JP2738078B2 - Light modulator - Google Patents

Light modulator

Info

Publication number
JP2738078B2
JP2738078B2 JP1285408A JP28540889A JP2738078B2 JP 2738078 B2 JP2738078 B2 JP 2738078B2 JP 1285408 A JP1285408 A JP 1285408A JP 28540889 A JP28540889 A JP 28540889A JP 2738078 B2 JP2738078 B2 JP 2738078B2
Authority
JP
Japan
Prior art keywords
light
optical
signal
optical waveguide
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1285408A
Other languages
Japanese (ja)
Other versions
JPH03145623A (en
Inventor
直之 女鹿田
實 清野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1285408A priority Critical patent/JP2738078B2/en
Publication of JPH03145623A publication Critical patent/JPH03145623A/en
Application granted granted Critical
Publication of JP2738078B2 publication Critical patent/JP2738078B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • G02F1/0123Circuits for the control or stabilisation of the bias voltage, e.g. automatic bias control [ABC] feedback loops
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/21Thermal instability, i.e. DC drift, of an optical modulator; Arrangements or methods for the reduction thereof

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Description

【発明の詳細な説明】 〔概要〕 光変調器に関し、 高速駆動の外部光変調において、放射光を用いたフィ
ードバックにより動作点の変動を防止することを目的と
し、 平面に加工した電気光学効果を有する基板と、前記基
板上に形成され、光入射端と光出射端との間に分岐光導
波路を有する光導波路と、前記分岐光導波路の一方の上
に設けられた信号電極と、前記分岐光導波路の他方の上
に設けられた接地電極と、前記光導波路の光出射端に近
接して、信号光が導入されるごとくに配置された信号光
用光ファイバと、前記分岐光導波路の合波点から放射さ
れる放射光が導入されるごとくに配置されたモニタ光用
光ファイバと、前記モニタ光用光ファイバの光出射端に
配設された前記放射光を受光する光検知器と、前記光検
知器の出力電気信号の変化に応じて、前記信号電極に印
加される入力信号電圧の直流バイアスを変化させて、光
変調器の動作点を制御する信号処理・制御回路部とを少
なくとも備えるように光変調器を構成する。
DETAILED DESCRIPTION OF THE INVENTION [Summary] Regarding an optical modulator, an electro-optic effect processed into a plane is intended to prevent a fluctuation of an operating point by feedback using radiation light in a high-speed driving external light modulation. A light guide formed on the substrate and having a branch optical waveguide between a light incident end and a light output end; a signal electrode provided on one of the branch optical waveguides; A ground electrode provided on the other side of the optical waveguide, an optical fiber for signal light arranged near the light emitting end of the optical waveguide so that signal light is introduced, and a multiplexing of the branch optical waveguide. A monitor light optical fiber arranged so that radiated light radiated from a point is introduced, and a photodetector that receives the radiated light disposed at a light emitting end of the monitor light optical fiber; The output electric signal of the photodetector The optical modulator is configured to include at least a signal processing / control circuit unit that controls an operating point of the optical modulator by changing a DC bias of an input signal voltage applied to the signal electrode according to the change. .

〔産業上の利用分野〕[Industrial applications]

本発明は、高速・高安定の光変調を行うための光変調
器の構成に関する。
The present invention relates to a configuration of an optical modulator for performing high-speed and high-stability optical modulation.

近年、光ファイアやレーザ光源の進歩・発達に伴い、
光通信をはじめ光技術を応用した各種のシステム、デバ
イスが実用化され広く利用されるようになる一方、ます
ます、その高度技術開発への要請が強まってきた。
In recent years, with the progress and development of optical fires and laser light sources,
While various systems and devices using optical technology, including optical communication, have been put into practical use and widely used, demands for the development of advanced technologies have been increasing.

とくに、最近の光通信システムの高速化の要求から、
光信号を送信する光送信器においても、高速で光を変調
する必要が生じてきた。
In particular, due to the recent demand for higher speed optical communication systems,
In an optical transmitter for transmitting an optical signal, it is necessary to modulate light at high speed.

たとえば、1.6Gbps程度までの低速光通信システムに
おいては、レーザダイオード(LD)を直接変調する方式
を用いてきたが、変調周波数がより高くなると、変調光
波長の時間的微小変動,いわゆる、チャーピング現象の
ために高速化と長距離通信への限界が生じる。
For example, in a low-speed optical communication system up to about 1.6 Gbps, a method of directly modulating a laser diode (LD) has been used. The phenomenon limits the speed up and long-distance communication.

一方、今後ますます大容量・長距離通信の要求が強ま
ってくるので、より高速,かつ、高安定な光変調方式の
開発が求められている。
On the other hand, since demands for large-capacity and long-distance communication are increasing more and more in the future, there is a need to develop a higher-speed and more stable optical modulation system.

〔従来の技術〕[Conventional technology]

高速光変調方式としては、半導体レーザ光を外部で変
調する外部変調方式がよく知られている。
As a high-speed light modulation method, an external modulation method for externally modulating a semiconductor laser beam is well known.

とくに、電気光学効果を有する基板上に分岐光導波路
を設け、信号電極,たとえば、進行波信号電極を用いて
駆動するマッハツェンダ型光変調器が有力視されてい
る。
In particular, Mach-Zehnder type optical modulators in which a branch optical waveguide is provided on a substrate having an electro-optic effect and driven using signal electrodes, for example, traveling wave signal electrodes, are considered to be promising.

第5図はY分岐光導波路マッハツェンダ型外部変調器の
構成例を示す図で、最も基本的な構成を示したものであ
る。同図(イ)は上面図(基板上の電極,導波路配
置),同図(ロ)は同図(イ)のA−A′断面図であ
る。
FIG. 5 is a diagram showing a configuration example of a Y-branch optical waveguide Mach-Zehnder type external modulator, showing the most basic configuration. FIG. 3A is a top view (electrodes and waveguide arrangement on the substrate), and FIG. 3B is a cross-sectional view taken along line AA ′ of FIG.

図中、1は電気光学効果を有する基板、4は光導波路
で光入射端40と光出射端41との間に分岐光導波路4aおよ
び4bが形成されている。この光導波路は通常基板の表面
にTiなどの金属を光導波路部分だけに選択的に拡散さ
せ、その部分の屈折率を回りの部分よりも少し大きくな
るようにしてある。2は信号電極で,たとえば、進行波
信号電極、3は接地電極である。11は光導波路上の金属
電極層への光の吸収を小さくするためのバッファ層で、
通常、SiO2などの薄膜が用いられている。
In the figure, 1 is a substrate having an electro-optic effect, 4 is an optical waveguide, and branch optical waveguides 4a and 4b are formed between a light input end 40 and a light output end 41. In this optical waveguide, a metal such as Ti is usually selectively diffused only into the optical waveguide portion on the surface of the substrate, and the refractive index of that portion is made slightly larger than that of the surrounding portion. 2 is a signal electrode, for example, a traveling wave signal electrode, and 3 is a ground electrode. 11 is a buffer layer for reducing the absorption of light to the metal electrode layer on the optical waveguide,
Usually, a thin film such as SiO 2 is used.

進行波信号電極2と接地電極3は、バッファ層11を介
して光導波路上に、Auなどの金属を蒸着あるいはめっき
によって形成している。
The traveling wave signal electrode 2 and the ground electrode 3 are formed by depositing or plating a metal such as Au on the optical waveguide via the buffer layer 11.

いま、半導体レーザ9からの直流光が左側の光入射端
40から光導波路4に入り、分岐光導波路4a,4bの分岐点4
2で2つに分けられ、そこを通過する間に、進行波信号
電極2に高周波変調信号電圧を印加すると、基板上に設
けられた前記分岐光導波路4a,4bにおける電気光学効果
によって分岐された両光に位相差が生じる。この両光を
再び合波点43で合流させて、右側の光導波路4の光出射
端41から変調された光信号出力を取り出し、光検知器14
で受光して電気信号に変換するように構成されている。
Now, the DC light from the semiconductor laser 9 is incident on the left light incident end.
The optical waveguide 4 enters the optical waveguide 4 from 40, and the branch point 4 of the branch optical waveguides 4a and 4b
When a high-frequency modulation signal voltage is applied to the traveling wave signal electrode 2 while passing therethrough, the light is branched by the electro-optic effect in the branch optical waveguides 4a and 4b provided on the substrate. A phase difference occurs between the two lights. These two lights are merged again at the multiplexing point 43, and the modulated optical signal output is taken out from the light emitting end 41 of the right optical waveguide 4, and the photodetector 14
And is converted to an electric signal.

前記分岐光導波路4a,4bにおける両光の位相差が0お
よびπになるように駆動伝圧を印加すれば、光信号出力
はON−OFFのパルス信号として得られる。
If a drive voltage is applied so that the phase difference between the two lights in the branch optical waveguides 4a and 4b becomes 0 and π, an optical signal output is obtained as an ON-OFF pulse signal.

なお、RTは終端抵抗である。Note that RT is a terminating resistor.

しかし、図からもわかるように、進行波信号電極2と
接地電極3とは通常面積を異にしており、分岐光導波路
4aと4bの間に温度差を生じ、それに起因する動作点シフ
トが生じたり、あるいは、いわゆる、DCドリフトが生じ
る(たとえば、Jap.J.Appl.Phys.,Vol.20,No.4,pp733〜
737,1981参照)。
However, as can be seen from the figure, the traveling wave signal electrode 2 and the ground electrode 3 usually have different areas, and
A temperature difference occurs between 4a and 4b, which causes an operating point shift or a so-called DC drift (for example, Jap. J. Appl. Phys., Vol. 20, No. 4, pp733). ~
737, 1981).

第6図は動作点シフトを説明する図であり、同図
(イ)は変調特性、同図(ロ)は光出力パルス特性であ
る。同図(イ)の実線が正常な特性で、破線のが動
作点がシフトした場合である。これに対応して、同図
(ロ)の実線のきれいな出力パルス波形から、破線の
のようにピークが下がりボトムが上がった波形,すな
わち、消光比の劣化が生ずることになる。
FIG. 6 is a diagram for explaining an operating point shift. FIG. 6A shows a modulation characteristic, and FIG. 6B shows an optical output pulse characteristic. The solid line in FIG. 7A shows normal characteristics, and the broken line shows the case where the operating point shifts. Correspondingly, a waveform in which the peak falls and the bottom rises as shown by the broken line from the clean output pulse waveform of the solid line in FIG.

第7図はDCドリフトを説明する図で,たとえば、最も
多く使用されるLiNbO3を基板1とした場合に、短期のDC
ドリフトと長期のDCドリフトの2種類が,たとえば、前
記文献その他に報告されている。同図(イ)は駆動電圧
と時間の関係を示したもので一定の直流電圧Vπを印加
した場合に、同図(ロ)の実線に示したように本来光
出力レベルが0であるべきものが、時間の経過と共に徐
々に増加していく,すなわち、動作点がずれていく現象
である。
FIG. 7 is a diagram for explaining DC drift. For example, when the most frequently used LiNbO 3 is used as the substrate 1, a short-term DC
Two types, drift and long-term DC drift, have been reported, for example, in the literature and others. FIG. 4A shows the relationship between the drive voltage and time. When a constant DC voltage Vπ is applied, the light output level should be 0 as shown by the solid line in FIG. Is a phenomenon that gradually increases with the passage of time, that is, the operating point shifts.

そこで、このように動作点がずれて光変調器の性能が
劣化するのを防止するために、出力信号光からモニタ光
を取り出して入力電気信号にフィードバックをかけ、動
作点の安定化を図ることが提案されている。
Therefore, in order to prevent the performance of the optical modulator from deteriorating due to such shift of the operating point, monitor light is extracted from the output signal light and fed back to the input electric signal to stabilize the operating point. Has been proposed.

第8図は従来の安定化外部変調器の構成例を示す図で
ある。図中、30はファイバカップラ、8′は信号処理・
制御回路部、12′は光検知器である。
FIG. 8 is a diagram showing a configuration example of a conventional stabilized external modulator. In the figure, 30 is a fiber coupler, 8 'is a signal
The control circuit unit 12 'is a light detector.

なお、前記図面で説明したものと同等の部分について
は同一符号を付し、かつ、同等部分についての説明は省
略する。
The same parts as those described in the drawings are denoted by the same reference numerals, and the description of the same parts will be omitted.

すなわち、光導波路4の右側の光出射端41から、変調
された光信号出力を,たとえば、シングルモード光ファ
イバ5に導入・伝送したのち、光検知器14で受光し電気
信号に変換して送信信号の受信を行う。この間、ファイ
バカップラ30で信号光の一部を分岐して,たとえば、シ
ングルモード光ファイバ5′に導入し、光検知器12′で
電気信号に変換して、信号処理・制御回路部8′で動作
点のずれを検知し入力信号電源13にフィードバックし
て、DCバイアスの調整を行い常に正しい動作点に保持す
るようにしている。
That is, after a modulated optical signal output is introduced and transmitted to, for example, a single mode optical fiber 5 from a light emitting end 41 on the right side of the optical waveguide 4, the light is received by a photodetector 14, converted into an electric signal, and transmitted. Performs signal reception. During this time, a part of the signal light is branched by the fiber coupler 30 and introduced into, for example, a single-mode optical fiber 5 ', converted into an electric signal by the photodetector 12', and converted into an electric signal by the signal processing / control circuit 8 '. The shift of the operating point is detected and fed back to the input signal power supply 13 to adjust the DC bias so that the operating point is always kept at the correct operating point.

なお、ファイバカップラ30は2本の光ファイバを平行
に近接・結合させると一方の光ファイバの光の一部(た
とえば、1/10程度)が、他方の光ファイバに移行して伝
送されるように構成されたものである。
When two optical fibers are brought close to each other and coupled in parallel, a part (for example, about 1/10) of the light of one optical fiber is transferred to the other optical fiber and transmitted. It is constituted in.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかし、このような構成の光変調器においては、光導
波路から光ファイバに導入された信号光の一部がファイ
バカップラによってモニタ光として分岐されている。し
たがって、送信される光信号パワーが分岐された分だけ
減少し、それに相当する分だけ光ファイバの伝送距離が
短くなるという重大な問題があり、その解決が必要であ
った。
However, in the optical modulator having such a configuration, a part of the signal light introduced into the optical fiber from the optical waveguide is branched as monitor light by the fiber coupler. Therefore, there is a serious problem that the optical signal power to be transmitted is reduced by the amount corresponding to the branch, and the transmission distance of the optical fiber is shortened by the amount corresponding thereto.

〔課題を解決するための手段〕[Means for solving the problem]

上記の課題は、平面に加工した電気光学効果を有する
基板1と、前記基板1上に形成され、光入射端40と光出
射端41との間に分岐光導波路4aおよび4bを有する光導波
路4と、前記分岐光導波路4a上に設けられた信号電極2
と、前記分岐光導波路4b上に設けられた接地電極3と、
前記光導波路4の光出射端41に近接して、信号光が導入
されるごとくに配置された信号光用光ファイバ5と、前
記分岐光導波路4aおよび4bの合波点43から放射される放
射光が導入されるごとくに配置されたモニタ光用光ファ
イバ6と、前記モニタ光用光ファイバ6の光出射端61に
配設された前記放射光を受光する光検知器12と、前記光
検知器12の出力電気信号の変化に応じて、前記信号電極
2に印加される入力信号電圧の直流バイアスを変化させ
て、光変調器の動作点を制御する信号処理・制御回路部
8とを少なくとも備えた光変調器を構成することにより
解決することができる。
The above-mentioned problem is solved by a substrate 1 having an electro-optic effect processed into a plane, and an optical waveguide 4 formed on the substrate 1 and having branching optical waveguides 4a and 4b between a light incident end 40 and a light emitting end 41. And the signal electrode 2 provided on the branch optical waveguide 4a.
A ground electrode 3 provided on the branch optical waveguide 4b;
A signal light optical fiber 5 arranged near the light emitting end 41 of the optical waveguide 4 so that signal light is introduced, and radiation emitted from a multiplexing point 43 of the branch optical waveguides 4a and 4b. A monitor light optical fiber 6 arranged so that light is introduced, a light detector 12 for receiving the radiated light provided at a light emitting end 61 of the monitor light optical fiber 6, and the light detector A signal processing / control circuit section 8 for controlling an operating point of the optical modulator by changing a DC bias of an input signal voltage applied to the signal electrode 2 in accordance with a change in an output electric signal of the optical modulator 12; The problem can be solved by configuring an optical modulator provided.

〔作用〕[Action]

第1図は合波点における放射光を説明する図で、同図
(イ)は上面図、同図(ロ)はA−A′矢視図、同図
(ハ)は信号光と放射光特性の関係を示したものであ
る。すなわち、信号電圧が0の時には光出力は100%光
導波路4の光出射端41から出射し、分岐光導波路4aと4b
の光の位相差がλ/2を与える電圧Vπまたは−Vπの時
は光導波路4の光出射端41からの光出力は0となる。
1A and 1B are diagrams for explaining radiation light at a multiplexing point. FIG. 1A is a top view, FIG. 1B is a view taken along the line AA ′, and FIG. 1C is signal light and radiation light. This shows the relationship between the characteristics. That is, when the signal voltage is 0, the optical output is emitted from the light emitting end 41 of the 100% optical waveguide 4, and the branched optical waveguides 4a and 4b
When the light has a phase difference of Vπ or -Vπ giving λ / 2, the light output from the light emitting end 41 of the optical waveguide 4 becomes zero.

それ以外の,すなわち、光出射端41から出射しない光
は当然のことながら光導波路4から外に洩れ出し損失と
なる。この洩れ光が,いわゆる、放射光10であり分岐光
導波路4aと4bの合波点43から放射される。
Other light, that is, light not emitted from the light emitting end 41 leaks out of the optical waveguide 4 as a matter of course, resulting in a loss. This leaked light is so-called radiation light 10 and is emitted from the multiplexing point 43 of the branch optical waveguides 4a and 4b.

この放射光10は同図(ロ)に示したごとく合波点43か
らやゝ下方の基板1内に広がった光ビームとして放射さ
れる。そして、その光パワーの合計と位相は同図(ハ)
の破線に示したごとく、実線に示した信号光と丁度
相補な関係にある。
The emitted light 10 is radiated from the multiplexing point 43 as a light beam spread into the substrate 1 slightly below the ゝ as shown in FIG. Then, the sum and phase of the optical power are shown in FIG.
As shown by the broken line, the signal light is exactly complementary to the signal light shown by the solid line.

以上の説明からわかるように、本発明の構成によれ
ば、動作点がずれた場合に分岐光導波路4aおよび4bの合
波点43から放射される放射光をモニタ光として取り出
し、光検知器12と信号処理・制御回路部8で動作点のず
れを検知し入力信号電源13にフィードバックして、DCバ
イアスの調整を行ない常に正しい動作点に保持するの
で、信号光の光パワーに何ら影響を与えることなく,し
たがって、光ファイバの伝送距離の短縮を招くような問
題は一切生じることがない。
As can be understood from the above description, according to the configuration of the present invention, when the operating point is shifted, the radiated light radiated from the multiplexing point 43 of the branch optical waveguides 4a and 4b is extracted as monitor light, and the light detector 12 And the signal processing / control circuit section 8 detects the deviation of the operating point and feeds it back to the input signal power supply 13 so that the DC bias is adjusted and always maintained at the correct operating point, so that there is no effect on the optical power of the signal light. Therefore, there is no problem that shortens the transmission distance of the optical fiber.

〔実施例〕〔Example〕

第2図は本発明の原理の要点を説明する図で、光ファ
イバ4から出射する信号光は信号光用光ファイバ5へ導
入し、分岐光導波路4aおよび4bの合波点43から放射され
る放射光はモニタ光用光ファイバ6へ導入して電気信号
に変換し、入力信号電源のDCバイアスを調節して動作点
を安定させるようにフィードバックさせるのである。
FIG. 2 is a view for explaining the essential points of the principle of the present invention. The signal light emitted from the optical fiber 4 is introduced into the optical fiber for signal light 5 and emitted from the multiplexing point 43 of the branch optical waveguides 4a and 4b. The radiated light is introduced into the monitor light optical fiber 6, converted into an electric signal, and the DC bias of the input signal power supply is adjusted to feed back so as to stabilize the operating point.

第3図は本発明実施例の構成を示す図である。基板1
には大きさ30mm×2mm,厚さ1mmのLiNbO3のZ板の表面を
鏡面研磨して使用した。
FIG. 3 is a diagram showing the configuration of the embodiment of the present invention. Substrate 1
The surface of a Z plate of LiNbO 3 having a size of 30 mm × 2 mm and a thickness of 1 mm was mirror-polished and used.

この基板の上にTiを約100nmの厚さに真空蒸着し、分
岐光導波路4aおよび4bを含む光導波路4に相当する部分
にTiが残るように通常のホトエッチング法で処理したの
ち、約1050℃,酸素中で10時間加熱しTiをLiNbO3中に熱
拡散させて深さ約5μmの光導波路4を形成した。
Ti is vacuum-deposited on this substrate to a thickness of about 100 nm, and is processed by a usual photoetching method so that Ti remains in a portion corresponding to the optical waveguide 4 including the branch optical waveguides 4a and 4b. The substrate was heated in oxygen at 10 ° C. for 10 hours to thermally diffuse Ti into LiNbO 3 to form an optical waveguide 4 having a depth of about 5 μm.

分岐光導波路部分の長さは20mm,光導波路の幅は7μ
mになるように調整した。分岐光導波路4aおよび4bの間
隔は約15μmとし、分岐部の角度は1゜に形成した。
The length of the branch optical waveguide is 20mm, and the width of the optical waveguide is 7μ.
m. The interval between the branch optical waveguides 4a and 4b was set to about 15 μm, and the angle of the branch portion was formed to 1 °.

次いで、バッファ層としてSiO2を500nmの厚さにスパ
ッタ法で形成した。
Next, SiO 2 was formed as a buffer layer to a thickness of 500 nm by a sputtering method.

信号電極(進行波信号電極)2および接地電極3はTi
−Au合金膜を蒸着したのち、光導波路4の上に重なるよ
うに所定の電極形状にパターンエッチングし、さらに、
その上に厚さ8μmのAuをめっきにより付着形成した。
終端抵抗RTは進行波信号電極2および接地電極3の特性
インピーダンスに合わせて50Ωになるように調整した。
The signal electrode (traveling wave signal electrode) 2 and the ground electrode 3 are Ti
After depositing an -Au alloy film, pattern etching is performed in a predetermined electrode shape so as to overlap the optical waveguide 4, and further,
Au having a thickness of 8 μm was formed thereon by plating.
The terminating resistance RT was adjusted to 50Ω in accordance with the characteristic impedance of the traveling wave signal electrode 2 and the ground electrode 3.

信号光用光ファイバ5にはシングルモード光ファイバ
を用い、光導波路4の光出射端41から信号光が導入でき
るように配設し、モニタ光用光ファイバ6にはマルチモ
ード光ファイバを用い、分岐光導波路4aおよび4bの合波
点43から放射される広がりを持った放射光10が導入でき
るように配設する。
A single mode optical fiber is used as the signal light optical fiber 5, the signal light is introduced from the light emitting end 41 of the optical waveguide 4, and a multimode optical fiber is used as the monitor light optical fiber 6. Arranged so that the divergent light 10 radiated from the multiplexing point 43 of the branch optical waveguides 4a and 4b can be introduced.

光出射端41に信号光用光ファイバ5を接続し、放射光
ビーム出射部分にモニタ光用光ファイバ6を接続するた
めに、両光ファイバ5および6をホルダ7に所定の位置
に嵌入固定し、それを通常の光ファイバ接続方法により
接続固定する。
In order to connect the signal light optical fiber 5 to the light emitting end 41 and connect the monitor light optical fiber 6 to the emitted light beam emitting portion, the two optical fibers 5 and 6 are fitted and fixed at predetermined positions in the holder 7. Then, it is connected and fixed by an ordinary optical fiber connection method.

モニタ光用光ファイバ6の光出射端61から出射したモ
ニタ用の放射光は、光検知器12で受光して電気信号に変
換したのち、信号処理・制御回路部8に入力し、光検知
器12の出力電気信号の変化に応じて、信号電極(進行波
信号電極)2に印加される入力信号電源13の直流バイア
スを変化させ、光変調器の動作点を制御するように構成
する。
The radiated light for monitoring emitted from the light emitting end 61 of the optical fiber for monitor light 6 is received by the light detector 12 and converted into an electric signal, and then input to the signal processing / control circuit unit 8 where the light is detected. The DC bias of the input signal power supply 13 applied to the signal electrode (traveling wave signal electrode) 2 is changed in accordance with the change of the output electric signal of 12, and the operating point of the optical modulator is controlled.

なお、前記諸図面で説明したものと同等の部分につい
ては同一符号を付し、かつ、同等部分についての説明は
省略する。
The same parts as those described in the above drawings are denoted by the same reference numerals, and the description of the same parts will be omitted.

第4図は本発明実施例の要部を示す図で、同図(イ)
は正面図、同図(ロ)は側面図である。ホルダ7には,
たとえば、軸受け状のルビービーズの中心に予めあけら
れた孔に、信号光を導入するコア50の径が9μmφのシ
ングルモード光ファイバを挿入し、また、中心から所要
の距離,たとえば、130〜150μmの中心距離を離して放
射光10を導入する位置にあけられた孔に,たとえば、コ
ア60の径が100μmφの放射光を受けるに充分な太さの
マルチモード光ファイバを挿入したのち、たとえば、紫
外線硬化のエポキシ樹脂接着材で接着固定する。
FIG. 4 is a view showing a main part of the embodiment of the present invention.
Is a front view, and (b) is a side view. Holder 7
For example, a single-mode optical fiber having a diameter of 9 μmφ for introducing signal light is inserted into a hole preliminarily formed in the center of a bearing-shaped ruby bead, and a predetermined distance from the center, for example, 130 to 150 μm. For example, after inserting a multimode optical fiber having a diameter sufficient for the core 60 of 100 μmφ into a hole formed at a position where the radiation light 10 is introduced at a distance of the center of the multi-mode optical fiber, for example, Adhesively fix with ultraviolet curing epoxy resin adhesive.

上記実施例では、信号光用光ファイバ5とモニタ光用
光ファイバ6とを同一のホルダ7に固定して使用した
が、それぞれ別々に光を導入するようにしてもよいこと
は勿論である。
In the above embodiment, the optical fiber 5 for signal light and the optical fiber 6 for monitor light are used by being fixed to the same holder 7, but it is a matter of course that light may be separately introduced.

また、上記実施例では、放射光の取り出しは光導波路
4の片側から、1本のモニタ光用光ファイバ6で行った
が、光導波路4の両側から、2本のモニタ光用光ファイ
バを用いて放射光の受光強度を上げ、感度を上げるよう
にしてもよい。
Further, in the above embodiment, the radiation light was extracted from one side of the optical waveguide 4 by one monitor optical fiber 6, but two monitor optical fibers were used from both sides of the optical waveguide 4. The received light intensity of the emitted light may be increased to increase the sensitivity.

以上述べた実施例は一例を示したもので、本発明の趣
旨に添うものである限り、使用する素材や構成など適宜
好ましいもの、あるいはその組み合わせを用いることが
できることは言うまでもない。
The embodiments described above are merely examples, and it is needless to say that materials and structures to be used can be suitably used or a combination thereof can be used as long as the purpose of the present invention is met.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明の構成によれば、動作点
がずれた場合に分岐光導波路4aおよび4bの合波点43から
放射される放射光をモニタ光として取り出し、光検知器
12と信号処理・制御回路部8で動作点のずれを検知し入
力信号電源13にフィードバックして、DCバイアスの調整
を行ない常に正しい動作点に保持するので、信号光の光
パワーに何ら影響を与えることなく,したがって、光フ
ァイバの伝送距離の短縮を招くことがなく、高速・長距
離光通信用の光変調器の性能,信頼性の向上に寄与する
ところが極めて大きい。
As described above, according to the configuration of the present invention, when the operating point shifts, the radiation emitted from the multiplexing point 43 of the branch optical waveguides 4a and 4b is extracted as monitor light, and the light detector
12 and the signal processing / control circuit unit 8 detect a shift in the operating point and feed back to the input signal power supply 13 to adjust the DC bias and always maintain the correct operating point, so that there is no effect on the optical power of the signal light. Therefore, it does not shorten the transmission distance of the optical fiber and greatly contributes to the improvement of the performance and reliability of the optical modulator for high-speed and long-distance optical communication.

【図面の簡単な説明】[Brief description of the drawings]

第1図は合波点における放射光を説明する図、 第2図は本発明の原理の要点を説明する図、 第3図は本発明実施例の構成を示す図、 第4図は本発明実施例の要部を示す図、 第5図はY分岐光導波路マッハツェンダ型外部変調器の
構成例を示す図、 第6図は動作点シフトを説明する図、 第7図はDCドリフトを説明する図、 第8図は従来の安定化外部変調器の構成例を示す図であ
る。 図において、 1は基板、 2は信号電極、 3は接地電極、 4は光導波路、 4a,4bは分岐光導波路、 5は信号光用光ファイバ、 6はモニタ光用光ファイバ、 7はホルダ、 8は信号処理・制御回路部、 9は半導体レーザ、 10は放射光、 11はバッファ層、 12は光検知器、 13は入力信号電源、 40は光入射端、 41は光出射端、 42は分岐点、 43は合波点である。
FIG. 1 is a diagram for explaining radiation at a multiplexing point, FIG. 2 is a diagram for explaining essential points of the principle of the present invention, FIG. 3 is a diagram showing a configuration of an embodiment of the present invention, and FIG. FIG. 5 is a diagram illustrating a main part of the embodiment, FIG. 5 is a diagram illustrating a configuration example of a Y-branch optical waveguide Mach-Zehnder type external modulator, FIG. 6 is a diagram illustrating operating point shift, and FIG. 7 is a diagram illustrating DC drift. FIG. 8 is a diagram showing a configuration example of a conventional stabilized external modulator. In the figure, 1 is a substrate, 2 is a signal electrode, 3 is a ground electrode, 4 is an optical waveguide, 4a and 4b are branch optical waveguides, 5 is an optical fiber for signal light, 6 is an optical fiber for monitor light, 7 is a holder, 8 is a signal processing / control circuit unit, 9 is a semiconductor laser, 10 is emitted light, 11 is a buffer layer, 12 is a photodetector, 13 is an input signal power supply, 40 is a light input end, 41 is a light output end, and 42 is a light output end. The branch point 43 is a combining point.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】平面に加工した電気光学効果を有する基板
(1)と、 前記基板(1)上に形成され、光入射端(40)と光出射
端(41)との間に分岐光導波路(4a)および(4b)を有
する光導波路(4)と、 前記分岐光導波路(4a)上に設けられた信号電極(2)
と、 前記分岐光導波路(4b)上に設けられた接地電極(3)
と、 前記光導波路(4)の光出射端(41)に近接して、信号
光が導入されるごとくに配置された信号光用光ファイバ
(5)と、 前記分岐光導波路(4a)および(4b)の合波点(43)か
ら放射される放射光が導入されるごとくに配置されたモ
ニタ光用光ファイバ(6)と、 前記モニタ光用光ファイバ(6)の光出射端(61)に配
設された前記放射光を受光する光検知器(12)と、 前記光検知器(12)の出力電気信号の変化に応じて、前
記信号電極(2)に印加される入力信号電圧の直流バイ
アスを変化させて、光変調器の動作点を制御する信号処
理・制御回路部(8)とを少なくとも備えることを特徴
とした光変調器。
1. A substrate (1) having an electro-optic effect processed into a plane, and a branch optical waveguide formed on the substrate (1) and disposed between a light incident end (40) and a light output end (41). An optical waveguide (4) having (4a) and (4b); and a signal electrode (2) provided on the branch optical waveguide (4a).
And a ground electrode (3) provided on the branch optical waveguide (4b).
An optical fiber for signal light (5) arranged near the light emitting end (41) of the optical waveguide (4) so as to introduce signal light; and the branch optical waveguides (4a) and ( A monitor light optical fiber (6) arranged so that radiation emitted from the multiplexing point (43) of 4b) is introduced; and a light emitting end (61) of the monitor light optical fiber (6). A photodetector (12) for receiving the emitted light, the input signal voltage being applied to the signal electrode (2) according to a change in an output electric signal of the photodetector (12). An optical modulator comprising at least a signal processing / control circuit section (8) for controlling an operating point of an optical modulator by changing a DC bias.
JP1285408A 1989-11-01 1989-11-01 Light modulator Expired - Fee Related JP2738078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1285408A JP2738078B2 (en) 1989-11-01 1989-11-01 Light modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1285408A JP2738078B2 (en) 1989-11-01 1989-11-01 Light modulator

Publications (2)

Publication Number Publication Date
JPH03145623A JPH03145623A (en) 1991-06-20
JP2738078B2 true JP2738078B2 (en) 1998-04-08

Family

ID=17691129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1285408A Expired - Fee Related JP2738078B2 (en) 1989-11-01 1989-11-01 Light modulator

Country Status (1)

Country Link
JP (1) JP2738078B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5907426A (en) * 1996-06-28 1999-05-25 Kabushiki Kaisha Toyota Chuo Kenkyusho Stabilizing device for optical modulator
JP3717605B2 (en) * 1996-09-05 2005-11-16 富士通株式会社 Optical modulator module
JPH10221664A (en) * 1997-02-12 1998-08-21 Fujitsu Ltd Light modulator
JP3742477B2 (en) * 1997-02-17 2006-02-01 富士通株式会社 Light modulator
JP4164179B2 (en) 1998-12-18 2008-10-08 富士通株式会社 Optical modulator, bias control circuit thereof, and optical transmitter including the optical modulator
DE60132056T2 (en) 2000-03-15 2008-12-18 Sumitomo Osaka Cement Co., Ltd. OPTICAL WAVE MODULATOR WITH OUTDOOR LIGHT MONITOR
US6904186B2 (en) 2001-11-16 2005-06-07 Ngk Insulators, Ltd. Optical modulators and a method for modulating light
JP3974792B2 (en) 2002-02-07 2007-09-12 富士通株式会社 Optical waveguide device and optical device
JP4083657B2 (en) 2003-03-28 2008-04-30 住友大阪セメント株式会社 Bias control method and apparatus for optical modulator
US7474812B2 (en) 2004-06-15 2009-01-06 Anritsu Corporation Monitor photodetector equipped optical modulator
WO2006090863A1 (en) 2005-02-22 2006-08-31 Ngk Insulators, Ltd. Optical modulator
JP4719135B2 (en) * 2006-11-28 2011-07-06 富士通オプティカルコンポーネンツ株式会社 Optical waveguide device and optical device
US7764851B2 (en) 2007-11-01 2010-07-27 Ngk Insulators, Ltd. Optical modulators
GB201020972D0 (en) * 2010-12-10 2011-01-26 Oclaro Technology Ltd Assembly for monitoring output characteristics of a modulator
CN106773147A (en) * 2016-12-29 2017-05-31 北京航天时代光电科技有限公司 A kind of monitoring device for the control of lithium niobate electrooptic modulator bias voltage

Also Published As

Publication number Publication date
JPH03145623A (en) 1991-06-20

Similar Documents

Publication Publication Date Title
JP2738078B2 (en) Light modulator
US7340114B2 (en) Optical waveguide device and optical modulator
JP2800368B2 (en) Light modulator
US5953466A (en) Optical modulator
US6668103B2 (en) Optical modulator with monitor having 3-dB directional coupler or 2-input, 2-output multimode interferometric optical waveguide
JP4911529B2 (en) Light modulator
JP4241622B2 (en) Light modulator
US5963357A (en) Optical modulator
WO2014034649A1 (en) Optical modulator
US7474812B2 (en) Monitor photodetector equipped optical modulator
JPH05134220A (en) Optical transmitter
JPH10260328A (en) Optical modulating element
JP2621684B2 (en) Operating point control method for optical modulator
JP2010230741A (en) Optical modulator
JP2890585B2 (en) Light modulator
JP2002182050A (en) Optical waveguide element with output light monitor
JP2004163675A (en) Organic waveguide type optical modulator with monitor, optical modulation apparatus and optical integrated circuit
JP2870071B2 (en) Light modulator
JP3717639B2 (en) Optical modulator module
JPH02165117A (en) Operation stabilizing method for waveguide type optical modulator
JP2564999B2 (en) Light modulator
JPH10213784A (en) Integration type optical modulator
JPH05150200A (en) Optical transmitter
JP2001264575A (en) Optical waveguide type modulator with output light monitor
JPH06130337A (en) Analog modulator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees