VA = i(r+Ilt”r+rc )
”II)に
なり、
VB =i(r+r C )
・・・(2)なる.
従って、第2の演算増幅器A2の出力電圧E0は、
E o = i(Rt−rc )
−(3)となる。Here, the output @ current of the constant current source is i, the output voltage of the second switch b is ■ A, the output voltage of the third switch C is VB,
If the parallel on-resistance of the fourth to seventh switches d to g is rc, VA = i(r+Ilt"r+rc)
”II), and VB = i(r+r C )
...(2) It becomes. Therefore, the output voltage E0 of the second operational amplifier A2 is E o = i(Rt-rc)
−(3).
く発明が解決しようとする課題〉
しかし、このような装置によれば、測温抵抗体Rtのリ
ード線抵抗rの影響は受けないものの、第4〜第7のス
イッチd〜gの並列オン抵抗rcの影響を除去すること
はできない.
そこで、これらスイッチとして、一般にオン抵抗の小さ
いリレーが用いられているが、リレーは比較的コストが
高くて動作速度は比較的遅く、並列オン抵抗r(の値が
変動しやすく、寿命が比較的短いなどの欠点がある.
また、このような構成によれば、4線式の測温抵抗体を
用いての精度の高い測定は行えない.さらに、熱電対の
出力信号や直流電圧信号などの異種の信号処理も行えな
い。However, according to such a device, although it is not affected by the lead wire resistance r of the resistance temperature detector Rt, the parallel on-resistance of the fourth to seventh switches d to g is The influence of rc cannot be removed. Therefore, relays with low on-resistance are generally used as these switches, but relays are relatively expensive, operate at a relatively slow speed, have a variable parallel on-resistance (r), and have a relatively short lifespan. In addition, with this configuration, highly accurate measurements using a 4-wire resistance thermometer cannot be performed.Furthermore, it is difficult to measure thermocouple output signals, DC voltage signals, etc. It is also not possible to process different types of signals.
本発明は、このような点に着目したものであり、その目
的は、測温抵抗体,熱電対およぴ直流電圧信号を含む複
数チャンネルの信号をスイッチを介して選択的に切り換
えて取り込めるようにずるとともに、複数の測温抵抗体
をスイッチで切り換えて多点の温度測定を行う場合にお
いてリード線抵抗,スイッチのオン抵抗および電流経路
のコネクタの接触抵抗の影響が除去できる多点信号測定
装置を提供することにある.
く課題を解決するための手段〉
本発明の多点信号測定装置は、
測温抵抗体.熱電対および直流電圧信号を含む複数チャ
ンネルの信号線が個別に接続される複数の入力端子と、
各入力端子に接続されたコネクタを有する端子板と、
この端子板のコネクタに接続される第1のコネクタと、
この第1のコネクタに接続され各チャンネル毎に選択的
に駆動される複数のスイッチと、これら各スイッチが共
通に接続される第2のコネクタを有するスキャナボード
と、
このスキャナボードの第2のコネクタに接続されるコネ
クタと、前記端子板に接続される測温抵抗体にスイッチ
を介して選択的に電流を供給する定電流源と、前記端子
板に接続される測温抵抗体の各端子電圧をスイッチを介
して選択的に取り込み測温抵抗体の抵抗値を演算する演
算手段と、前記端子板に接続される熱電対および直流電
圧信号をスイッチを介して選択的に取り込み増幅する増
幅手段を有する演算回路部、
を設けたことを特徴とする.
く作用〉
端子板の入力端子に加えられる測温抵抗体.熱電対およ
び直流電圧信号を含む複数チャンネルの信号は、スキャ
ナボードのスイッチを介して選択的に演算回路部に取り
込まれる。The present invention has focused on these points, and its purpose is to selectively switch and capture multiple channels of signals including resistance temperature detectors, thermocouples, and DC voltage signals via a switch. This is a multi-point signal measurement device that can eliminate the effects of lead wire resistance, switch on resistance, and contact resistance of current path connectors when measuring temperature at multiple points by switching multiple resistance thermometers with a switch. The goal is to provide the following. Means for Solving the Problems> The multi-point signal measuring device of the present invention includes a resistance temperature detector. multiple input terminals to which multiple channels of signal lines including thermocouple and DC voltage signals are individually connected;
a terminal board having a connector connected to each input terminal; a first connector connected to the connector of this terminal board;
a scanner board having a plurality of switches connected to the first connector and selectively driven for each channel; a second connector to which the switches are commonly connected; a second connector of the scanner board; a constant current source that selectively supplies current to the resistance temperature detector connected to the terminal board via a switch, and a voltage at each terminal of the resistance temperature detector connected to the terminal board. a calculation means for selectively taking in the signal through the switch and calculating the resistance value of the resistance temperature detector; and an amplifying means for selectively taking in and amplifying the thermocouple and DC voltage signal connected to the terminal board through the switch. It is characterized by having an arithmetic circuit section having the following. Effect> A resistance temperature detector added to the input terminal of the terminal board. Multiple channels of signals, including thermocouple and DC voltage signals, are selectively taken into the arithmetic circuit section via a switch on the scanner board.
そして、演算回路部に取り込まれた測温抵抗体の各端子
電圧はさらにスイッチを介して選択的に演算手段に取り
込まれ,リード線抵抗およびスイッチのオン抵抗の影響
が除去されて抵抗値が演算される.また、演算回路部に
取り込まれた熱電対の出力信号および直流電圧信号はさ
らにスイッチを介して選択的に増幅手段に取り込まれ、
増幅される。The voltage at each terminal of the RTD taken into the calculation circuit section is then selectively taken into the calculation means via the switch, and the influence of the lead wire resistance and the on-resistance of the switch is removed, and the resistance value is calculated. It will be done. Furthermore, the thermocouple output signal and DC voltage signal taken into the arithmetic circuit section are further selectively taken into the amplification means via a switch.
amplified.
く実施例〉
以下、図面を用いて本発明の実施例を詳細に説明する.
第1図は本発明の一実施例を示す回路図であり、第2図
と同一部分には同一符号を付けている。図において、端
子板Aには、測温抵抗体Rt、,熱電対TCおよび直流
電圧信号Exを含む複数チャンネルの信号線が個別に接
続される複数の入力端子Ta1〜TCTLと、各入力端
子Ta1〜TCTLに接続されたコネクタCN,が設け
られている。Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a circuit diagram showing an embodiment of the present invention, and the same parts as in FIG. 2 are given the same reference numerals. In the figure, a terminal board A has a plurality of input terminals Ta1 to TCTL to which signal lines of a plurality of channels including a resistance temperature detector Rt, a thermocouple TC, and a DC voltage signal Ex are individually connected, and each input terminal Ta1. A connector CN connected to ~TCTL is provided.
スキャナボードBには、端子板AのコネクタCN,に接
続される第1のコネクタCN2と、第1のコネクタCN
2に接続され各チャンネル毎に選択的に駆動される複数
のスイッチa,〜eTLと、これら各スイッチa1〜e
TLが共通に接続される第2のコネクタCN,が設けら
れている。The scanner board B has a first connector CN2 connected to the connector CN of the terminal board A, and a first connector CN2 connected to the connector CN of the terminal board A.
2 and selectively driven for each channel, and each of these switches a1 to e
A second connector CN, to which the TLs are commonly connected, is provided.
演算回路部Cには、スキャナボードBの第2のコネクタ
CN3に接続されるコネクタC N aと、端子板Aに
接続される測温抵抗体RtにスイッチSW5を介して選
択的に電流を供給する定電流源iと、端子板Aに接続さ
れる測温抵抗体Rtの各端子電圧VA ,VB , V
DをスイッチSW6〜SW,を介して選択的に取り込み
測温抵抗IRtの抵抗値を演算する演算増幅器A3〜A
5よりなる演算手段と、端子板Aに接続される熱電対′
rCおよび直流電圧信号ExをスイッチSW1〜SW4
を介して選択的に取り込み増幅する演算増幅器A6より
なる増幅手段が設けられている.演算手段の出力信号は
スイ・/チSW,。を介して増幅手段に入力されている
。具体的には、定t流源iはスイッチSW5を介してス
イッチa系統の信号線に接続されている.演算増幅器A
,の非反転入力端子はスイッチSW6を介してスイッチ
b系統の信号線に接続され、反転入力端子は抵抗R2を
介して出力端子に接続されるとともに抵抗R,を介して
抵抗R3の一端に接続されている。演算増幅器A4の非
反転入力端子はスイッチSW8を介してスイッチd系統
の信号線に接続され、反転入力端子は抵抗R4を介し,
て出力端子に接続されるとともに抵抗R3を介して抵抗
R,の一端に接続されている。抵抗Rl とU(抗R3
の接続点は抵抗R cを介して共通電位点に接続される
とともに、スイッチSW9を介してスイッチ系統eの信
号線に接続されている.なお、抵抗Rcは、0℃におけ
る出力電圧をOvにするだめのものであり、測温抵抗体
Rtとして例えば0℃で100Ωの抵抗値を有ずる白金
測温抵抗体を用いる場合には100Ωを接続する.演簸
増幅器A!lの非反転入力端子はスイッチd系統の信号
線に接続されるとともにスイッチSW7を介して共通電
位点に接続され、反転入力端子は抵抗R7を介して出力
端子に接続されるとともに抵抗R5を介して演算増幅器
A3の出力端子に接続され、さらに抵抗R6を介して演
算増幅器A4の出力端子に接続されている.スイッチb
系統の信号線は、スイッチSW,と抵抗R8とスイッチ
SW2が直列に接続された第1の直列回路と、スイッチ
SW3と抵抗Rg,R,.の分圧回路とスイッチSW,
Iが直列に接続され第1の直列回路と並列に接続された
第2の直列回路を介して演算増幅器A6の非反転入力端
子に接続されている.この演算増幅器A6の反転入力端
子は抵抗R,,を介して出力端子に接続されるとともに
抵抗R12を介して共通電位点に接続されている.
このように楕成された装置の動作は、
■測温抵抗体Rtによる測定
■熱電対TCまたは直流電圧信号Exの測定■装置内部
でのOmVの校正動作
の3つに大別できる。以下、それぞれの動作について説
明する。なお、スキャナボードBの各スイッチa1〜e
TLは測定チャンネル単位で選択的にオン,オフ駆動さ
れる.
■測温抵抗体Rtによる測定
測温抵抗体Rtによる測定による測定にあたっては、演
算回路部CのスイッチSW,〜SW4およびSW7をオ
フ、sw,,sw,およびSW,〜SW,。をオンにす
る。これにより、定電流源iの出力電流は、スイッヂS
W5,スイッチa,端子Ta(Ii!Iのリード線抵抗
r,測温抵抗体Rt,端子Tc側のリード線抵抗r,ス
イッチe.スイッチSW,および抵抗Rcを通って共通
電位点に流れる。ここで、定電流源の出力電流をi、ス
イッチb系統の信号線の電圧を■^、スイッチC系統の
信ぢ線の電圧をVB、スイッチd系統の信号線の電圧を
Vo、スイッチSW.5lと抵抗Rcとの接続点の電圧
をVC、スイッチeおよびSW9のオン抵抗の和をRS
とすると、
VA = ifr+Rt+r+fls)+Vcにな
り、
V日 =i(r+
になり、
VO=
になり、
Rs)+Vc
・ Rs+l+fc
・・・(4)
・・・(5)
・・(6)
になる.
以上の式から、演算増幅器A3の出力電圧Ea・・・(
8)
になり、演算増幅器A.の出力電圧Ebは、になり、演
算増幅器A5−/)非反転入力端子の入力電圧Ecは、
・・・oO
になり、演算増゛幅器A5の出力電圧Eoは、・・・(
11)
になる.この(11)式から、リード線抵抗rとスイン
チeおよひSW9のオン抵抗の和Rsの項を消去するよ
うに抵抗R,〜R7を決定することにより、
Eo=− + (Rt−Rc )
・・・(12)が得られる.なお、これら抵抗
R,〜R7の抵抗値は、例えばRcを100Ωとすると
、R, =R.3= 9.8KΩ、R2=R4=R5−
几。=10KΩ、R7=5KΩにすればよい.このよう
な演算増幅器A5の出力信号EoはスイッヂSW,oを
介して演算増幅器A6に加えられ、抵抗Rl ! .
R12により設定されるゲインに応じて増幅され出力さ
れる.
■熱電対’I’ Cまたは直流電圧信号Exの測定これ
らの測定にあたっては、演箕回路部Cの測温抵杭体Rt
の抵抗値の演算手段に関わるスイッチsw,,sw6お
よびS W s 〜S W + oをオフにする.
そして、入力信号の大きさに応じて分圧しなくてもよい
場合にはスイッチsw,,sw2をオンにしてスイッチ
sw.,sw.はオフにする。これにより、演算増幅器
A6にはスイッチb系統の信号線の電圧vAがスイッチ
SW,,抵抗R8およびスイッチSW2の直列回路を介
して加えられることになる.
これに対し、分圧しなければならない場合には、スイッ
チSW1.sw2をオフにしてスイッチSW,,SW,
はオンにする.これにより、演算増幅器A6にはスイッ
チb系統の信号線の電圧VAが、スイッチSW,,抵抗
R9とR,。の分圧回路およびスイッチSW4の直列回
路を介して加えられることになる.
■装置内部でのOmVの校正動作
内部校正にあたっては、スイッチsw,〜sw,。のう
ちSW4とSW7をオンにして他のスイッチはオフにす
る.これにより、演算増幅器A6の入力端子はスイッチ
SW4のオン抵抗と抵抗R,。を介して共通電位点に接
続されることがら端子板Aの入力端子Taを共通電位点
に接続して校正を行う条件と実質的に等しくなり、高精
度の校正が行えることになる。In the arithmetic circuit section C, current is selectively supplied to the connector CN a connected to the second connector CN3 of the scanner board B and the resistance temperature detector Rt connected to the terminal board A via the switch SW5. The constant current source i and each terminal voltage VA, VB, V of the resistance temperature detector Rt connected to the terminal plate A
Operational amplifiers A3 to A that selectively take in D via switches SW6 to SW, and calculate the resistance value of the temperature measuring resistor IRt.
5 and a thermocouple connected to the terminal board A.
rC and DC voltage signal Ex through switches SW1 to SW4
Amplifying means is provided which consists of an operational amplifier A6 which selectively takes in and amplifies the signal via the . The output signal of the calculation means is SW. is input to the amplification means via. Specifically, the constant t current source i is connected to the signal line of the switch a system via the switch SW5. Operational amplifier A
The non-inverting input terminal of , is connected to the signal line of the switch b system via switch SW6, and the inverting input terminal is connected to the output terminal via resistor R2 and to one end of resistor R3 via resistor R, has been done. The non-inverting input terminal of the operational amplifier A4 is connected to the signal line of the switch d system via the switch SW8, and the inverting input terminal is connected to the signal line of the switch d system via the resistor R4.
It is connected to the output terminal and to one end of the resistor R via the resistor R3. Resistors Rl and U (anti-R3
The connection point of is connected to the common potential point via a resistor Rc, and is also connected to the signal line of the switch system e via a switch SW9. Note that the resistor Rc is for making the output voltage Ov at 0°C, and if a platinum resistance thermometer having a resistance value of 100Ω at 0°C is used as the resistance temperature detector Rt, the resistor Rc is set to 100Ω. Connecting. Ellipsis amplifier A! The non-inverting input terminal of l is connected to the signal line of switch d system and to the common potential point via switch SW7, and the inverting input terminal is connected to the output terminal via resistor R7 and via resistor R5. is connected to the output terminal of operational amplifier A3, and further connected to the output terminal of operational amplifier A4 via resistor R6. switch b
The signal line of the system includes a first series circuit in which switch SW, resistor R8, and switch SW2 are connected in series, and switch SW3 and resistors Rg, R, . voltage divider circuit and switch SW,
I is connected in series to the non-inverting input terminal of operational amplifier A6 via a second series circuit connected in parallel with the first series circuit. The inverting input terminal of the operational amplifier A6 is connected to the output terminal via a resistor R, ., and is also connected to a common potential point via a resistor R12. The operations of the device configured in this way can be roughly divided into three: (1) measurement using the resistance temperature detector Rt, (2) measurement of the thermocouple TC or DC voltage signal Ex, and (2) calibration operation of OmV inside the device. Each operation will be explained below. In addition, each switch a1 to e of scanner board B
The TL is selectively turned on and off for each measurement channel. (2) Measurement using resistance temperature detector Rt For measurement using resistance temperature detector Rt, switches SW, -SW4 and SW7 of the arithmetic circuit section C are turned off, sw, , sw, and SW, -SW,. Turn on. As a result, the output current of constant current source i is changed to switch S
It flows to the common potential point through W5, switch a, lead wire resistance r of terminal Ta (Ii!I, temperature measuring resistor Rt, lead wire resistance r on terminal Tc side, switch e, switch SW, and resistor Rc). Here, the output current of the constant current source is i, the voltage of the signal line of switch b system is ■^, the voltage of the signal line of switch C system is VB, the voltage of the signal line of switch d system is Vo, switch SW. VC is the voltage at the connection point between 5l and resistor Rc, and RS is the sum of the on-resistances of switch e and SW9.
Then, VA = ifr + Rt + r + fls) + Vc, V day = i (r +, VO =, Rs) + Vc ・ Rs + l + fc ... (4) ... (5) ... (6). From the above formula, the output voltage Ea of operational amplifier A3...(
8) Then, the operational amplifier A. The output voltage Eb of the operational amplifier A5 becomes, the input voltage Ec of the non-inverting input terminal of the operational amplifier A5-/) becomes ... oO, and the output voltage Eo of the operational amplifier A5 becomes ... (
11) It becomes. From this equation (11), by determining the resistances R and ~R7 so as to eliminate the term Rs, the sum of the lead wire resistance r, the switch e, and the on-resistance of SW9, Eo=- + (Rt-Rc )
...(12) is obtained. Note that the resistance values of these resistors R, to R7 are, for example, R, =R. 3=9.8KΩ, R2=R4=R5-
几. = 10KΩ, and R7 = 5KΩ. The output signal Eo of the operational amplifier A5 is applied to the operational amplifier A6 via the switch SW,o, and is applied to the operational amplifier A6 through the resistor Rl! ..
It is amplified and output according to the gain set by R12. ■Measurement of thermocouple 'I' C or DC voltage signal Ex.
Switches sw, , sw6 and SW s to SW + o related to the calculation means for the resistance value of are turned off. If voltage division is not required depending on the magnitude of the input signal, switches sw, , sw2 are turned on and switches sw. , sw. is turned off. As a result, the voltage vA of the signal line of the switch b system is applied to the operational amplifier A6 via the series circuit of the switch SW, the resistor R8, and the switch SW2. On the other hand, if voltage division is required, switch SW1. Turn off sw2 and switch SW,,SW,
Turn on. As a result, the voltage VA of the signal line of the switch b system is applied to the operational amplifier A6 by the switch SW, the resistors R9 and R, and the voltage VA of the signal line of the switch b system. It is applied via the voltage divider circuit and the series circuit of switch SW4. (2) Calibration operation of OmV inside the device For internal calibration, use the switches sw, ~sw,. Turn on SW4 and SW7 and turn off the other switches. As a result, the input terminal of the operational amplifier A6 is connected to the on-resistance of the switch SW4 and the resistor R. Since the input terminal Ta of the terminal board A is connected to the common potential point via the common potential point, the conditions are substantially equal to the conditions for performing calibration by connecting the input terminal Ta of the terminal board A to the common potential point, and highly accurate calibration can be performed.
このような各動作モードにおける演算同路部Cのスイッ
チSW1〜SW+oのオン,オフ制御およびスキャナボ
ードBのスイッチa,〜eTLの切換制御は、図示しな
いマイクロプロセッサなどの制御手段により電子的に行
うことができる.このように構成することにより、測温
抵抗体Rt.熟電対TCおよび直流電圧信qVxを含む
複数チャンネルの信号を共通の演算口路部で測定処理す
ることができ、さらに、複数の測温抵抗体Rtをスイッ
チで切り換えて多点の温度測定を行う場合においてリー
ド線抵抗,スイッチのオン抵抗および電流経路のコネク
タの接触抵抗の影響を除去できる。また、このような構
成によれば、各スイッチとしてオン抵抗は大きいものの
信頼性が高く、高速スイッチング動作を行う半導体スイ
ッチを用いることができ、RH的な接点を用いる場合に
比べて高速測定が得られ、装置全体の信頼性を高めるこ
とができる.
第2図は、第1図の演算回路部Cに測温抵抗体Rtの自
動校正回路を付加したものである。すなわち、演算増幅
器A4の非反転入力端子と抵抗RCとR3の接続点間は
スイッチSW++を介して接続されている.基準抵抗R
R(一般には100Ω〉の一端はスイッチSW, 2を
介して定電流源iの出力端子に接続されるとともにスイ
ッチSW,3を介して演算増幅器A3の非反転入力端子
に接続され、他端は抵抗RcとR3の接続点に接続され
るとともにスイッチSW,4を介して演算増幅器A3の
非反転入力端子に接続されている.また、演算増幅器A
5の非反転入力端子には、切換スイッチSW, 5を介
して抵抗RcとR3の接続点およびスイッチC系統の信
号線が接続されている。The on/off control of the switches SW1 to SW+o of the arithmetic circuit section C and the switching control of the switches a to eTL of the scanner board B in each operation mode are electronically performed by a control means such as a microprocessor (not shown). be able to. With this configuration, the resistance temperature detector Rt. It is possible to measure and process the signals of multiple channels including the multi-voltage coupler TC and the DC voltage signal qVx with a common calculation port, and also to measure the temperature at multiple points by switching the multiple resistance temperature detectors Rt with a switch. In this case, the effects of lead wire resistance, on-resistance of the switch, and contact resistance of the connector in the current path can be eliminated. In addition, with this configuration, semiconductor switches with high on-resistance but high reliability and high-speed switching operation can be used as each switch, and high-speed measurement can be achieved compared to the case of using RH contacts. This increases the reliability of the entire device. FIG. 2 shows the arithmetic circuit section C of FIG. 1 with an automatic calibration circuit for the resistance temperature detector Rt added. That is, the non-inverting input terminal of the operational amplifier A4 and the connection point between the resistors RC and R3 are connected via the switch SW++. Reference resistance R
One end of R (generally 100Ω) is connected to the output terminal of constant current source i via switch SW, 2, and is also connected to the non-inverting input terminal of operational amplifier A3 via switch SW, 3. It is connected to the connection point between the resistors Rc and R3, and is also connected to the non-inverting input terminal of the operational amplifier A3 via the switch SW,4.
The non-inverting input terminal 5 is connected to the connection point between the resistors Rc and R3 and the signal line of the switch C system via the changeover switch SW, 5.
このような構成において、前述の第1図の3つの測定機
能■〜■の曲に、さらに、
■0Ω校正動作
■100Ω校北動作
の機能か追加される.
各測定動作について説明する。In such a configuration, in addition to the three measurement functions (■ to ■) shown in FIG. Each measurement operation will be explained.
■測温抵抗体Rtによる測定
第2図での測温抵抗体Rtによる測定による測定にあた
っては、演算回路部CのスイッチSW1〜SW4 ,S
W7 ,SW,.,SVI’+ 2をオフにし、sw5
,sw,およびSW8〜SW,。をオンにし、スイッチ
SW, 3〜SW, 5の可動接点をいずれもb ft
ljに切り換える。これにより、第1図の測温抵抗体R
tによる測定と同様の状態が設定されることになる.
■熱電対T Cまたは直流電圧信号Exの測定および■
装置内部での○mVの校正動作は、第1図と同様のスイ
ッチ設定で行うことができる.■0Ω校正動作
0Ωの校正にあたっては、スイッチSW,〜SW9をオ
フにしてスイッチSW,。〜SW, 2をオンにし、ス
イッチSW, 3の可動接点をb IIIに切り換え、
スイッチSW+ 4.3W+ 5の可動接点をaplに
切り換える.これにより、定電流源iの出力電流はスイ
ッチSW12,基単抵抗RRおよび抵抗Rcを通って共
通電位点に流れる.そして、演算増幅器A3の非反転入
力端子にはスイッチSW,,を介して抵抗RcとR3の
接続点の電圧Vcが加えられ、演算増幅器A5の非反転
入力端子にはスイッチSW, 5を介して抵抗RcとR
3の接続点の電圧Vcが加えられることになり、0Ω校
正が行われる.
■100Ω校正動作
100Ωの校正にあたっては、0Ω校正の状態から、ス
イッチSW,〜SW, 2はそのままでスイッチSW,
3 ,SW+ 5の可動接点をa III!Iに切り換
え、スイッチSW+,Iの可動接点をb{則に切り換え
る.これにより、演箕増幅器A3の非反転入力端子には
スイッチSW.,を介してスイッチSW,2と基準抵抗
RRの接続点の電圧が加えられ、演算増幅器A5の非反
転入力端子にはスイッチSW, 5を介して抵抗Rcと
R3の接続点の電圧Vcが加えられることになり、10
0Ω校正が行われる.
第3図は、第1図および第2図における演算回路部Cを
用いて4線式の測温抵抗体の測定を行う場合の説明図で
ある。この場合には、端子板Aとして各チャンネル毎に
4端子1’ a〜T dおよびコネクタCNIが設けら
れたものを用い、スキャナボードBとしては端子板Aの
コネクタCNIに嵌合接続されるコネクタCN2,各チ
ャンネル毎に設けられた4個のスイッチa〜dおよび各
チャンネルのスイッチa〜dが共通に接続され演算回路
部CのコネクタCN4に嵌合接続されるコネクタCN3
が設けられたものを用いる.これにより、測温抵抗体R
tの両端には電流端子と電圧端子が設けられることにな
り、3端子の場合よりも精度の高い測定が行える.
また、第1図の実施例では3端子の測温抵抗体Rtの各
端子を同時に切り換える絶縁切換型の例を示したが、端
子Tcの系統は切り換えない非絶縁型にしてもよい.こ
のような非絶縁型にすることにより、スキャナボードB
に必要なスイッチの数を削減してコストを下げることが
できる。■Measurement using the resistance temperature detector Rt For the measurement using the resistance temperature detector Rt in Fig. 2, the switches SW1 to SW4, S of the arithmetic circuit section C are
W7, SW,. , turn off SVI'+2, sw5
, sw, and SW8 to SW,. Turn on the movable contacts of switches SW, 3 to SW, and 5 to b ft.
Switch to lj. As a result, the resistance temperature detector R in FIG.
The same conditions as in the measurement using t will be set. ■ Measurement of thermocouple T C or DC voltage signal Ex and ■
Calibration of ○mV inside the device can be performed using the same switch settings as shown in Figure 1. ■0Ω Calibration Operation For 0Ω calibration, turn off switches SW, to SW9, and then switch SW. ~Turn on SW, 2, switch the movable contact of switch SW, 3 to b III,
Switch SW+ 4.3W+ Switch the movable contact of 5 to APL. As a result, the output current of the constant current source i flows to the common potential point through the switch SW12, the base resistor RR, and the resistor Rc. The voltage Vc at the connection point of the resistors Rc and R3 is applied to the non-inverting input terminal of the operational amplifier A3 via the switch SW, 5, and the voltage Vc at the connection point of the resistors Rc and R3 is applied to the non-inverting input terminal of the operational amplifier A5 via the switch SW, 5. Resistance Rc and R
The voltage Vc at the connection point 3 is applied, and 0Ω calibration is performed. ■100Ω calibration operation For 100Ω calibration, start from the 0Ω calibration state, leave switches SW, ~SW, 2 as they are, and switch SW,
3, SW+5 movable contact a III! I, and switch SW+ and the movable contact of I according to the b{ rule. As a result, the switch SW. , the voltage at the connection point between the switch SW,2 and the reference resistor RR is applied to the non-inverting input terminal of the operational amplifier A5, and the voltage Vc at the connection point between the resistors Rc and R3 is applied to the non-inverting input terminal of the operational amplifier A5 via the switch SW,5. 10
0Ω calibration is performed. FIG. 3 is an explanatory diagram when measuring a four-wire resistance temperature detector using the arithmetic circuit section C in FIGS. 1 and 2. FIG. In this case, the terminal board A is provided with four terminals 1'a to Td and a connector CNI for each channel, and the scanner board B is a connector that is fitted and connected to the connector CNI of the terminal board A. CN2, four switches a to d provided for each channel, and a connector CN3 to which the switches a to d of each channel are commonly connected and are fitted and connected to the connector CN4 of the arithmetic circuit section C;
Use one with a As a result, the resistance temperature detector R
A current terminal and a voltage terminal are provided at both ends of t, allowing for more accurate measurements than in the case of three terminals. Further, although the embodiment shown in FIG. 1 shows an example of an insulation switching type in which each terminal of the three-terminal resistance temperature detector Rt is switched at the same time, the system of terminals Tc may be a non-insulation type without switching. By making this non-insulated type, scanner board B
can reduce costs by reducing the number of switches required.
く発明の効果〉
以上説明したように、本発明によれば、リード線抵抗だ
けではなく、スイッチのオン抵抗および電流経路のコネ
クタの接触抵抗の彩饗をも除去でき、高遠測定が行える
信頼性の高い多点信号測定装置が実現できる.As explained above, according to the present invention, not only the lead wire resistance but also the on-resistance of the switch and the contact resistance of the connector of the current path can be eliminated, and the reliability of high-distance measurement can be improved. A multi-point signal measurement device with high performance can be realized.
第1図は本発明の一実施例を示す回路図、第2図,第3
図はそれぞれ本発明の他の実施例を示す回路図、第4図
は従来の装置の一例を示す回路図である。
Rt・・・測温抵抗体、i・・・定電流源、a〜e・・
・スイッチ、Aコ〜A6・・・演算m@器、R.c.R
,〜RI2・・・抵抗、RR・・・基準抵抗、S W
+〜SWI5・・・スイッチ、A・・・端子板、B・・
・スキャナボード、第
3
図
文帛子才反
スキイナホ゛一じ
第
4
図
(rc)Figure 1 is a circuit diagram showing one embodiment of the present invention, Figures 2 and 3 are
The figures are circuit diagrams showing other embodiments of the present invention, and FIG. 4 is a circuit diagram showing an example of a conventional device. Rt...Resistance temperature sensor, i...Constant current source, a~e...
・Switch, A ~ A6... Calculation m @ device, R. c. R
, ~RI2...Resistance, RR...Reference resistance, SW
+~SWI5...Switch, A...Terminal board, B...
・Scanner board, Fig. 3 Textbook board, Fig. 4 (rc)
Claims (1)
ンネルの信号線が個別に接続される複数の入力端子と、
各入力端子に接続されたコネクタを有する端子板と、 この端子板のコネクタに接続される第1のコネクタと、
この第1のコネクタに接続され各チャンネル毎に選択的
に駆動される複数のスイッチと、これら各スイッチが共
通に接続される第2のコネクタを有するスキャナボード
と、 このスキャナボードの第2のコネクタに接続されるコネ
クタと、前記端子板に接続される測温抵抗体にスイッチ
を介して選択的に電流を供給する定電流源と、前記端子
板に接続される測温抵抗体の各端子電圧をスイッチを介
して選択的に取り込み測温抵抗体の抵抗値を演算する演
算手段と、前記端子板に接続される熱電対および直流電
圧信号をスイッチを介して選択的に取り込み増幅する増
幅手段を有する演算回路部、 とで構成されたことを特徴とする多点信号測定装置。[Claims] A plurality of input terminals to which signal lines of a plurality of channels including a resistance temperature detector, a thermocouple, and a DC voltage signal are individually connected;
a terminal board having a connector connected to each input terminal; a first connector connected to the connector of this terminal board;
a scanner board having a plurality of switches connected to the first connector and selectively driven for each channel; a second connector to which the switches are commonly connected; a second connector of the scanner board; a constant current source that selectively supplies current to the resistance temperature detector connected to the terminal board via a switch, and a voltage at each terminal of the resistance temperature detector connected to the terminal board. a calculation means for selectively taking in the signal through the switch and calculating the resistance value of the resistance temperature detector; and an amplifying means for selectively taking in and amplifying the thermocouple and DC voltage signal connected to the terminal board through the switch. A multi-point signal measuring device comprising: an arithmetic circuit section having the following features:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1156093A JPH0830667B2 (en) | 1989-06-19 | 1989-06-19 | Multi-point signal measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1156093A JPH0830667B2 (en) | 1989-06-19 | 1989-06-19 | Multi-point signal measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0320633A true JPH0320633A (en) | 1991-01-29 |
JPH0830667B2 JPH0830667B2 (en) | 1996-03-27 |
Family
ID=15620157
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1156093A Expired - Fee Related JPH0830667B2 (en) | 1989-06-19 | 1989-06-19 | Multi-point signal measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0830667B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107702822A (en) * | 2017-09-21 | 2018-02-16 | 中国计量大学 | A kind of multichannel quick high accuracy temp measuring system based on intersection polling mechanism |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59212997A (en) * | 1983-05-18 | 1984-12-01 | 株式会社チノー | Multipoint input switch |
JPS61222623A (en) * | 1985-03-27 | 1986-10-03 | Nippon Steel Corp | Detecting method of welded point of strip |
JPS6361917A (en) * | 1986-09-03 | 1988-03-18 | Yokogawa Electric Corp | Multipoint measuring instrument |
JPS63273026A (en) * | 1987-05-01 | 1988-11-10 | Yamatake Honeywell Co Ltd | Input circuit of temperature measuring instrument |
-
1989
- 1989-06-19 JP JP1156093A patent/JPH0830667B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59212997A (en) * | 1983-05-18 | 1984-12-01 | 株式会社チノー | Multipoint input switch |
JPS61222623A (en) * | 1985-03-27 | 1986-10-03 | Nippon Steel Corp | Detecting method of welded point of strip |
JPS6361917A (en) * | 1986-09-03 | 1988-03-18 | Yokogawa Electric Corp | Multipoint measuring instrument |
JPS63273026A (en) * | 1987-05-01 | 1988-11-10 | Yamatake Honeywell Co Ltd | Input circuit of temperature measuring instrument |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107702822A (en) * | 2017-09-21 | 2018-02-16 | 中国计量大学 | A kind of multichannel quick high accuracy temp measuring system based on intersection polling mechanism |
CN107702822B (en) * | 2017-09-21 | 2019-05-10 | 中国计量大学 | A kind of multichannel quick high accuracy temp measuring system based on intersection polling mechanism |
Also Published As
Publication number | Publication date |
---|---|
JPH0830667B2 (en) | 1996-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2000241258A (en) | Instrument and method for temperature measurement | |
JPH0320633A (en) | Multipoint-signal measuring apparatus | |
US4103231A (en) | Electrometric apparatus | |
JPS63273026A (en) | Input circuit of temperature measuring instrument | |
JP2542829B2 (en) | Multi-point measuring device | |
JPH0614082B2 (en) | Temperature measuring device | |
JPS626171B2 (en) | ||
JPH073347Y2 (en) | Electrode contact resistance measuring device | |
JPS5930434Y2 (en) | Resistive multi-point temperature measurement circuit | |
JPH0615358Y2 (en) | Multipoint recorder | |
JPS6236126Y2 (en) | ||
JP2595858B2 (en) | Temperature measurement circuit | |
JP3048377B2 (en) | Grain moisture meter | |
JP2675467B2 (en) | Multi-point temperature measuring device | |
JPH0979918A (en) | Method and circuit for measuring temperature using resistance temperature detector | |
JP2512934B2 (en) | Temperature measurement circuit | |
JPS594263Y2 (en) | Temperature difference measuring device | |
JPH0255923A (en) | Temperature difference measuring device | |
JPS6275326A (en) | Thermocouple input unit | |
JPS6221958Y2 (en) | ||
SU838416A1 (en) | Temperature gage | |
JPS59212008A (en) | Input device | |
JPS61223623A (en) | Multipoint temperature measuring device | |
JPH0989829A (en) | Resistance converter | |
SU983553A1 (en) | Measuring converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |