JPH03203335A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH03203335A
JPH03203335A JP34288689A JP34288689A JPH03203335A JP H03203335 A JPH03203335 A JP H03203335A JP 34288689 A JP34288689 A JP 34288689A JP 34288689 A JP34288689 A JP 34288689A JP H03203335 A JPH03203335 A JP H03203335A
Authority
JP
Japan
Prior art keywords
gate
layer
type
buried
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34288689A
Other languages
Japanese (ja)
Inventor
Koushirou Wakayoshi
若吉 功士郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP34288689A priority Critical patent/JPH03203335A/en
Publication of JPH03203335A publication Critical patent/JPH03203335A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To contrive to reduce irregularity in the electrical characteristics of a device within the surface of the device by a method wherein the channel width and the gate width are decided on a mask at the time of a design, a gate length is decided by buried diffusion and the effect of the thickness of an epitaxial growth is made negligible. CONSTITUTION:An n-type epitaxial layer 2 is formed on an n<+> semiconductor substrate 1 and p-type diffused regions 3, which are used as buried gate regions and respectively have inner side surfaces opposing to each other at an interval to match to a channel width, are formed on the layer 2. Moreover, an n-type epitaxial layer 2a, in which the regions 3 are buried, is grown. A p-type upper surface gate regions 3a for connecting the layer 3 to the upper surface are formed through selective diffusion of P-type impurities based on a planer technique. n<+> and p<+> ohmic layers 4 and 5 for making surface electrodes are formed, an insulating film 6 is formed, openings are formed in the film 6 to form a source electrode 4a to connect to the layer 4 and a gate electrode 5a to connect with the layer 5 and the substrate 1 is used as a drain. Accordingly, a gate length is decided by buried diffusion and the effect of the thickness of an epitaxial growth can be neglected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は接合型電界効果トランジスタ(以下J−FET
と言う)を有する半導体装置に関し、特に電気的特性の
面白バラツキがエピタキシャル成長の面内バラツキに依
存しないことを特徴とするJ−FETを有する半導体装
置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a junction field effect transistor (hereinafter referred to as J-FET).
The present invention relates to a semiconductor device having a J-FET, and particularly to a semiconductor device having a J-FET characterized in that white variation in electrical characteristics does not depend on in-plane variation in epitaxial growth.

〔従来の技術〕[Conventional technology]

従来、例えばこの種のNチャネルJ−FETは第4図の
断面図に示すような内部構造を有し、その電気特性を、
P型の下部ゲート領域(基板)11とP型の上部ゲート
領域14との間に介在するN型エピタキシャル層(チャ
ネル層)12の上下のゲート領域11・14間の距離、
すなわち、チャネル幅dによりコントロールしていた。
Conventionally, for example, this type of N-channel J-FET has an internal structure as shown in the cross-sectional view of FIG.
The distance between the upper and lower gate regions 11 and 14 of the N-type epitaxial layer (channel layer) 12 interposed between the P-type lower gate region (substrate) 11 and the P-type upper gate region 14,
That is, it was controlled by the channel width d.

このような電気特性のコントロール方法によると、ウェ
ハー面内のエピタキシャル層12のバラツキが、その製
品のウェハーの電気特性のバラツキとなって現われる。
According to such a method of controlling electrical characteristics, variations in the epitaxial layer 12 within the plane of the wafer appear as variations in the electrical properties of the wafer of the product.

なお、第4図において、15はN′″ソース領域、16
はN1ドレイン領域である。
In FIG. 4, 15 is an N'' source region, and 16 is an N'' source region.
is the N1 drain region.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来のJ−FETをもつ半導体装置では、エピ
タキシャル成長により形成されたチャネル領域の厚さお
よび抵抗率に±lθ%程度のバラツキが生じるのを避け
ることは難かしい。その厚さのバラツキは、チャネル幅
のバラツキとなり、また抵抗率のバラツキは不純物濃度
のバラツキによって生じるものであり、このバラツキの
ため電気的特性が不安定になるという不都合がある。こ
の傾向はウェハーを大きくすると強まるため、J−FE
Tの大口径化を困難にしている。
In the semiconductor device having the above-described conventional J-FET, it is difficult to avoid variations of approximately ±lθ% in the thickness and resistivity of the channel region formed by epitaxial growth. The variation in thickness results in variation in channel width, and the variation in resistivity is caused by variation in impurity concentration, and this variation causes the disadvantage that electrical characteristics become unstable. This tendency becomes stronger as the wafer becomes larger, so J-FE
This makes it difficult to increase the diameter of the T.

次にチャネル領域のバラツキが電気的特性に与える影響
を理論式から考える。
Next, we will consider the influence of variations in the channel region on the electrical characteristics using theoretical formulas.

NDはドナー不純物濃度、dはチャネル長、Wはゲート
幅、     Lはゲート長、従来のJ−FETでは、
第5図(a)の断面略図および同図(b)のゲートパタ
ーン図に示すようなゲート幅Wおよびゲート長りは設計
時にマスク上で決定されるパラメータであるが、しかし
、電気的特性はエピタキシャル層の厚さおよび抵抗率に
よって左右されてしまい、チャネル幅d、ドナー不M物
濃度NDはエピタキシャルの特性に大きく依存している
のである。
ND is the donor impurity concentration, d is the channel length, W is the gate width, L is the gate length, and in the conventional J-FET,
The gate width W and gate length as shown in the schematic cross-sectional view of FIG. 5(a) and the gate pattern diagram of FIG. 5(b) are parameters determined on the mask at the time of design, but the electrical characteristics This depends on the thickness and resistivity of the epitaxial layer, and the channel width d and donor impurity concentration ND greatly depend on the epitaxial characteristics.

〔課題を解決するための手段〕[Means to solve the problem]

本発明では、チャネル幅d、ゲート幅Wを、設計時のマ
スク上で決定されるようにし、また、ゲート長りは埋込
み拡散で決められるようにして、これらがエピタキシャ
ルの特性で影響されないようにしている。そのために、
本発明では、第3図(a)の断面略図および同図(b)
の埋込ゲートパターン図に示すように、一導電型基板の
上に形成した低濃度の一導電型エビタキシャル層EA中
に所定のチャネル幅の間隔dを隔てて相対した側面およ
びゲート@wおよびゲート長りをもつ横方向に延びたゲ
ート領域GAを埋込み、このゲート領域GAを間にした
上下のエピタキシャル層EAにソースとドレインを形成
している。
In the present invention, the channel width d and gate width W are determined on the mask at the time of design, and the gate length is determined by buried diffusion, so that these are not influenced by epitaxial characteristics. ing. for that,
In the present invention, the schematic cross-sectional view of FIG. 3(a) and the schematic cross-sectional view of FIG. 3(b)
As shown in the buried gate pattern diagram in FIG. A laterally extending gate region GA having a gate length is buried, and a source and a drain are formed in upper and lower epitaxial layers EA with this gate region GA in between.

〔実施例〕〔Example〕

つぎに本発明を実施例により説明する。 Next, the present invention will be explained by examples.

第1図は本発明の一実施例の断面図である。第1図にお
いて、1は一導電型、例えばN“の半導体基板、2は基
板1上に成長されたN型エピタキシャル層、3はゲート
領域となる反対導電型のP型埋込領域、2aは埋込領域
3を埋込んで形成されたN型エピタキシャル層、・3a
はP型埋込領域3を表面に接続するためのP型上部ゲー
ト領域、4はソース電極4aとのコンタクトをとるため
のN+ネオ−ック領域、5はゲート電極5aとのコンタ
クトをとるためのP′″オーミック領域である。
FIG. 1 is a sectional view of an embodiment of the present invention. In FIG. 1, 1 is a semiconductor substrate of one conductivity type, e.g. N-type epitaxial layer formed by burying the buried region 3, 3a
is a P-type upper gate region for connecting the P-type buried region 3 to the surface, 4 is an N+ neo-oc region for making contact with the source electrode 4a, and 5 is for making contact with the gate electrode 5a. P''' ohmic region.

而して、ソース電極4aと基板1に設けられたドレイン
電極りとの間の電流が、ゲート電極5aに加えられた制
御電圧により制御されるJ−FETを形成している。
Thus, a J-FET is formed in which the current between the source electrode 4a and the drain electrode provided on the substrate 1 is controlled by the control voltage applied to the gate electrode 5a.

第2図(a:l〜(e)は、第1図に示すJ−FETを
製造する場合の製造方法について説明するための工程順
の断面図である。まず第2図(a)において、N+半導
体基板1の上にN型エピタキシャル層2が形成され、エ
ピタキシャル層2の上に、同図(b)のように、埋込み
のゲート領域となるところの、チャネル幅を与える間隔
をおいて相対する内側面を有するP型拡散領域3を形成
する。つぎに同図(c)のように、さらに、P型ゲート
領域3を内部に埋込むN型エピタキシャル層2aを成長
させる。つぎに同図(d)のように、ブレーナ技術によ
りP型不純物の選択拡散により、P型埋込層3を上面に
接続するためのP型上面ゲート領域3aを形成する。つ
ぎに同図(e)のように、表面電極をとるためのN+オ
ーミック層4とP+オーミック層5を形成し、さらに絶
縁膜6を形成し、絶縁膜6に窓をあけN”オーミック層
4に接続するソース電極4aと、P”オーミック層5と
接続するゲート電極5aを形威し、基板1をドレインと
するJ−FETができ上る。
FIGS. 2(a) to (e) are cross-sectional views in the order of steps for explaining the manufacturing method for manufacturing the J-FET shown in FIG. 1. First, in FIG. 2(a), An N-type epitaxial layer 2 is formed on an N+ semiconductor substrate 1, and as shown in FIG. A P-type diffusion region 3 having an inner side surface is formed.Next, as shown in FIG. As shown in (d), a P-type top gate region 3a for connecting the P-type buried layer 3 to the top surface is formed by selectively diffusing P-type impurities using the Brainer technique.Next, as shown in FIG. Then, an N+ ohmic layer 4 and a P+ ohmic layer 5 are formed for forming a surface electrode, and an insulating film 6 is formed.A window is formed in the insulating film 6 to form a source electrode 4a connected to the N" ohmic layer 4, and a P+ ohmic layer 4. ``A J-FET is completed in which the gate electrode 5a connected to the ohmic layer 5 is formed and the substrate 1 is used as the drain.

なお上側は、一導電型をN型とし、反対導電型をP型と
したNチャネルJ−FETについて説明したが、一導電
型をP型、反対導電型をN型とした同様構成のPチャネ
ルJ−FETについても本発明が同様に適用されるのは
いうまでもねい。
In addition, although the above example describes an N-channel J-FET in which one conductivity type is N type and the opposite conductivity type is P type, it is also possible to use a P channel with a similar configuration in which one conductivity type is P type and the opposite conductivity type is N type. It goes without saying that the present invention is similarly applicable to J-FETs.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、エピタキシャル成長の厚
さの影響を無視できるようにすることにより、電気的特
性の面内バラツキの低減が拡散精度の向上によって望め
、これにともなって、ウェハーの大口径化も図れる効果
がある。
As explained above, the present invention makes it possible to ignore the influence of epitaxial growth thickness, thereby reducing in-plane variations in electrical characteristics by improving diffusion accuracy. It also has the effect of increasing the number of people.

P型埋込ゲート領域、4・・・・・・N+ネオ−ック領
域、4a・・・・・・ソース電極、5・・・・・・P+
オーミック領域、5a・・・・・・ゲート電極、6・・
・・・・絶縁膜、d・・・・・・チャネル幅、L・・・
・・・ゲート長、W・・・・・・ゲート幅。
P-type buried gate region, 4...N+ neo-oc region, 4a...source electrode, 5...P+
Ohmic region, 5a...gate electrode, 6...
...Insulating film, d...Channel width, L...
...Gate length, W...Gate width.

Claims (1)

【特許請求の範囲】[Claims] 所定のチャネル幅の間隔を隔てて相対する内側面と所定
のゲート長に対応する厚さを有する横方向に拡がる反対
導電型のゲート領域を押込んだ一導電型のエピタキシャ
ル層を一導電型基板上に形成し、前記エピタキシャル層
の上面から前記反対導電型ゲート領域に達する反対導電
型の上部ゲート領域を形成し、この上部ゲート領域に囲
まれた前記一導電型エピタキシャル層からソース電極を
、前記反対導電型上部ゲート領域からゲート電極を引出
し、前記一導電型基板からドレイン電極を引出してなる
接合型電界効果トランジスタを含むことを特徴とする半
導体装置。
An epitaxial layer of one conductivity type in which gate regions of opposite conductivity types extending laterally and having a thickness corresponding to a predetermined gate length and opposing inner surfaces separated by a predetermined channel width are pressed into a substrate of one conductivity type. forming an upper gate region of an opposite conductivity type extending from the upper surface of the epitaxial layer to the gate region of the opposite conductivity type; 1. A semiconductor device comprising a junction field effect transistor having a gate electrode extending from an upper gate region of an opposite conductivity type and a drain electrode extending from the substrate of one conductivity type.
JP34288689A 1989-12-29 1989-12-29 Semiconductor device Pending JPH03203335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34288689A JPH03203335A (en) 1989-12-29 1989-12-29 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34288689A JPH03203335A (en) 1989-12-29 1989-12-29 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH03203335A true JPH03203335A (en) 1991-09-05

Family

ID=18357274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34288689A Pending JPH03203335A (en) 1989-12-29 1989-12-29 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH03203335A (en)

Similar Documents

Publication Publication Date Title
US3293087A (en) Method of making isolated epitaxial field-effect device
KR920005513B1 (en) Semiconductor device having a structure which makes parasitic transistor hard to operate and its manufacturing method
KR930024156A (en) Semiconductor device and manufacturing method thereof
KR970054334A (en) Thin film transistor and its manufacturing method
JPH08227900A (en) Semiconductor device
JPH05299658A (en) Semiconductor device and manufacture thereof
JPS58192359A (en) Semiconductor device
JPH03203335A (en) Semiconductor device
JPH025485A (en) Semiconductor device
JPH01202870A (en) Field-effect transistor
JPS61161761A (en) Semiconductor device
JPH04127574A (en) Vertical type insulated-gate field-effect transistor
JPS60107866A (en) Semiconductor device
JPS6351677A (en) Semiconductor device provided with junction-type effect transistor
JP2710356B2 (en) Semiconductor device
JPS5843911B2 (en) hand-held construction
JPS6279673A (en) Field effect transistor
KR900008818B1 (en) Manufacture method of a particle in bipolar integrated circuit
JPS6185863A (en) Semiconductor integrated circuit device
JPH01302771A (en) Field effect transistor
JPH04112564A (en) Semiconductor device
JPS61210672A (en) Semiconductor device
JPS583391B2 (en) The power of transistors is high.
JPS6177373A (en) Manufacture of semiconductor device
JPH02228066A (en) Semiconductor device