JPH0429113A - Optical modulator - Google Patents

Optical modulator

Info

Publication number
JPH0429113A
JPH0429113A JP13441790A JP13441790A JPH0429113A JP H0429113 A JPH0429113 A JP H0429113A JP 13441790 A JP13441790 A JP 13441790A JP 13441790 A JP13441790 A JP 13441790A JP H0429113 A JPH0429113 A JP H0429113A
Authority
JP
Japan
Prior art keywords
heating
optical waveguides
electrodes
optical
operating point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13441790A
Other languages
Japanese (ja)
Inventor
Masaharu Doi
正治 土居
Naoyuki Mekada
直之 女鹿田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP13441790A priority Critical patent/JPH0429113A/en
Publication of JPH0429113A publication Critical patent/JPH0429113A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/21Thermal instability, i.e. DC drift, of an optical modulator; Arrangements or methods for the reduction thereof

Abstract

PURPOSE:To control variation in operation point without generating a DC drift by controlling a current supplied to an electrode for heating and causing variation in refractive index due to a temperature difference between branch optical waveguides, and controlling the operation point. CONSTITUTION:This optical modulator is equipped with an optical waveguide 2 which has the branch optical waveguides 2a and 2b formed on a substrate 1 with electrooptic effect, electrodes 3a and 3b for modulation provided on the branch optical waveguides 2a and 2b, electrodes 4a and 4b for heating provided on the branch optical waveguides 2a and 2b, and a heating current application control means 5 which supplies the current to at least one of the electrodes 4a and 4b for heating. Then the current supplied to the electrodes 4a or 4b for heating is controlled to cause the variation in refractive index between the branch optical waveguides 2a and 2b owing to the temperature difference, thereby controlling the operation point. Consequently, the operation point can be controlled without generating any DC drift.

Description

【発明の詳細な説明】 〔概要〕 光変調器に関し、 高速駆動のマンハツエンダ型光変調器の動作点の変動を
制御して高安定の光変調器を実現することを目的とし、 電気光学効果を有する基板上に形成された分岐光導波路
を有する光導波路と、前記分岐光導波路のそれぞれの上
に設けられた変調用電極と、前記分岐光導波路のそれぞ
れの上に設けられた加熱用電極と、前記加熱用電極の少
なくとも一方に電流を流す加熱電流印加制御手段とを少
なくとも備え、前記加熱用電極に流す電流を制御して前
記分岐光導波路間に温度差による屈折率変化を生じさせ
動作点の制御を行うように光変調器を構成する。
[Detailed Description of the Invention] [Summary] Regarding optical modulators, the purpose of this invention is to realize a highly stable optical modulator by controlling fluctuations in the operating point of a high-speed driving Mannha-Zender type optical modulator. an optical waveguide having a branched optical waveguide formed on a substrate having a branched optical waveguide, a modulation electrode provided on each of the branched optical waveguides, and a heating electrode provided on each of the branched optical waveguides; heating current application control means for passing a current through at least one of the heating electrodes, controlling the current flowing through the heating electrode to cause a change in refractive index due to a temperature difference between the branched optical waveguides, and adjusting the operating point. A light modulator is configured to provide control.

〔産業上の利用分野〕[Industrial application field]

本発明は、高速・高安定の光変調を行うための光変調器
の構成に関する。
The present invention relates to the configuration of an optical modulator for performing high-speed and highly stable optical modulation.

近年、光ファイバやレーザ光源の進歩・発達に伴い、光
通信をはじめ光波術を応用した各種のシステム、デバイ
スが実用化され広く利用されるようになる一方、ますま
す、その高度技術開発への要請が強まってきた。
In recent years, with the progress and development of optical fibers and laser light sources, various systems and devices that apply light wave technology, including optical communication, have been put into practical use and widely used. The demand has become stronger.

とくに、最近の光通信システムの高速化の要求から、光
信号を送信する光送信器においても、高速で光を変調す
る必要が生じてきた。
In particular, with the recent demand for higher speed optical communication systems, it has become necessary to modulate light at high speed in optical transmitters that transmit optical signals.

たとえば、1.6 Gbps程度までの低速光通信シス
テムにおいては、レーザダイオード(LD)を直接変調
する方式を用いてきたが、変調周波数がより高(なると
、変調光波長の時間的微小変動、いわゆる、チャーピン
グ現象のために高速化と長距離通信への限界が生じる。
For example, in low-speed optical communication systems up to about 1.6 Gbps, a method of directly modulating a laser diode (LD) has been used. , there are limits to high speed and long distance communication due to the chirping phenomenon.

一方、今後ますます大容量・長距離通信の要求が強まっ
てくるので、より高速、かつ、高安定な光変調方式の開
発が求められている。
On the other hand, as the demand for large-capacity and long-distance communication will become stronger in the future, there is a need for the development of faster and more stable optical modulation systems.

〔従来の技術〕[Conventional technology]

高速光変調方式としては、半導体レーザ光を外部で変調
する外部変調方式がよく知られている。
As a high-speed optical modulation method, an external modulation method in which semiconductor laser light is modulated externally is well known.

とくに、電気光学効果を有する基板上に分岐光導波路を
設け、信号電極、たとえば、進行波信号電極を用いて駆
動するマツハツエンダ型外部変調器が有力視されている
In particular, a Matsuhatsu Enda type external modulator, which is driven using a signal electrode, such as a traveling wave signal electrode, is considered to be promising, in which a branched optical waveguide is provided on a substrate having an electro-optic effect.

第4図はマツハツエンダ型外部変調器の例を示す図で、
最も基本的な構成を示したものである。
Figure 4 is a diagram showing an example of a Matsuhatsu Enda type external modulator.
This shows the most basic configuration.

同図(イ)は上面図(基板上の電極、導波路配置)、同
図(ロ)は同図(イ)のA −A’  断面図である。
Figure (a) is a top view (electrode and waveguide arrangement on the substrate), and figure (b) is a sectional view taken along line A-A' in figure (a).

図中、1は電気光学効果を有する基板、2は光導波路で
光入射端20と光出射端21との間に分岐光導波路2a
および2bが形成されている。この光導波路は通常基板
の表面にTiなどの金属を光導波路部分だけに選択的に
拡散させ、その部分の屈折率を回りの部分よりも少し大
きくなるようにしである。
In the figure, 1 is a substrate having an electro-optic effect, 2 is an optical waveguide, and a branched optical waveguide 2a is provided between the light input end 20 and the light output end 21.
and 2b are formed. This optical waveguide is usually made by selectively diffusing metal such as Ti on the surface of a substrate only to the optical waveguide portion, so that the refractive index of that portion is slightly larger than that of the surrounding portions.

3a、3bは変調用電極、9は光導波路上の金属電極層
への光の吸収を小さくするためのバッファ層で通常、S
iO□なとの薄膜が用いられている。
3a and 3b are modulation electrodes, and 9 is a buffer layer for reducing absorption of light into the metal electrode layer on the optical waveguide.
A thin film of iO□ is used.

変調用電極3a、3bはバッファ層9を介して光導波路
上に、Auなどの金属を蒸着あるいはめっきによって形
成している。
The modulation electrodes 3a and 3b are formed on the optical waveguide via the buffer layer 9 by vapor deposition or plating of a metal such as Au.

いま、半導体レーザ7からの直流光が左側の光入射端2
0から光導波路2に入り、分岐光導波路2a。
Now, the DC light from the semiconductor laser 7 is directed to the left light input end 2.
0 into the optical waveguide 2 and branched optical waveguide 2a.

2bの分岐点22で2つに分けられ、分岐光導波路2a
、2bを通過する間に、変調用電極3a、3bに変調用
電源6から変調信号電圧を印加すると、基板上に設けら
れた前記分岐光導波路2a、2bにおける電気光学効果
によって分岐された両光に位相差が生しる。この両光を
再び合波点23で合流させて、右側の光導波路2の光出
射端21から変調された光信号出力を取り出し、光検知
器8で受光して電気信号に変換するように構成されてい
る。
The branched optical waveguide 2a is divided into two at the branch point 22 of the optical waveguide 2b.
, 2b, when a modulation signal voltage is applied from the modulation power source 6 to the modulation electrodes 3a, 3b, both lights are split by the electro-optic effect in the branch optical waveguides 2a, 2b provided on the substrate. A phase difference occurs. The configuration is such that these two lights are combined again at a combining point 23, a modulated optical signal output is taken out from the light output end 21 of the right optical waveguide 2, and the light is received by the photodetector 8 and converted into an electrical signal. has been done.

前記分岐光導波路2a、2bにおける両光の位相差がO
およびπになるように駆動電圧を印加すれば光信号出力
は0N−OFFのパルス信号として得られる。なお、R
アは終端抵抗である。
The phase difference between the two lights in the branched optical waveguides 2a and 2b is O
If a driving voltage is applied so that π and π are applied, an optical signal output is obtained as an ON-OFF pulse signal. In addition, R
A is a terminating resistor.

しかし、実際上は製造バラツキやその他種々の原因によ
って、変調器動作点が設計値からずれたり、あるいは、
使用中にシフトすることがある。
However, in reality, due to manufacturing variations and various other causes, the modulator operating point may deviate from the design value, or
It may shift during use.

第5メは動作点シフトを説明する図であり、同図(イ)
は変調特性、同図(ロ)は光出力パルス特性である。
The fifth figure is a diagram explaining the operating point shift, and the figure (a)
is the modulation characteristic, and (b) is the optical output pulse characteristic.

同図(イ)の実線■が、たとえば、正常な設計値特性で
、破線の■が動作点がシフトした場合である。これに対
応して、同図(ロ)の実線■のきれいな出力パルス波形
から、破線の■のようにピークが下がりボトムが上がっ
た波形、すなわち、消光比の劣化が生ずることになる。
The solid line (■) in FIG. 6(a) is, for example, a normal design value characteristic, and the broken line (■) is a case where the operating point has shifted. Correspondingly, the clean output pulse waveform shown by the solid line (■) in FIG. 2 (B) changes to a waveform in which the peak is lowered and the bottom is raised, as shown by the broken line (2), that is, the extinction ratio is degraded.

そこで、従来は同図(イ)の破線■を元の正常な特性で
ある実線■に戻すために、直流(DC)バイアス電圧v
I+を印加して動作点を制御するようにしている。
Therefore, conventionally, in order to return the broken line ■ in the same figure (a) to the original normal characteristic, the solid line ■, a direct current (DC) bias voltage v
The operating point is controlled by applying I+.

〔発明が解決しようとする課題ご 最近、電気光学効果を有する基板、たとえば、LiNb
O3を基板とした場合に、光変調器にDCバイアスがか
−っていると、次第に動作点がシフトして行き消光比が
劣化する現象、いわゆる、DCドリフトが生しることが
報告されている(たとえば、Jap、J、Appl、P
hys、、シo1.20.No、4.pp733〜73
7,1981参照)。
[Problems to be Solved by the Invention Recently, substrates having an electro-optic effect, such as LiNb
It has been reported that when an optical modulator is applied with a DC bias when O3 is used as a substrate, the operating point gradually shifts and the extinction ratio deteriorates, a phenomenon known as DC drift. (e.g. Jap, J, Appl, P
hys,,si o1.20. No, 4. pp733-73
7, 1981).

したがって、上記のごと(直流(DC)電圧V。Therefore, as mentioned above (direct current (DC) voltage V.

を印加して動作点を制御しようとすると、そのためにD
Cドリフトが生じてしまうという重大な問題があり、そ
の解決が求められていた。
When trying to control the operating point by applying
There is a serious problem that C drift occurs, and a solution to this problem has been sought.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題は、電気光学効果を有する基板1上に形成さ
れた分岐光導波路2a、2bを有する光導波路2と、前
記分岐光導波路2a、2b上に設けられた変調用電極3
a、3bと、前記分岐光導波路2a、2b上に設けられ
た加熱用電極4a、4bと、前記加熱用電極4a、4b
の少なくとも一方に電流を流す加熱電流印加制御手段5
とを少なくとも備え、前記加熱用電極4a、4bに流す
電流を制御して前記分岐光導波路2a、2b間に温度差
による屈折率変化を生じさせ動作点の制御を行うように
構成した光変調器により解決することができる。
The above problem is solved by an optical waveguide 2 having branched optical waveguides 2a and 2b formed on a substrate 1 having an electro-optic effect, and a modulation electrode 3 provided on the branched optical waveguides 2a and 2b.
a, 3b, heating electrodes 4a, 4b provided on the branched optical waveguides 2a, 2b, and heating electrodes 4a, 4b.
heating current application control means 5 for passing a current through at least one of the
an optical modulator configured to control the current flowing through the heating electrodes 4a, 4b to cause a change in refractive index due to a temperature difference between the branched optical waveguides 2a, 2b to control the operating point. This can be solved by

C作用〕 本発明の光変調器は動作点を制御するために、直流(D
C)バイアス電圧を印加することはせず、両分岐光導波
路2a、2b間に温度差を生じさせ、それにより屈折率
変化に基づく光の位相差が変化するので動作点が変化す
る現象を実現する構成にしている。したがって、DCド
リフトを生じさせることなく動作点の制御が可能となる
のである。
C effect] The optical modulator of the present invention uses direct current (D
C) A temperature difference is created between the two branched optical waveguides 2a and 2b without applying a bias voltage, which changes the phase difference of light based on the change in the refractive index, thereby realizing a phenomenon in which the operating point changes. It is configured to do this. Therefore, it is possible to control the operating point without causing DC drift.

〔実施例] 第1図は本発明の実施例を示す図である。〔Example] FIG. 1 is a diagram showing an embodiment of the present invention.

基板1には大きさ50mmX2mm、厚さ1mmのLi
NbO3のZ板の表面を鏡面研磨して使用した。
Substrate 1 has a Li of size 50 mm x 2 mm and thickness of 1 mm.
The surface of the NbO3 Z plate was mirror polished and used.

この基板の上にTiを約1100nの厚さに真空蒸着し
、分岐光導波路2aおよび2bを含む光導波路2に相当
する部分にTiが残るように通常のホトエツチング法で
処理したのち、約10500C,酸素中で10時間加熱
しTiをLiNbO3中に熱拡散させて深さ約5μmの
光導波路2を形成した。
On this substrate, Ti was vacuum-deposited to a thickness of about 1100 nm, and treated with a normal photoetching method so that Ti remained in the portion corresponding to the optical waveguide 2 including the branched optical waveguides 2a and 2b. It was heated in oxygen for 10 hours to thermally diffuse Ti into LiNbO3 to form an optical waveguide 2 with a depth of about 5 μm.

分岐光導波路部分の長さは40mm、光導波路の幅は7
μmになるように調整した。分岐光導波路2aおよび2
bの間隔は約15μmとし、分岐部の角度は1°に形成
した。
The length of the branched optical waveguide part is 40 mm, and the width of the optical waveguide is 7 mm.
It was adjusted so that it was μm. Branch optical waveguides 2a and 2
The interval b was approximately 15 μm, and the angle of the branch portion was 1°.

次いで、バッファ層としてSiO□を500nmの厚さ
にスパッタ法で形成した。
Next, SiO□ was formed as a buffer layer to a thickness of 500 nm by sputtering.

変調用電極3a、3bはT i −A u合金膜を蒸着
したのち、分岐光導波路2a 、 2bの上に20mm
の長さにわたって重なるように、図示したごとき所定の
電極形状にパターンエツチングし、さらに、その上に厚
さ8μmのAuをめっきにより付着形成した。終端抵抗
RTは変調用電極3a、3bの特性インピーダンスに合
わせて50Ωになるように調整した。
The modulation electrodes 3a, 3b are formed by depositing a Ti-Au alloy film on the branch optical waveguides 2a, 2b by 20 mm.
A predetermined electrode shape as shown in the figure was pattern-etched so as to overlap over the length of the electrode, and further, 8 μm thick Au was deposited thereon by plating. The terminating resistance RT was adjusted to 50Ω in accordance with the characteristic impedance of the modulation electrodes 3a and 3b.

なお、変調用電極は一方を進行波信号電極、もう一方を
接地電極とした。
Note that one of the modulation electrodes was used as a traveling wave signal electrode, and the other was used as a ground electrode.

4a、4bは加熱用電極で、分岐光導波路2a、2bの
変調用電極3a、3bが設けられていない残りの部分に
、10〜15m mの長さにわたってそれぞれ形成され
た抵抗体からなる薄膜発熱体であり、それぞれ加熱電流
印加制御手段5(5a、5b、5c)に接続されている
。加熱用電極4a、4bを形成する薄膜発熱体としては
、たとえば、厚さ300nmのNi−Cr腰を電子ビー
ム蒸着法で被着し、公知のホトエツチング技術により図
示したごとき所定のパターン形状に形成する。
4a and 4b are heating electrodes, each of which is a thin film heating element made of a resistor formed over a length of 10 to 15 mm in the remaining portions of the branched optical waveguides 2a and 2b where the modulation electrodes 3a and 3b are not provided. and are respectively connected to heating current application control means 5 (5a, 5b, 5c). As the thin film heating element forming the heating electrodes 4a and 4b, for example, a 300 nm thick Ni-Cr film is deposited by electron beam evaporation and formed into a predetermined pattern shape as shown in the figure by a known photoetching technique. .

本実施例の加熱電流印加制御手段5は、加熱用電極4a
、4bのそれぞれに接続されたダイオード5b。
The heating current application control means 5 of this embodiment includes the heating electrode 4a
, 4b are connected to each other.

5cと加熱電流制御部5aとから構成されており、ダイ
オード5bおよび5cは図示したごとくそれぞれ極性が
反転して接続されている。加熱電流制御部5aには可変
直流電源が内蔵されており、図示してない動作点ずれ検
知信号に対応して電流が制御されるようになっている。
5c and a heating current control section 5a, and the diodes 5b and 5c are connected with their polarities reversed as shown. The heating current control section 5a has a built-in variable DC power supply, and the current is controlled in response to an operating point shift detection signal (not shown).

いま、たとえば、ダイオード5bがONのときは加熱用
電極4aに電流が流れて、その下の分岐光導波路2aの
近傍の温度が上昇するが、ダイオード5cはOFFなの
で加熱用電極4cには電流が流れず、したがって、その
下の分岐光導波路2b近傍の温度は上昇せず、分岐光導
波路2a、2bを伝播する光の間に温度差による屈折率
変化に対応する位相差が生しDCバイアスを印加するこ
となしに動作点をシフトさせることができる。そして、
電流を逆に流した場合には位相差も逆の方向に生じて動
作点を逆方向にシフトさせることができる。
Now, for example, when the diode 5b is ON, a current flows through the heating electrode 4a and the temperature near the branched optical waveguide 2a below it increases, but since the diode 5c is OFF, no current flows through the heating electrode 4c. Therefore, the temperature near the branched optical waveguide 2b below does not rise, and a phase difference occurs between the lights propagating through the branched optical waveguides 2a and 2b, corresponding to the change in refractive index due to the temperature difference, causing a DC bias. The operating point can be shifted without applying any voltage. and,
When the current flows in the opposite direction, a phase difference also occurs in the opposite direction, and the operating point can be shifted in the opposite direction.

第2図は本発明の動作点制御を説明する図で、縦軸に光
出力、横軸に変調用の電圧をとっである。
FIG. 2 is a diagram illustrating the operating point control of the present invention, with the vertical axis representing the optical output and the horizontal axis representing the voltage for modulation.

いま、■の実線に示したごと<、−Vπ/2.+Vπ/
2との間で光のスイッチングを行わせるように設計しで
ある光変調器で、たとえば、温度上昇による屈折率変化
が正で破線■に示したごとく動作点が右側にずれた場合
に、ダイオード5bがONになるように、すなわち、加
熱用電極4aに電流を流して動作点をVZ+だけマイナ
ス側にシフトさせ、所定の変調動作特性曲線■に戻し、
また反対に、破線■に示したごとく動作点が左側にずれ
た場合には、ダイオード5CがONになるように、すな
わち、加熱用電極4bに電流を流して動作点をV31だ
けフラス側にシフトさせ、所定の変調動作特性曲線■に
戻すように制御すれば、自動的に常に所定の動作特性■
が保持されるようにすることが可能となる。
Now, as shown by the solid line in ■, <, -Vπ/2. +Vπ/
For example, if the refractive index change due to temperature rise is positive and the operating point shifts to the right as shown by the broken line ■, the diode 5b is turned on, that is, by passing a current through the heating electrode 4a, the operating point is shifted to the negative side by VZ+, and returned to the predetermined modulation operating characteristic curve (■).
On the other hand, when the operating point shifts to the left as shown by the broken line ■, the diode 5C is turned on, that is, current is passed through the heating electrode 4b, and the operating point is shifted by V31 to the flat side. If the control is performed to return to the predetermined modulation operating characteristic curve ■, the predetermined operating characteristic curve will automatically always be maintained.
can be maintained.

第3図は本発明の他の実施例を示す図である。FIG. 3 is a diagram showing another embodiment of the present invention.

本実施例の場合は加熱電流印加制御手段5が、加熱用電
極4a、4bのそれぞれに異なる電流を流すように構成
されており、たとえば、定電圧電源5d。
In this embodiment, the heating current application control means 5 is configured to apply different currents to the heating electrodes 4a and 4b, for example, a constant voltage power source 5d.

電圧分割用抵抗5eおよび加熱電流制御部5a1 とか
ら構成されている。
It is composed of a voltage dividing resistor 5e and a heating current control section 5a1.

なお、前記の諸図面で説明したものと同等の部分につい
ては同一符号を付し、かつ、同等部分についての説明は
省略する。
Note that the same reference numerals are given to the same parts as those explained in the above drawings, and the explanation of the same parts will be omitted.

この場合には、加熱電流制御部5a1が図示してない動
作点ずれ検知信号を受けて、電圧分割用抵抗5eのスラ
イド接点を移動させ、加熱用電極4a、4bの両方に同
時に電流を流して両分枝先導波路を伝播する光の間の位
相差を変化させて変調器動作点の制御を行うようにした
ものである。
In this case, the heating current control unit 5a1 receives an operating point shift detection signal (not shown), moves the sliding contact of the voltage dividing resistor 5e, and causes current to flow through both the heating electrodes 4a and 4b at the same time. The modulator operating point is controlled by changing the phase difference between the lights propagating through both branch leading wavepaths.

なお、上記実施例では加熱用電極4a、4bとしてNi
−Cr 薄膜発熱体を用いたが、その他の金属薄膜や、
あるいは、非金属を用いてもよい。また、加熱用電極4
a、4bは必ずしも分岐光導波路2a、2bの直上に設
けるとは限らず、その近傍に形成して分岐光導波路2a
、2b部分の屈折率変化が起こるようにしても同様に効
果があることは言うまでもない。
In addition, in the above embodiment, Ni is used as the heating electrodes 4a and 4b.
-Cr thin film heating element was used, but other metal thin films,
Alternatively, non-metals may be used. In addition, the heating electrode 4
a, 4b are not necessarily provided directly above the branch optical waveguides 2a, 2b, but may be formed near the branch optical waveguides 2a, 2b.
It goes without saying that the same effect can be obtained even if the refractive index of the portions 2b and 2b is changed.

以上述べた実施例は例を示したもので、本発明の趣旨に
添うものである限り、使用する素材や構成など適宜好ま
しいもの、あるいはその組み合わせを用いてもよいこと
は勿論である。
The embodiments described above are merely examples, and it goes without saying that preferred materials and configurations, or combinations thereof, may be used as long as they comply with the spirit of the present invention.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の構成によれば、光変調器
の動作点を制御するために、直流(DC)バイアス電圧
を印加することはせずに、両分枝先導波路2a、2b間
に温度差を生じさせ、それにより屈折率変化に基づく光
の位相差が変化するので動作点がシフトする現象を実現
する構成にしている。
As explained above, according to the configuration of the present invention, in order to control the operating point of the optical modulator, there is no need to apply a direct current (DC) bias voltage between the two branch leading waveguides 2a and 2b. The structure is such that a temperature difference is generated between the two, and the optical phase difference based on the change in the refractive index changes, thereby realizing a phenomenon in which the operating point shifts.

したがって、DCドリフトを生じさせることなく動作点
の制御が可能となり、高速・長距離光通信用の光変調器
の性能、信頬性の向上に寄与するところが極めて大きい
Therefore, it is possible to control the operating point without causing DC drift, which greatly contributes to improving the performance and reliability of optical modulators for high-speed and long-distance optical communications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す図、 第2図は本発明の動作点制御を説明する図、第3図は本
発明の他の実施例を示す図、第4国はマツハツエンダ型
外部変調器の例を示す図、 第5図は動作点シフトを説明する図である。 図において、 1は基板、 2は光導波路、 2a 、 2bは分岐光導波路、 3a、3bは変調用電極、 4a、4bは加熱用電極、 5(5a、5a’ 、5b、5c、5d、5e)は加熱
電流印加制御手段、6は変調用電源である。 光出力 本発明のイ乞の実売イ111を示1図 第 3 図
FIG. 1 is a diagram showing an embodiment of the present invention, FIG. 2 is a diagram explaining operating point control of the present invention, FIG. 3 is a diagram showing another embodiment of the present invention, and the fourth country is a Matsuhatsu Enda type external A diagram showing an example of a modulator, and FIG. 5 is a diagram explaining an operating point shift. In the figure, 1 is a substrate, 2 is an optical waveguide, 2a and 2b are branched optical waveguides, 3a and 3b are modulation electrodes, 4a and 4b are heating electrodes, and 5 (5a, 5a', 5b, 5c, 5d, 5e) ) is a heating current application control means, and 6 is a modulation power source. Optical output Figure 1 shows the actual sales of the present invention 111 Figure 3

Claims (1)

【特許請求の範囲】 電気光学効果を有する基板(1)上に形成された分岐光
導波路(2a、2b)を有する光導波路(2)と、前記
分岐光導波路(2a、2b)上に設けられた変調用電極
(3a、3b)と、 前記分岐光導波路(2a、2b)上に設けられた加熱用
電極(4a、4b)と、 前記加熱用電極(4a、4b)の少なくとも一方に電流
を流す加熱電流印加制御手段(5)とを少なくとも備え
、 前記加熱用電極(4a、4b)に流す電流を制御して前
記分岐光導波路(2a、2b)間に温度差による屈折率
変化を生じさせ動作点の制御を行うことを特徴とした光
変調器。
[Claims] An optical waveguide (2) having branched optical waveguides (2a, 2b) formed on a substrate (1) having an electro-optic effect, and an optical waveguide (2) provided on the branched optical waveguides (2a, 2b). A current is applied to at least one of the modulation electrodes (3a, 3b), the heating electrodes (4a, 4b) provided on the branched optical waveguides (2a, 2b), and the heating electrodes (4a, 4b). and a heating current application control means (5) for controlling the current flowing through the heating electrodes (4a, 4b) to cause a change in refractive index due to a temperature difference between the branched optical waveguides (2a, 2b). An optical modulator characterized by controlling the operating point.
JP13441790A 1990-05-24 1990-05-24 Optical modulator Pending JPH0429113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13441790A JPH0429113A (en) 1990-05-24 1990-05-24 Optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13441790A JPH0429113A (en) 1990-05-24 1990-05-24 Optical modulator

Publications (1)

Publication Number Publication Date
JPH0429113A true JPH0429113A (en) 1992-01-31

Family

ID=15127901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13441790A Pending JPH0429113A (en) 1990-05-24 1990-05-24 Optical modulator

Country Status (1)

Country Link
JP (1) JPH0429113A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07325277A (en) * 1994-06-02 1995-12-12 Nec Corp Waveguide type optical device
JPH0961766A (en) * 1995-08-19 1997-03-07 Nec Corp Semiconductor optical modulator
WO2000060411A1 (en) * 1999-04-01 2000-10-12 Jds Uniphase Corporation Method and apparatus for stable control of electrooptic devices
JP2006003619A (en) * 2004-06-17 2006-01-05 Aisin Seiki Co Ltd Mach-zehnder type optical modulator
WO2010064417A1 (en) * 2008-12-02 2010-06-10 日本電信電話株式会社 Light modulator
JP2016133664A (en) * 2015-01-20 2016-07-25 富士通株式会社 Optical device and control method of the same
JP2016142799A (en) * 2015-01-30 2016-08-08 住友大阪セメント株式会社 Light control element
JP2018511820A (en) * 2015-03-12 2018-04-26 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Electro-optic and thermo-optic modulators

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07325277A (en) * 1994-06-02 1995-12-12 Nec Corp Waveguide type optical device
JPH0961766A (en) * 1995-08-19 1997-03-07 Nec Corp Semiconductor optical modulator
WO2000060411A1 (en) * 1999-04-01 2000-10-12 Jds Uniphase Corporation Method and apparatus for stable control of electrooptic devices
US6181456B1 (en) 1999-04-01 2001-01-30 Uniphase Telecommunications Products, Inc. Method and apparatus for stable control of electrooptic devices
JP2006003619A (en) * 2004-06-17 2006-01-05 Aisin Seiki Co Ltd Mach-zehnder type optical modulator
JP4538721B2 (en) * 2004-06-17 2010-09-08 アイシン精機株式会社 Mach-Zehnder optical modulator
WO2010064417A1 (en) * 2008-12-02 2010-06-10 日本電信電話株式会社 Light modulator
US8467635B2 (en) 2008-12-02 2013-06-18 Nippon Telegraph And Telephone Corporation Optical modulator
JP5363504B2 (en) * 2008-12-02 2013-12-11 日本電信電話株式会社 Light modulator
JP2016133664A (en) * 2015-01-20 2016-07-25 富士通株式会社 Optical device and control method of the same
JP2016142799A (en) * 2015-01-30 2016-08-08 住友大阪セメント株式会社 Light control element
JP2018511820A (en) * 2015-03-12 2018-04-26 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Electro-optic and thermo-optic modulators

Similar Documents

Publication Publication Date Title
JP4631006B2 (en) Automatic adjustment system for FSK modulator
US5953466A (en) Optical modulator
US6721085B2 (en) Optical modulator and design method therefor
US5963357A (en) Optical modulator
JPH0424610A (en) Optical modulator
JPH0429113A (en) Optical modulator
JPH03145623A (en) Optical modulator
JPH11183858A (en) Traveling-wave type optical modulator and optical modulation method
JP2780400B2 (en) Light modulator
CN108508675B (en) Mach-Zehnder (MZ) ring optical modulators
JPWO2009096237A1 (en) Optical waveguide device
US7184631B2 (en) Optical device
JP2621684B2 (en) Operating point control method for optical modulator
US7088874B2 (en) Electro-optic devices, including modulators and switches
JP2890585B2 (en) Light modulator
KR100491726B1 (en) Electro-optic polymer devices
JP3924289B2 (en) Light modulation element and manufacturing method thereof
JPH04172316A (en) Wave guide type light control device
JPH0414010A (en) Optical modulator
JP2870071B2 (en) Light modulator
JPH0434516A (en) Optical modulator
JP2725341B2 (en) Light modulator
US6370283B1 (en) Electro-optic modulator for generating solitons
JP2564999B2 (en) Light modulator
JP2738097B2 (en) Multiplexed light modulator