JPH03200923A - Optical modulator - Google Patents

Optical modulator

Info

Publication number
JPH03200923A
JPH03200923A JP34407489A JP34407489A JPH03200923A JP H03200923 A JPH03200923 A JP H03200923A JP 34407489 A JP34407489 A JP 34407489A JP 34407489 A JP34407489 A JP 34407489A JP H03200923 A JPH03200923 A JP H03200923A
Authority
JP
Japan
Prior art keywords
optical
signal
modulation
period
cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34407489A
Other languages
Japanese (ja)
Other versions
JP2890585B2 (en
Inventor
Minoru Kiyono
實 清野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1344074A priority Critical patent/JP2890585B2/en
Publication of JPH03200923A publication Critical patent/JPH03200923A/en
Application granted granted Critical
Publication of JP2890585B2 publication Critical patent/JP2890585B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • G02F1/0356Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure controlled by a high-frequency electromagnetic wave component in an electric waveguide structure

Abstract

PURPOSE:To eliminate an obstacle to the band expansion of an external optical modulator by applying a 1st and a 2nd signal electrode with different electric pulse signals for modulation which are equal in cycle and a half-cycle out of phase with each other, guiding projection light out as a modulated light pulse output, and demodulating it into an electric pulse signal. CONSTITUTION:The 1st signal electrode 3a and 2nd signal electrode 3b formed on branch optical waveguides 2a and 2b are applied with the electric pulse signals A and B for modulation with have the same cycle t1 and are out of phase by a half-cycle with each other. The light beams of both the branch optical waveguides 2a and 2b are multiplexed and the intensity-modulated light pulse output is projected from the light output end of the optical waveguide so that its cycle t0 is equal to a cycle t1/2 a half as long as the cycle t1 of the electric pulse signals A and B for modulation. Consequently, the optical modulation with a double high bit rate is made possible with use of a low-bit- rate electric signal for modulation and the range of the optical modulator 1 for a high-frequency and long-distance optical communication can be expanded.

Description

【発明の詳細な説明】 〔概要〕 光変調器に関し、 高速駆動の外部光変調器において、低ビツトレートの変
調用電気信号から高ビットレートの変調光信号を得るこ
とを目的とし、 電気光学効果を有する基板上に、第1および第2の分岐
光導波路を有する光導波路を設け、前記第1の分岐光導
波路と第2の分岐光導波路の中を伝送される光の間に位
相差を生じさせるように、前記第1および第2の分岐光
導波路にそれぞれ第1の信号電極および第1の接地電極
と第2の信号電極および第2の接地電極とを対称電極配
置において配設したマツハツエンダ型光変調器において
、前記第1の信号電極と第2の信号電極に、周期(t、
)が等しく位相が半周期ずれた別々の変調用電気パルス
信号(AおよびB)をそれぞれ印加して、前記光導波路
の光出射端から出射する光を、前記変調用電気パルス信
号(AおよびB)の周期(1+)の半分の周期(t0)
の強度変調された変調光パルス出力として取り出して、
そのま\の、あるいは、元の周期の電気パルス信号とし
て復調するように光変調器を構成する。
[Detailed Description of the Invention] [Summary] Regarding an optical modulator, the purpose is to obtain a high bit rate modulated optical signal from a low bit rate modulation electric signal in a high-speed drive external optical modulator, and to improve the electro-optic effect. An optical waveguide having first and second branched optical waveguides is provided on a substrate having a substrate, and a phase difference is generated between light transmitted through the first branched optical waveguide and the second branched optical waveguide. In the Matsuha Tsuender type optical waveguide, a first signal electrode, a first ground electrode, a second signal electrode, and a second ground electrode are respectively disposed in the first and second branch optical waveguides in a symmetrical electrode arrangement. In the modulator, the first signal electrode and the second signal electrode have a period (t,
) and whose phases are shifted by half a cycle are respectively applied, and the light emitted from the light output end of the optical waveguide is controlled by the modulation electric pulse signals (A and B). ) half the period (1+) of period (t0)
Extract it as an intensity-modulated modulated optical pulse output,
The optical modulator is configured to demodulate the signal as it is or as an electrical pulse signal with the original period.

〔産業上の利用分野〕[Industrial application field]

本発明は、高ビットレートで光変調を行うための光変調
器の構成と駆動方法に関する。
The present invention relates to the configuration and driving method of an optical modulator for performing optical modulation at a high bit rate.

最近の光通信システムの光送信系において、たとえば、
1.6GHz程度までの光通信システムにおいては、レ
ーザダイオード(LD)を直接変調する方式を用いてき
たが、変調周波数がより高くなると、変調光波長の時間
的微小変動、いわゆる、チャーピング現象が起こり高速
化と長距離通信への限界となる。
In the optical transmission system of recent optical communication systems, for example,
In optical communication systems up to about 1.6 GHz, a method of directly modulating a laser diode (LD) has been used, but as the modulation frequency becomes higher, small temporal fluctuations in the modulated light wavelength, the so-called chirping phenomenon, occur. This creates a limit to high-speed and long-distance communications.

また、変調用の電気信号を得るための駆動回路の高ビツ
トレート化は、光の変調技術に比較して遅れており、低
ビツトレートの電気信号を用いてより高いビットレート
の変調光信号を得る技術の開発が求められている。
Furthermore, the development of higher bit rates for drive circuits to obtain electrical signals for modulation has lagged behind optical modulation technology, and technology that uses low bit rate electrical signals to obtain higher bit rate modulated optical signals has been developed. development is required.

〔従来の技術〕[Conventional technology]

高速光変調方式としては、半導体レーザ光を外部で変調
する外部変調方式がよく知られている。
As a high-speed optical modulation method, an external modulation method in which semiconductor laser light is modulated externally is well known.

とくに、電気光学効果を有する基板上に分岐光導波路を
設け、進行波電極を用いて駆動するマツハツエンダ型光
変調器が有力視されている。
In particular, a Matsuhatsu Enda type optical modulator, which is driven using a traveling wave electrode and has a branched optical waveguide provided on a substrate having an electro-optic effect, is considered to be a promising option.

第4図は従来のマツハツエンダ型外部光変調器の構成例
を示す図で、同図(イ)は上面図で主として基板上の電
極、導波路配置を示し、同図(ロ)は同図(イ)のY−
Y’断面図である。
FIG. 4 is a diagram showing an example of the configuration of a conventional Matsuhatsu Enda type external optical modulator. FIG. B) Y-
It is a Y' sectional view.

図中、lOは電気光学効果を有する基板、2は光導波路
で中間に分岐光導波路2a、 2bが形成されている。
In the figure, IO is a substrate having an electro-optic effect, 2 is an optical waveguide, and branch optical waveguides 2a and 2b are formed in the middle.

この先導波路は通常基板の表面にTiなどの金属を、先
導波路部分だけに選択的に拡散させ、その部分の屈折率
を回りの部分よりも少し大きくなるようにしである。3
0は信号電極で、たとえば進行波信号電極、40は接地
電極である。7は光導波路上の金属電極層への光の吸収
を小さくするためのバッファ層で、通常、SiO□なと
の薄膜が用いられている。
This guiding wavepath is usually made by selectively diffusing a metal such as Ti on the surface of the substrate only to the leading waveguide part, so that the refractive index of that part is slightly larger than that of the surrounding parts. 3
0 is a signal electrode, for example a traveling wave signal electrode, and 40 is a ground electrode. Reference numeral 7 denotes a buffer layer for reducing the absorption of light into the metal electrode layer on the optical waveguide, and a thin film of SiO□ is usually used.

信号電極30と接地電極40は、バッファ層7を介して
光導波路上に、Auなとの金属を蒸着あるいはめっきに
よって形成している。
The signal electrode 30 and the ground electrode 40 are formed on the optical waveguide via the buffer layer 7 by vapor deposition or plating of a metal such as Au.

いま、半導体レーザ5からの直流光が左側の光導波路2
から入り、分岐光導波路2a、 2bで2つに分けられ
、そこを通過する間に、信号電極30に高周波変調信号
電圧を印加すると、基板上に設けられた前記分岐光導波
路2a、 2bにおける電気光学効果によって分岐され
た両光に位相差が生じる。この両光を再び合波点21で
合流させて右側の光導波路2の光出射端から変調された
光信号出力を取り出し、光検知器6で受光して電気信号
に変換するように構成されている。なお、RTは終端抵
抗である。
Now, the DC light from the semiconductor laser 5 is directed to the left optical waveguide 2.
When a high frequency modulated signal voltage is applied to the signal electrode 30 while passing through the branched optical waveguides 2a and 2b, the electricity in the branched optical waveguides 2a and 2b provided on the substrate increases. A phase difference occurs between the two split lights due to optical effects. The two lights are combined again at a combining point 21, a modulated optical signal output is taken out from the light output end of the right optical waveguide 2, and the light is received by a photodetector 6 and converted into an electric signal. There is. Note that RT is a terminating resistor.

第5図は従来の外部光変調器の動作特性を示す図で、同
図(イ)は変調特性、同図(ロ)は駆動電圧波形、同図
(ハ)は光出力波形である。
FIG. 5 is a diagram showing the operating characteristics of a conventional external optical modulator, in which (a) shows the modulation characteristics, (b) the driving voltage waveform, and (c) the optical output waveform.

すなわち、前記分岐光導波路2a、 2bにおける両光
の位相差がOおよびπになるように駆動電圧(Oおよび
Vπ)を印加すれば、光信号出力は0N−OFFのパル
ス信号として得られるのである。
That is, if driving voltages (O and Vπ) are applied so that the phase difference between the two lights in the branched optical waveguides 2a and 2b becomes O and π, the optical signal output can be obtained as an ON-OFF pulse signal. .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記従来例の光変調器においては、変調信号光
のビットレートは変調用の電気信号のビットレートと対
応しているので、変調光の帯域を広げるには変調用電気
信号の高周波化が必要となる。現在、光通信における変
調器用ドライバ回路に実用化されている。たとえば、5
vレベルのドライバICは未だ2.4Gb/s程度が限
界であり、外部光変調器の帯域の拡大を阻害する重大な
問題となっており、その解決が求められていた。
However, in the conventional optical modulator described above, the bit rate of the modulated signal light corresponds to the bit rate of the electrical signal for modulation, so in order to widen the band of the modulated light, it is necessary to increase the frequency of the electrical signal for modulation. It becomes necessary. Currently, it is being put into practical use in driver circuits for modulators in optical communications. For example, 5
The V-level driver IC still has a limit of about 2.4 Gb/s, which is a serious problem that hinders the expansion of the band of an external optical modulator, and a solution has been sought.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題は、電気光学効果を有する基板IO上に、第
1および第2の分岐光導波路2a、 2bを有する光導
波路2を設け、前記第1の分岐光導波路2aと第2.の
分岐光導波路2bの中を伝送される光の間に位相差を生
じさせるように、前記第1および第2の分岐光導波路2
a、 2bにそれぞれ第1の信号電極3aおよび第1の
接地電極4aと第2の信号電極3bおよび第2の接地電
極4bとを対称電極配置において配設したマツハツエン
ダ型光変調器において、前記第1の信号電極3aと第2
の信号電極3bに、周期(t1)が等しく位相が半周期
ずれた別々の変調用電気パルス信号(AおよびB)をそ
れぞれ印加して、前記光導波路2の光出射端から出射す
る光を前記変調用電気パルス信号(AおよびB)の周期
(t1)の半分の周期(t0)の強度変調された変調光
パルス出力として取り出して、そのま\の、あるいは、
元の周期の電気パルス信号として復調するように光変調
器を構成することによって解決することができる。
The above problem is solved by providing an optical waveguide 2 having first and second branched optical waveguides 2a and 2b on a substrate IO having an electro-optic effect, and providing the first branched optical waveguide 2a and the second branched optical waveguide 2b. said first and second branched optical waveguides 2b so as to create a phase difference between the light transmitted through said branched optical waveguides 2b.
In the Matsuhatsu Enda type optical modulator in which a first signal electrode 3a, a first ground electrode 4a, a second signal electrode 3b, and a second ground electrode 4b are arranged in a symmetrical electrode arrangement at the electrodes a and 2b, respectively, The first signal electrode 3a and the second signal electrode 3a
Separate modulating electric pulse signals (A and B) having the same period (t1) and a phase shift of half a period are applied to the signal electrodes 3b of It is extracted as an intensity-modulated modulated optical pulse output with a period (t0) that is half the period (t1) of the modulating electric pulse signals (A and B), and output as is, or
This can be solved by configuring the optical modulator to demodulate the original periodic electrical pulse signal.

〔作用〕[Effect]

本発明の構成によれば、対称電極配置されたマツハツエ
ンダ型光変調器の第1および第2の分岐光導波路2a、
 2bのそれぞれの上に形成された第1の信号電極3a
と第2の信号電極3bに、周期(1+)が等しく位相が
半周期ずれた別々の変調用電気パルス信号(AおよびB
)をそれぞれ印加して、両分岐光導波路2a、 2bの
光を合流させると、光導波路2の光出射端から出射する
強度変調された光パルスの周期(t0)は、前記変調用
電気パルス信号(AおよびB)の周期(t1)の半分の
周期(1+/2)の変調光パルス出力として取り出すこ
とができるので、低ビツトレートの変調用電気信号で2
倍の高ビットレートの光変調が可能となる。
According to the configuration of the present invention, the first and second branch optical waveguides 2a of the Matsuhatsu Enda type optical modulator with symmetrical electrode arrangement,
The first signal electrode 3a formed on each of the electrodes 2b
and the second signal electrode 3b, separate modulating electric pulse signals (A and B
) is applied to merge the lights of both branched optical waveguides 2a and 2b, the period (t0) of the intensity-modulated optical pulse emitted from the light output end of the optical waveguide 2 is equal to the modulation electric pulse signal. Since it can be extracted as a modulated optical pulse output with a period (1+/2) that is half the period (t1) of (A and B), 2
Optical modulation with a double high bit rate becomes possible.

〔実施例〕〔Example〕

第1図は本発明による基本的な装置構成例を示す図で、
図中、lは対称電極配置されたマツハツエンダ型の光変
調器、5は光源、たとえば、半導体レーザ(LD)、9
は光ファイバ、6は光検知器(DET)である。8aは
第1の変調用駆動回路、8bは第2の変調用駆動回路で
、第1および第2の分岐光導波路のそれぞれの上に形成
された第1の信号電極と第2の信号電極に、周期(t1
)が等しく位相が半周期ずれた別々の変調用電気パルス
信号(AおよびB)をそれぞれ印加するようにしである
FIG. 1 is a diagram showing an example of a basic device configuration according to the present invention.
In the figure, l is a Matsuhatsu Enda type optical modulator with symmetrical electrode arrangement, 5 is a light source, for example, a semiconductor laser (LD), 9
is an optical fiber, and 6 is a photodetector (DET). 8a is a first modulation drive circuit, and 8b is a second modulation drive circuit, which connects the first signal electrode and second signal electrode formed on each of the first and second branched optical waveguides. , period (t1
) and whose phases are shifted by half a cycle are respectively applied.

光変調器lの光出射端からは、強度変調された光パルス
の周期(t0)が前記変調用電気パルス信号(Aおよび
B)の周期(t、)の半分の周期(tI/2)の変調光
パルス出力(C0)として光ファイバ9に導入され、光
検知器6により復調された電気信号が得られるように構
成されている。
From the light output end of the optical modulator l, the period (t0) of the intensity-modulated optical pulse is half the period (tI/2) of the period (t,) of the modulation electric pulse signal (A and B). It is configured to be introduced into the optical fiber 9 as a modulated light pulse output (C0) and to obtain an electrical signal demodulated by the photodetector 6.

第2図は本発明の実施例素子を示す上面図で、図示した
ごとく対称電極配置の構成になるものである。
FIG. 2 is a top view showing an example device of the present invention, which has a symmetrical electrode arrangement as shown.

なお、前記の諸図面で説明したものと同等の部分につい
ては同一符号を付し、かつ、同等部分についての説明は
省略する。
Note that the same reference numerals are given to the same parts as those explained in the above drawings, and the explanation of the same parts will be omitted.

基板IOには大きさ60mmX3 mm、厚さ1mmの
LiNb0+の2板の表面を鏡面研磨して使用した。
As the substrate IO, two LiNb0+ plates having a size of 60 mm x 3 mm and a thickness of 1 mm were mirror polished and used.

この基板の上にTiを約1100nの厚さに真空蒸着し
、分岐光導波路2aおよび2bを含む光導波路2に相当
する部分にTiが残るように通常のホトエツチング法で
処理したのち、約1050’c、酸素中でIO時間加熱
しTiをLiNbO5中に熱拡散して深さ約5μmの分
岐光導波路2aおよび2bを含む光導波路2を形成した
On this substrate, Ti was vacuum-deposited to a thickness of about 1100 nm, and treated by a normal photoetching method so that Ti remained in the portion corresponding to the optical waveguide 2 including the branched optical waveguides 2a and 2b. c. Ti was thermally diffused into LiNbO5 by heating in oxygen for IO hours to form an optical waveguide 2 including branched optical waveguides 2a and 2b with a depth of about 5 μm.

分岐光導波路部分の長さは40m m 、光導波路の幅
は全て7μmになるように調整した。分岐光導波路2a
および2bの間隔は約1mmとした。
The length of the branched optical waveguide portion was adjusted to 40 mm, and the widths of all optical waveguides were adjusted to 7 μm. Branch optical waveguide 2a
The spacing between and 2b was approximately 1 mm.

次いで、バッファ層7としてSiO□を500nmの厚
さにスパッタ法で形成した。
Next, SiO□ was formed as a buffer layer 7 to a thickness of 500 nm by sputtering.

第1の信号電極3aおよび第2の信号電極3bはTi−
Au合金膜を蒸着したのち、分岐光導波路2aおよび2
bの上に幅9μmの電極形状にパターンエツチングし、
さらに、その上に厚さ8μmのAuをめっきにより付着
形成した。第1の接地電極4aと第2の接地電極4bは
信号電極と同様のプロセスで信号電極形成と同時形成し
た。接地電極と信号電極の間隔はそれぞれ20μmとし
接地電極はできるだけ大きくなるように設計した。なお
、RTは終端抵抗である。
The first signal electrode 3a and the second signal electrode 3b are Ti-
After depositing the Au alloy film, branch optical waveguides 2a and 2
A pattern is etched onto b into an electrode shape with a width of 9 μm,
Furthermore, Au with a thickness of 8 μm was deposited thereon by plating. The first ground electrode 4a and the second ground electrode 4b were formed at the same time as the signal electrode by the same process as the signal electrode. The distance between the ground electrode and the signal electrode was 20 μm each, and the ground electrode was designed to be as large as possible. Note that RT is a terminating resistor.

いま、第1の信号電極3aと第2の信号電極3bに、周
期(tI)が等しく位相が半周期ずれた別々の変調用電
気パルス信号(A、たとえば、ottoolおよびB、
たとえば、010110)をそれぞれ印加すると、光変
調器lの光出射端からは、強度変調された光パルスの周
期が前記変調用電気パルス信号(AおよびB)の周期の
半分の周期(tI/2)の、すなわち、2倍のビットレ
ートの変調光パルス出力(C′、たとえば、10110
10001)が得られる。
Now, the first signal electrode 3a and the second signal electrode 3b are supplied with different modulating electric pulse signals (A, for example, ottool and B,
For example, when 010110) is applied, from the light output end of the optical modulator l, the period of the intensity-modulated optical pulse is half the period of the modulation electric pulse signal (A and B) (tI/2 ), that is, the modulated optical pulse output (C', for example, 10110
10001) is obtained.

第3図は本発明実施例の動作状態を説明する図で、同図
(イ)は変調特性を、同図(ロ)〜(チ)は本発明の動
作を分かり易く一例として示したものである。
FIG. 3 is a diagram explaining the operating state of the embodiment of the present invention, in which (a) shows the modulation characteristics, and (b) to (h) show an example of the operation of the present invention for easy understanding. be.

すなわち、同図(イ)の変調特性から、同図(ロ)に示
したごとき直流光が先導波路2の光入射端から入射した
時、両分岐導波路のパルス信号入力端に印加される信号
レベルがVπと0のごとく異なる場合は位相差φ2m−
2b=Fπとなり、したがって、光出力は0となり、一
方、両分岐導波路のパルス信号入力端に印加される信号
レベルがOと0.または、VπとVπのごとく同一の場
合は位相差φ2m−2b−〇となり、したがって、光出
力はlとなる。
In other words, from the modulation characteristics shown in Figure (A), when DC light as shown in Figure (B) enters from the light input end of the leading waveguide 2, the signal applied to the pulse signal input ends of both branch waveguides. If the level is different from Vπ such as 0, the phase difference φ2m−
2b=Fπ, so the optical output becomes 0, and on the other hand, the signal levels applied to the pulse signal input ends of both branch waveguides become O and 0. Alternatively, when Vπ and Vπ are the same, the phase difference is φ2m-2b-0, and therefore the optical output is l.

そこで、いま、同図(ハ)および(ニ)に示したような
、周期がいずれもhで位相が、たとえば、t1/2だけ
ずれた2つのランダムパルス信号AおよびBを印加する
と、上述の関係から下記の表のごとき論理式が成立する
Therefore, if we apply two random pulse signals A and B, both of which have a period of h and whose phases are shifted by, for example, t1/2, as shown in (c) and (d) of the same figure, the above-mentioned result will occur. From the relationship, a logical formula as shown in the table below is established.

したがって、分岐光導波路2aおよび2bのそれぞれで
位相変調された光を合波点21で合流して外部へ取り出
すと、同図(ホ)に示したごとく周期t。
Therefore, when the lights phase-modulated in each of the branched optical waveguides 2a and 2b are combined at the combining point 21 and taken out to the outside, the period is t as shown in FIG.

=t、/2の強度変調された変調光パルス出力C°が得
られる。
A modulated light pulse output C° with intensity modulation of =t,/2 is obtained.

この変調光パルス出力C′を光検知器6で受光して、そ
のま\電気信号に復調すれば同図(へ)に示したごとき
周期t。=1.72の、すなわち、元の変調用電気パル
ス信号AおよびBの2倍のビットレートの復調電気パル
ス信号Cが得られる。
If this modulated light pulse output C' is received by the photodetector 6 and demodulated directly into an electrical signal, the period t shown in FIG. = 1.72, that is, a demodulated electrical pulse signal C having a bit rate twice that of the original modulating electrical pulse signals A and B is obtained.

一方、変調光パルス出力C°を前記第1表の論理式を用
いて逆の処理を行えば、同図(ト)および(チ)に示し
たごとく、元の変調用電気パルス信号と全く同一の復調
電気パルス信号AおよびBが分離して得られる。
On the other hand, if the modulated optical pulse output C° is reversely processed using the logical formula in Table 1 above, it will be exactly the same as the original modulating electrical pulse signal, as shown in (G) and (H) of the same figure. demodulated electrical pulse signals A and B are obtained separately.

以上述べた実施例は例を示したもので、本発明の趣旨に
添うものである限り、使用する素材やプロセス構成なと
適宜好ましいもの、あるいはその組み合わせを用いるこ
とができることは言うまでもない。
The embodiments described above are merely examples, and it goes without saying that preferred materials and process configurations can be used, or combinations thereof, as long as they comply with the spirit of the present invention.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の構成によれば、対称電極
配置されたマツハツエンダ型光変調器の第1および第2
の分岐光導波路2a、 2bのそれぞれの上に形成され
た第1の信号電極3aと第2の信号電極3bに、周期(
t1)が等しく位相か半周期ずれた別々の変調用電気パ
ルス信号(AおよびB)をそれぞれ印加して、両分眩光
導波路2a、 2bの光を合流させると、光導波路2の
光出射端から出射する強度変調された光パルスの周期(
t0)は、前記変調用電気パルス信号(AおよびB)の
周期(t1)の半分の周期(1+/2)の変調光パルス
出力として取り出すことができるので、低ビツトレート
の変調用電気信号で2倍の高ビットレートの光変調が可
能となり、高周波・長距離光通信用の光変調器の帯域の
拡大および機能の向上に寄与するところが極めて大きい
As explained above, according to the configuration of the present invention, the first and second optical modulators of the Matsuhatsu Enda type optical modulator have symmetrical electrode arrangement.
The first signal electrode 3a and second signal electrode 3b formed on each of the branched optical waveguides 2a and 2b have a period (
When separate electric pulse signals (A and B) for modulation with equal phase t1) and a half-cycle shift are applied respectively, and the lights of both dazzling optical waveguides 2a and 2b are combined, the light output end of the optical waveguide 2 The period of the intensity-modulated light pulse emitted from (
Since t0) can be extracted as a modulated optical pulse output with a period (1+/2) that is half the period (t1) of the modulating electrical pulse signals (A and B), 2. This makes it possible to perform optical modulation at twice the bit rate, which greatly contributes to expanding the bandwidth and improving the functionality of optical modulators for high-frequency, long-distance optical communications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による基本的な装置構成例を示す図、 第2図は本発明の実施例素子を示す上面図、第3図は本
発明実施例の動作状態を説明する図、第4図は従来のマ
ツハツエンダ型外部光変調器である。 図において、 lは光変調器、2は光導波路、 2aは第1の分岐光導波路、 2bは第2の分岐光導波路、 3aは第1の信号電極、3bは第2の信号電極、4aマ
第1の接地電極、4bは第2の接地電極、5は光源、6
は光検知器、7はバッファ層、8aは第1の変調用駆動
回路、 8bま第2の変調用駆動回路 9は光ファイバ、IOは基板である。 定出力 yc ’hL 電圧 /を発明に袴夕・1の動作状虹り説明73図第 3 辺 本た明によコ基木vJrl薮置構入イ列Σ木T圀第 1
 図 Y−Y’断面団 従来のタト部尤安縄器の動fiE杵)生1示す図第 5
 B
FIG. 1 is a diagram showing a basic device configuration example according to the present invention, FIG. 2 is a top view showing an example element of the present invention, FIG. 3 is a diagram explaining the operating state of the example of the present invention, and FIG. The figure shows a conventional Matsuhatsu Enda external optical modulator. In the figure, l is an optical modulator, 2 is an optical waveguide, 2a is a first branch optical waveguide, 2b is a second branch optical waveguide, 3a is a first signal electrode, 3b is a second signal electrode, and 4a is a matrix. 1st ground electrode, 4b is the 2nd ground electrode, 5 is the light source, 6
7 is a photodetector, 7 is a buffer layer, 8a is a first modulation drive circuit, 8b and 2nd modulation drive circuit 9 are optical fibers, and IO is a substrate. Constant output yc 'hL Voltage / Invented by Hakama Yu 1's operating state rainbow explanation Figure 3 Hemoto Taakiko base tree vJrl bush placement structure array Σ tree T area 1st
Figure Y-Y' cross-sectional diagram Diagram 5 showing the movement of the conventional Tatobe-Yanawa rope tool) Raw 1)
B

Claims (3)

【特許請求の範囲】[Claims] (1)電気光学効果を有する基板(10)上に、第1お
よび第2の分岐光導波路(2a、2b)を有する光導波
路(2)を設け、前記第1の分岐光導波路(2a)と第
2の分岐光導波路(2b)の中を伝送される光の間に位
相差を生じさせるように、前記第1および第2の分岐光
導波路(2a、2b)にそれぞれ第1の信号電極(3a
)および第1の接地電極(4a)と第2の信号電極(3
b)および第2の接地電極(4b)とを対称電極配置に
おいて配設したマッハツェンダ型光変調器において、 前記第1の信号電極(3a)と第2の信号電極(3b)
に、周期(t_1)が等しく位相が半周期ずれた別々の
変調用電気パルス信号(AおよびB)をそれぞれ印加し
て、前記光導波路(2)の光出射端から出射する光を、
前記変調用電気パルス信号(AおよびB)の周期(t_
1)の半分の周期(t_0)の強度変調された変調光パ
ルス出力として取り出すことを特徴とした光変調器。
(1) An optical waveguide (2) having first and second branched optical waveguides (2a, 2b) is provided on a substrate (10) having an electro-optic effect, and the first branched optical waveguide (2a) and A first signal electrode ( 3a
), the first ground electrode (4a) and the second signal electrode (3
b) and a second ground electrode (4b) arranged in a symmetrical electrode arrangement, the first signal electrode (3a) and the second signal electrode (3b)
Separate modulating electric pulse signals (A and B) having the same period (t_1) and a phase shift of half a period are applied to each of them, so that the light emitted from the light output end of the optical waveguide (2) is
The period (t_
1) An optical modulator that outputs an intensity-modulated modulated optical pulse output with a period (t_0) that is half of the period (t_0).
(2)請求項(1)記載の光変調器において、前記変調
光パルス出力をそのまゝの周期(t_0)の復調電気パ
ルス信号(C)として取り出すことを特徴とした光変調
器。
(2) The optical modulator according to claim 1, wherein the modulated optical pulse output is extracted as a demodulated electric pulse signal (C) with the same period (t_0).
(3)請求項(1)記載の光変調器において、前記変調
光パルス出力を元の変調用電気パルス信号(AおよびB
)と同一の電気パルス信号(AおよびB)に復調して取
り出すことを特徴とした光変調器。
(3) In the optical modulator according to claim (1), the modulated optical pulse output is converted into the original modulating electric pulse signal (A and B).
). An optical modulator that demodulates and extracts the same electrical pulse signals (A and B).
JP1344074A 1989-12-28 1989-12-28 Light modulator Expired - Fee Related JP2890585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1344074A JP2890585B2 (en) 1989-12-28 1989-12-28 Light modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1344074A JP2890585B2 (en) 1989-12-28 1989-12-28 Light modulator

Publications (2)

Publication Number Publication Date
JPH03200923A true JPH03200923A (en) 1991-09-02
JP2890585B2 JP2890585B2 (en) 1999-05-17

Family

ID=18366458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1344074A Expired - Fee Related JP2890585B2 (en) 1989-12-28 1989-12-28 Light modulator

Country Status (1)

Country Link
JP (1) JP2890585B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05302976A (en) * 1992-04-24 1993-11-16 Agency Of Ind Science & Technol Distance measuring apparatus
EP0599552A1 (en) * 1992-11-24 1994-06-01 AT&T Corp. Electro-optical method and apparatus
WO2002001725A1 (en) * 2000-06-26 2002-01-03 Fujitsu Limited Optical transmitter and code converting circuit used therefor
US6606424B2 (en) 1999-03-01 2003-08-12 Fujitsu Limited Apparatus and method for optical modulation and demodulation
JP2009267934A (en) * 2008-04-28 2009-11-12 Mitsubishi Electric Corp Optical transmitter

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05302976A (en) * 1992-04-24 1993-11-16 Agency Of Ind Science & Technol Distance measuring apparatus
EP0599552A1 (en) * 1992-11-24 1994-06-01 AT&T Corp. Electro-optical method and apparatus
US6606424B2 (en) 1999-03-01 2003-08-12 Fujitsu Limited Apparatus and method for optical modulation and demodulation
WO2002001725A1 (en) * 2000-06-26 2002-01-03 Fujitsu Limited Optical transmitter and code converting circuit used therefor
GB2379590A (en) * 2000-06-26 2003-03-12 Fujitsu Ltd Optical transmitter and code converting circuit used therefor
GB2379590B (en) * 2000-06-26 2004-04-14 Fujitsu Ltd Optical transmitter and code converting circuit used therefor
US6756926B2 (en) 2000-06-26 2004-06-29 Fujitsu Limited Optical transmitter and code conversion circuit used therefor
JP2009267934A (en) * 2008-04-28 2009-11-12 Mitsubishi Electric Corp Optical transmitter

Also Published As

Publication number Publication date
JP2890585B2 (en) 1999-05-17

Similar Documents

Publication Publication Date Title
US5953466A (en) Optical modulator
US5917642A (en) Optical modulator
JP2800368B2 (en) Light modulator
US5963357A (en) Optical modulator
JP2738078B2 (en) Light modulator
JP3570735B2 (en) Optical waveguide device
JP2780400B2 (en) Light modulator
JPH03200923A (en) Optical modulator
JPH0414010A (en) Optical modulator
JPH0429113A (en) Optical modulator
JP2000187191A (en) Mach-zehnder type modulating device having extremely high extinction ratio
JPH04217226A (en) Manufacture of light guide path type device
JP2738097B2 (en) Multiplexed light modulator
JPH0593891A (en) Waveguide type optical modulator and its driving method
JP2565002B2 (en) Signal electrode for optical waveguide device and method of forming the same
JP3020645B2 (en) Optical semiconductor device
JP2621684B2 (en) Operating point control method for optical modulator
JP2001147409A (en) Optical signal processor
JP2564999B2 (en) Light modulator
JPH02170142A (en) Waveguide type optical control device and driving method thereof
US6370283B1 (en) Electro-optic modulator for generating solitons
JP2725341B2 (en) Light modulator
JP2870071B2 (en) Light modulator
JP2817295B2 (en) Light modulator
JP2734708B2 (en) Light modulator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees