JPH03200830A - Polyester or polyester carbonate resin - Google Patents

Polyester or polyester carbonate resin

Info

Publication number
JPH03200830A
JPH03200830A JP1342329A JP34232989A JPH03200830A JP H03200830 A JPH03200830 A JP H03200830A JP 1342329 A JP1342329 A JP 1342329A JP 34232989 A JP34232989 A JP 34232989A JP H03200830 A JPH03200830 A JP H03200830A
Authority
JP
Japan
Prior art keywords
structural unit
resin
polyester
hydrocarbon group
formulas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1342329A
Other languages
Japanese (ja)
Other versions
JPH0713128B2 (en
Inventor
Shigeru Sasaki
繁 佐々木
Mitsuo Matsumoto
松本 光郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP1342329A priority Critical patent/JPH0713128B2/en
Publication of JPH03200830A publication Critical patent/JPH03200830A/en
Publication of JPH0713128B2 publication Critical patent/JPH0713128B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title resin excellent in transparency, heat resistance, surface hardness, etc., by selecting a polyester or polyester carbonate resin comprising a plurality of specified structural units in specified molar fractions. CONSTITUTION:A polyester or polyester carbonate resin haivng number-average molecular weight of 10000-100000, structural units of formulas I-V (wherein (m) is 0-2; A is a bivalent saturated aliphatic, saturated alicyclic or aromatic hydrocarbon group; (n) is (m); and B is A), and such a composition that the sum of the molar fractions of structural units I-III is substantially equal to the sum of the molar fractions of structural units IV-V, the molar fractions of structural units I and IV are 5mol% or more, respectively, and the sum of these two molar fractions is 50-95mol%.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は新規なポリエステルまたはポリエステルカーボ
ネート樹脂に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a novel polyester or polyester carbonate resin.

本発明によシ提供されるポリエステルtfcはポリエス
テルカーボネート樹脂は低複屈折性、高耐熱性などの優
f′Lfc性能を有してかり、光ディスク、光カード等
の光記録媒体;レンズ、プリズム、回折格子等の光学素
子などの光学用成形品の材料に適する。
The polyester TFC provided by the present invention has excellent f'Lfc performance such as low birefringence and high heat resistance, and is suitable for use in optical recording media such as optical discs and optical cards; lenses, prisms, Suitable as a material for optical molded products such as optical elements such as diffraction gratings.

〔従来の技術〕[Conventional technology]

近年、光学用部品や自動車用部品をはじめとする様々な
分野における成形品の材料として種々の特性に優れた透
明性の樹脂が要求されている。中でも光ディスクや光カ
ードといった光記録媒体に釦いては、追記型や消去可能
型等のユーザーが情報を記録できる方式のものが登場し
、かかる記録方式の発展にともない基体材料の緒特性に
対する要求のレベルも高くなってきている。特に要求さ
れるのは低吸水性(低吸水反り性)、低複屈折性、高耐
熱性の3特性である。現在、基体材料として用いられて
いるものにガラスジよびプラスチック材料があるが、ガ
ラスは量産性が低く、コストがかか9、重く、割れ易い
といった短所があシ、かかる短所のないプラスチック材
料が基体材料の主流を占めているのが現状である。會た
。凹/凸レンズやフレネルレンズ等のレンズ、回折格子
等の光学素子についても、用途の拡大に連れて光記録媒
体におけると同様の理由によりガラスよりもプラスチッ
ク材料が主流になりつつある。
In recent years, transparent resins with excellent various properties have been required as materials for molded products in various fields including optical parts and automobile parts. Among optical recording media such as optical disks and optical cards, write-once types and erasable types that allow users to record information have appeared, and with the development of such recording methods, requirements for the characteristics of the base material have increased. The level is also getting higher. Three properties are particularly required: low water absorption (low water absorption warpage), low birefringence, and high heat resistance. Currently, glass and plastic materials are used as substrate materials, but glass has disadvantages such as low mass production, high cost9, heavy weight, and breakability; plastic materials, which do not have these disadvantages, are suitable for substrate materials. At present, it is the mainstream material. We met. For optical elements such as lenses such as concave/convex lenses and Fresnel lenses and diffraction gratings, plastic materials are becoming more mainstream than glass for the same reasons as in optical recording media as their applications expand.

現在、透明光学材料として用いられているものにポリメ
チルメタクリレート(以下、これをPMMAと略称する
)およびビスフェノールAポリカーボネート(以下、こ
れをPCと略称する)がある。PMMAは複屈折が極め
て低いものの吸水(吸温)性が高く、吸水によって反シ
や変形が生じ、光学特性の低下を招き易いという欠点を
有している。特に、PMMAをデジタルオーディオディ
スクのような1枚の基体からなる光記録媒体の材料とし
て用いた場合、情報の忠実な再生が不可能となることが
ある。また、PMMAを基体材料とした光記録媒体は耐
熱性に若干問題を有する。
Polymethyl methacrylate (hereinafter abbreviated as PMMA) and bisphenol A polycarbonate (hereinafter abbreviated as PC) are currently used as transparent optical materials. Although PMMA has extremely low birefringence, it has a high water absorption (thermal absorption) property, and has the disadvantage that water absorption causes warping and deformation, which tends to cause deterioration of optical properties. In particular, when PMMA is used as a material for an optical recording medium consisting of a single substrate such as a digital audio disc, faithful reproduction of information may become impossible. Furthermore, optical recording media using PMMA as a base material have some problems in heat resistance.

一方、PCは吸水性が低く、吸水反りもほとんどなく、
耐熱性においても問題はないが、複屈折が大きいという
難点を有している。デジタルオーディオディスクや小径
のレンズなどでは成形条件を高精度に制御することによ
シ複屈折を要求レベル以下に抑えることが可能であるが
、30cm径のレーザービジョンや大径のレンズにおい
ては成形条件を高精度に制御することは極めて困難であ
る。
On the other hand, PC has low water absorption and almost no warping due to water absorption.
Although there is no problem with heat resistance, it has the disadvantage of high birefringence. For digital audio discs and small diameter lenses, it is possible to suppress birefringence to below the required level by controlling the molding conditions with high precision, but for 30 cm diameter laser vision and large diameter lenses, the molding conditions It is extremely difficult to control with high precision.

従来、ノルボルナン骨格、ベルヒドロジメタノナフタレ
ン骨格またはベルヒドロトリメタノアントラセン骨格を
有するポリエステルのガラス転移温度はこの骨格の順で
高くなシ、かつこれらのポリエステルはそれらの骨格を
有していないポリエステルに比べて高いガラス転移温度
を有することが報告されており〔ジャーナル・オプ・ポ
リマー・サイエンス:ポリマー・ケミストリイ・エディ
タE 7 (Journal of Polymer 
5cience:Polymer ChemstryE
dition)、10巻、3191頁(1972年)参
照〕、また上記の骨格を有するポリエステルは寸法安定
性に優れておシ、写真フィルムの基体などに用いられる
ことが知られている(米国防衛特許第896.033号
明細書参照)。
Conventionally, the glass transition temperature of polyesters having a norbornane skeleton, a perhydrodimethanonaphthalene skeleton, or a perhydrodrimetanoanthracene skeleton increases in the order of these skeletons, and these polyesters have a higher temperature than polyesters without these skeletons. [Journal of Polymer Science: Polymer Chemistry Editor E 7]
5science: Polymer ChemtryE
Polyester having the above-mentioned skeleton has excellent dimensional stability and is known to be used as a substrate for photographic film (U.S. Defense Patent Application). No. 896.033).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述したように、従来、透明光学材料として用いられて
いるPMMAには吸水によって反りや変形が生じ易く、
かつ耐熱性が不十分であるという欠点があり、捷たPC
には複屈折が大きいという欠点がある。
As mentioned above, PMMA, which has been conventionally used as a transparent optical material, tends to warp and deform due to water absorption.
It also has the disadvantage of insufficient heat resistance, making it difficult for PCs to
has the disadvantage of high birefringence.

しかして、本発明の目的は、ガラス転移温度が高く耐熱
性に優れ、低複屈折性と優れた透明性を有し、かつ吸水
による反り、変形が少ない新規なポリエステル捷たはポ
リエステルカーボネート樹脂を提供することにある。
Therefore, the object of the present invention is to develop a new polyester resin or polyester carbonate resin that has a high glass transition temperature, excellent heat resistance, low birefringence, and excellent transparency, and is less likely to warp or deform due to water absorption. It is about providing.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば、上記の目的は、下記式(1)、(n)
、(III)、(■)、(IV)で示される構造単位(
式中、mは0.1または2を表す。) (式中、Aは2価の飽和脂肪族炭化水素基、飽和脂肪族
炭化水素基筐たは芳香族炭化水素基を表す。) 以上であり、かつ該構造単位(1)のモル分率と構造単
位(IV)のモル分率の和が50〜95モル多である組
成を有する数平均分子量10,000〜100.000
のポリエステルまたはポリエステルカーボネート樹脂を
提供することによって達成される。
According to the present invention, the above object is achieved by the following formulas (1), (n)
, (III), (■), (IV) structural units (
In the formula, m represents 0.1 or 2. ) (In the formula, A represents a divalent saturated aliphatic hydrocarbon group, a saturated aliphatic hydrocarbon group, or an aromatic hydrocarbon group.) and the molar fraction of the structural unit (1) and a number average molecular weight of 10,000 to 100.000 having a composition in which the sum of the mole fractions of structural unit (IV) is 50 to 95 moles.
polyester or polyester carbonate resin.

上記の構造単位を詳細に説明する。The above structural units will be explained in detail.

構造単位(りは具体的には次のものである。Structural units (specifically, the following are:

(式中、nはO,1寸たは2を表す。)(■):  モ
0−B−0す (式中、Bは2価の飽和脂肪族炭化水素基、飽和脂環式
炭化水素基または芳香族炭化水素基を表す。) からなり、構造単位(1)のモル分率と構造単位(It
)のモル分率と構造単位(I[[)のモル分率の和が構
造単位(IV)のモル分率と構造単位(V)のモル分率
の和に実質的に等しく、構造単位(1)のモル分率およ
び構造単位(IV)のモル分率がそれぞれ5モル多構造
単位(1)を有する樹脂の耐熱性は一般式(1)におけ
るmが大きい方が優れていることから、樹脂はmが1塘
たは2であるもの、すなわち、次の構造単位を有する場
合が好オしい。
(In the formula, n represents O, 1 dimension or 2.) (■): Mo0-B-0S (In the formula, B is a divalent saturated aliphatic hydrocarbon group, a saturated alicyclic hydrocarbon group) group or aromatic hydrocarbon group), and the mole fraction of the structural unit (1) and the structural unit (It
) and the mole fraction of the structural unit (I[[) is substantially equal to the sum of the mole fraction of the structural unit (IV) and the mole fraction of the structural unit (V), and Since the heat resistance of a resin having a polystructural unit (1) with a mole fraction of 1) and a mole fraction of structural unit (IV) of 5 moles each is better as m in general formula (1) is larger, Preferably, the resin has m of 1 or 2, that is, the resin has the following structural units.

構造単位(II)は−紋穴(II)におけるAが炭素数
1〜20の2価の飽和脂肪族炭化水素基、炭素数3〜2
0の2価の飽和脂環式炭化水素基すたは炭素数6〜20
の2価の芳香族炭化水素基である場合が好壕しく、なか
でも炭素数1〜12の2価の飽和脂肪族炭化水素基、炭
素数4〜15の2価の飽和脂環式炭化水素基オたは炭素
数6〜12の2価の芳香族炭化水素基である場合がよう
好ましい。
Structural unit (II) is - A in the hole (II) is a divalent saturated aliphatic hydrocarbon group having 1 to 20 carbon atoms, and 3 to 2 carbon atoms.
0 divalent saturated alicyclic hydrocarbon group or carbon number 6 to 20
Divalent aromatic hydrocarbon groups are preferred, particularly divalent saturated aliphatic hydrocarbon groups having 1 to 12 carbon atoms, and divalent saturated alicyclic hydrocarbon groups having 4 to 15 carbon atoms. The group is preferably a divalent aromatic hydrocarbon group having 6 to 12 carbon atoms.

構造単位(II)の好適例を次に示す。Preferred examples of structural unit (II) are shown below.

(i)  Aが2価の飽和脂肪族炭化水素基を表す場合
:G11)  Aが2価の芳香族炭化水素基を表す場合
:上記の構造単位(II)のうち、特に次の構造単位が
本発明の樹脂に優れた耐熱性を付与する。
(i) When A represents a divalent saturated aliphatic hydrocarbon group: G11) When A represents a divalent aromatic hydrocarbon group: Among the above structural units (II), the following structural units are particularly Provides excellent heat resistance to the resin of the present invention.

H3 (ii)  Aが2価の飽和脂環式炭化水素基を表す場
合:さらに、次の構造単位が本発明の樹脂に最も優れた
耐熱性を与え′る。
H3 (ii) When A represents a divalent saturated alicyclic hydrocarbon group: Furthermore, the following structural unit provides the resin of the present invention with the most excellent heat resistance.

構造単位(IV)は具体的には次のものである。Specifically, the structural unit (IV) is as follows.

なお、上記(iii)に属する構造単位(n)を有する
本発明の樹脂については、これを例えば光磁気記録媒体
用基体のような、特に低複屈折性が要求される用途に使
用する場合には、その構造単位のモル分率は低く抑えら
れていることが必要である。
In addition, regarding the resin of the present invention having the structural unit (n) belonging to the above (iii), when it is used in applications that particularly require low birefringence, such as a substrate for magneto-optical recording media, It is necessary that the molar fraction of its structural units be kept low.

構造単位(1)および構造単位(II)はいずれも対応
するジカルボン酸筐たばその誘導体、例えばフェニルエ
ステル、アルキルエステル、シクロアルキルエステル、
酸塩化物などから誘導される。本発明の樹脂を製造する
際の重合の容易さからフェニルエステル筐たはアルキル
エステルを用いるのが好ましい。
Structural unit (1) and structural unit (II) are both corresponding dicarboxylic acid derivatives, such as phenyl esters, alkyl esters, cycloalkyl esters,
Derived from acid chlorides, etc. It is preferable to use phenyl ester or alkyl ester because of ease of polymerization when producing the resin of the present invention.

構造単位(III)は炭酸誘導体、例えばジフェニルカ
ーボネート、ジアルキルカーボネート、ジシクロカーボ
ネートtたはホスゲンから誘導される。
Structural unit (III) is derived from carbonic acid derivatives, such as diphenyl carbonate, dialkyl carbonate, dicyclocarbonate or phosgene.

本発明の樹脂の製造の容易さからジフェニルカーボネー
トまたはジアルキルカーボネートを用いるのが経管しい
It is preferable to use diphenyl carbonate or dialkyl carbonate because the resin of the present invention can be easily produced.

構造単位(EV)を有する樹脂の耐熱性は一紋穴mlに
おけるnが大きい方が優れていることから、樹脂はnが
1または2であるもの、すなわち、次の構造を有する場
合が好會しい。
Since the heat resistance of a resin having a structural unit (EV) is better when n is larger in ml, it is preferable for the resin to have n of 1 or 2, that is, to have the following structure. Yes.

構造単位(V)は−紋穴(V)におけるBが炭素数1〜
20の2価の飽和脂肪族炭化水素基、炭素数3〜20の
2価の飽和脂環式炭化水素基管たは炭素数6〜20の2
価の芳香族炭化水素基である場合が経管しく、なかでも
炭素数1〜12の2価の飽和脂肪族炭化水素基、炭素数
4〜15の2価の飽和脂環式炭化水素基オたは炭素数6
〜12の2価の芳香族炭化水素基である場合がよりtE
tしい。
The structural unit (V) is - B in the hole (V) has 1 or more carbon atoms.
20 divalent saturated aliphatic hydrocarbon group, a divalent saturated alicyclic hydrocarbon group having 3 to 20 carbon atoms, or 2 having 6 to 20 carbon atoms
In particular, divalent saturated aliphatic hydrocarbon groups having 1 to 12 carbon atoms, divalent saturated alicyclic hydrocarbon groups having 4 to 15 carbon atoms, etc. or carbon number 6
~12 divalent aromatic hydrocarbon groups are more tE
It's so good.

なお、飽和脂環式炭化水素基は酸素原子を含んでいても
よいスピロ環を有するものをも含む。
Note that the saturated alicyclic hydrocarbon group also includes one having a spiro ring which may contain an oxygen atom.

構造単位(V)の好適例を次に示す。Preferred examples of the structural unit (V) are shown below.

(イ) Bが2価の飽和脂肪族炭化水素基を表す場合ニ
ーocHz()口BCHzO− (ハ) Bが2価の芳香族炭化水素基を表す場合:(ロ
) Bが2価の飽和脂環式炭化水素基を表す場合:上記
の構造単位(V)のうち、特に次の構造単位が本発明の
樹脂に優れた耐熱性および機械的強度を付与する。
(a) When B represents a divalent saturated aliphatic hydrocarbon group: NiocHz ( ) BCHzO- (c) When B represents a divalent aromatic hydrocarbon group: (b) When B represents a divalent saturated When representing an alicyclic hydrocarbon group: Among the above structural units (V), the following structural units particularly impart excellent heat resistance and mechanical strength to the resin of the present invention.

H3 Haに C:kls さらに、次の構造単位が本発明の樹脂に最も優れた耐熱
性および機械的強度を与える。
H3Ha to C:kls Furthermore, the following structural units provide the resin of the present invention with the most excellent heat resistance and mechanical strength.

−0CR2G(20−−0CH2CH2CH2CH20
+、 −0CH2−C)CH20−1なお、上記←うに
属する構造単位(V)を有する本発明の樹脂については
、これを例えば光磁気記録媒体用基体のような、特に低
複屈折性が要求される用途に使用する場合には、その構
造単位°のモル分率は低く抑えられていることが必要で
ある。
-0CR2G(20--0CH2CH2CH2CH20
+, -0CH2-C)CH20-1 Note that the resin of the present invention having the structural unit (V) belonging to the above ← is used for materials that require particularly low birefringence, such as substrates for magneto-optical recording media. When used in applications where the structural unit is used, it is necessary that the molar fraction of the structural unit is kept low.

構造単位(IV)および構造単位(V)はいずれも対応
するジヒドロキジル化合物から誘導される。
Structural unit (IV) and structural unit (V) are both derived from the corresponding dihydroxyl compound.

本発明の樹脂において構造単位(I)および構造単位(
II)は構造単位(It/) tたは構造単位(V)と
エステル結合によう結合する。寸た、構造単位(III
)は構造単位(IV)−!たは構造単位(V)とカーボ
ネート結合によう結合する。
In the resin of the present invention, the structural unit (I) and the structural unit (
II) is bonded to the structural unit (It/)t or the structural unit (V) through an ester bond. size, structural unit (III
) is the structural unit (IV)-! or bond with structural unit (V) through a carbonate bond.

本発明の樹脂において構造単位(1)のモル分率Vおよ
び構造単位(IV)のモル分率yはそれぞれ5モル多以
上であり、かつそれらの和(v+y)は50〜95モル
多である。モル分率の和(v+y)は60〜95モル多
の範囲であることが好會しく、70〜90モル多の範囲
であることがよう好ましい。該モル分率が50モル多未
満である場合、樹脂は十分な耐熱性を有していないこと
があう1また95モル優を越える場合、樹脂は充分な耐
熱性を有するものの、その機械的強度が低く、いずれも
実用的ではない。構造単位(n)、  (III)およ
び(■のモル分率w、xおよび2は、式v−1−w−1
−x=50、y+z=soを満たす。
In the resin of the present invention, the mole fraction V of the structural unit (1) and the mole fraction y of the structural unit (IV) are each 5 moles or more, and their sum (v+y) is 50 to 95 moles. . The sum of mole fractions (v+y) is preferably in the range of 60 to 95 moles, more preferably in the range of 70 to 90 moles. If the mole fraction is less than 50 moles, the resin may not have sufficient heat resistance; if it exceeds 1 or 95 moles, the resin may have sufficient heat resistance, but its mechanical strength may be poor. are both impractical. The mole fractions w, x and 2 of the structural units (n), (III) and (■ are of the formula v-1-w-1
-x=50, y+z=so.

本発明の樹脂は、ゲルパーミエイションクロマトグラフ
イー(以下、これをGPCと略称する)によう求めた数
平均分子量(ポリスチレン換算)が10,000〜10
0,000の範囲にあるものである。
The resin of the present invention has a number average molecular weight (polystyrene equivalent) determined by gel permeation chromatography (hereinafter referred to as GPC) of 10,000 to 10.
It is in the range of 0,000.

本発明の樹脂の数平均分子量は15.000〜go、o
ooの範囲にあることが好寸しく、20.000〜s 
o、o o oの範囲にあることがよシ好オしい。数平
均分子量が10,000よう小さい樹脂は脆く、実用上
充分な強度を有しておらず、筐た数平均分子量が100
,000よシ大きい樹脂は製造が困難となる。
The number average molecular weight of the resin of the present invention is from 15.000 to go, o
It is preferable to be in the range of oo, 20,000 to s
It is preferable that it be in the range of o, o o o. Resins with a number average molecular weight as small as 10,000 are brittle and do not have sufficient strength for practical use.
Resins larger than ,000 are difficult to manufacture.

本発明の樹脂は公知の方法に従って製造することができ
る。公知の方法は、例えば、ジカルボン酸のジフェニル
エステルおよび/またはジアルキルエステルとジフェニ
ルカーボネートおよび/オたはジアルキルカーボネート
とジヒドロキジル化合物の混合物からの脱フエノール反
応および/筐タハ脱アルコール反応、ホスゲンとジカル
ボン酸塩化物とジヒドロキジル化合物の混合物からの脱
塩化水素反応、ホスゲンとジカルボン酸塩化物とジヒド
ロキジル化合物のアルカリ金属塩の混合物からの脱アル
カリ金属塩化物反応等の反応を必要に応じて適当な触媒
の存在下に行うことによシ実施される。反応の形態とし
ては反応の種類に応じて溶融法や溶液法等の手法を採用
できるが、反応の容易さから溶融法が好咳しい。
The resin of the present invention can be produced according to known methods. Known methods include, for example, dephenolization and/or dealcoholization reactions from mixtures of diphenyl esters and/or dialkyl esters of dicarboxylic acids, diphenyl carbonates and/or dialkyl carbonates, and dihydroxyl compounds, and phosgene and dicarboxylic acids. Reactions such as dehydrochlorination reaction from a mixture of chloride and dihydroxyl compound, dealkali metal chloride reaction from mixture of phosgene, dicarboxylic acid chloride, and alkali metal salt of dihydroxyl compound, etc., can be carried out using a suitable catalyst as necessary. It is carried out by carrying out in the presence of. As for the form of the reaction, techniques such as a melt method and a solution method can be adopted depending on the type of reaction, but the melt method is preferred because of the ease of reaction.

以下に本発明の樹脂を溶融法により製造する場合につい
て説明する。触媒としては、例えばテトラアルキルオル
ンチタネート、酢酸亜鉛、酸化アンチモン、酸化ゲルマ
ニウム;ナトリウムメトキシド、カリウムt−ブトキシ
ド等の種々の金属アルコキシド;リチウム、ナトリウム
等のアルカリ金属;水素化リチウム、水素化ナトリウム
等のアルカリ金属水素化物;水酸化リチウム、水酸化ナ
トリウム等のアルカリ金属水酸化物;金属ハロゲン化物
などが使用される。原料化合物として、芳香族ジヒドロ
キジル化合物を用いる場合は、反応性の高さからアルカ
リ金属、アルカリ金属水素化物またはアルカリ金属水酸
化物を触媒として用いるのが好ましい。触媒の使用量は
特に制限されないが、通常は原料化合物全体に対して0
.0001〜1モル嘩の範囲である。触媒の使用量が少
ない場合には、反応速度が極端に低下し、また触媒の使
用量が多過ぎる場合には、得られる樹脂の吸水率が上昇
したシ、着′色を招くことがある。重縮合反応は窒素、
アルゴン、二酸化炭素等の不活性ガス雰囲気中で触媒の
存在下に加熱しながら原料化合物を攪拌し、発生するア
ルコールまたはフェノールを留出させることにより行わ
れる。反応温度は原料化合物および発生するアルコール
すたはフェノールの沸点ならびに要求される反応速度に
よって異なるが、通常150〜300℃の範囲である。
The case where the resin of the present invention is manufactured by a melting method will be explained below. Examples of catalysts include tetraalkyl orne titanates, zinc acetate, antimony oxide, germanium oxide; various metal alkoxides such as sodium methoxide and potassium t-butoxide; alkali metals such as lithium and sodium; lithium hydride, sodium hydride, etc. Alkali metal hydrides such as lithium hydroxide and sodium hydroxide; metal halides and the like are used. When an aromatic dihydroxyl compound is used as a raw material compound, it is preferable to use an alkali metal, an alkali metal hydride, or an alkali metal hydroxide as a catalyst because of its high reactivity. The amount of catalyst used is not particularly limited, but it is usually 0% based on the entire raw material compound.
.. It is in the range of 0,001 to 1 mol. If the amount of the catalyst used is too small, the reaction rate will be extremely low, and if the amount of the catalyst used is too large, the resulting resin may have increased water absorption and coloration. The polycondensation reaction uses nitrogen,
This is carried out by stirring the raw material compound while heating it in the presence of a catalyst in an inert gas atmosphere such as argon or carbon dioxide, and distilling off the generated alcohol or phenol. The reaction temperature varies depending on the boiling point of the raw material compound and the alcohol phenol generated and the required reaction rate, but is usually in the range of 150 to 300°C.

反応の後半では必要に応じて系を減圧にして反応を追い
込む。この際の圧は0.001〜100wHyの範囲で
ある。反応終了後、得られた樹脂を反応器よりストラン
ド状に押し出ししたのちペレタイザにてペレット化する
か、筐たは塊状で取り出して粉砕する。
In the latter half of the reaction, the pressure of the system is reduced as necessary to drive the reaction. The pressure at this time is in the range of 0.001 to 100 wHy. After the reaction is completed, the obtained resin is extruded from the reactor in the form of a strand and then pelletized using a pelletizer, or taken out in the form of a casing or block and pulverized.

上記のようにして製造された本発明の樹脂は、ガラス転
移温度が高く耐熱性に優れ、低複屈折性と優れた透明性
を有する。筐た本発明の樹脂は吸水によって反#)また
は変形を生じない。
The resin of the present invention produced as described above has a high glass transition temperature, excellent heat resistance, low birefringence, and excellent transparency. The resin of the present invention contained in the casing does not undergo deformation or deformation due to water absorption.

本発明の樹脂は公知の任意の方法、例えば、プレス成形
、押出成形、射出成形、射出圧縮成形等の溶融成形法に
よシ成形することができる。筐た、本発明の樹脂を適当
な溶媒に溶解することにょうキャスト法にようフィルム
にすることもできる。
The resin of the present invention can be molded by any known method, for example, melt molding methods such as press molding, extrusion molding, injection molding, and injection compression molding. Alternatively, the resin of the present invention can be dissolved in a suitable solvent to form a film by a casting method.

溶融成形の場合、樹脂温度は通常200〜400℃、金
型温度は40〜150℃の範囲にそれぞれ設定される。
In the case of melt molding, the resin temperature is usually set in the range of 200 to 400°C, and the mold temperature is set in the range of 40 to 150°C.

成形の際には、必要に応じて本発明の樹脂に熱安定剤、
光安定剤、帯電防止剤、潤滑剤、無機筐たは有機の充填
剤、染料、顔料等を加えてもよい。
During molding, a heat stabilizer,
Light stabilizers, antistatic agents, lubricants, inorganic or organic fillers, dyes, pigments, etc. may be added.

本発明の樹脂は一旦平板や簡単な形状に成形したのちに
無機または有機の材料と積層することも、接着あるいは
融着によシ複雑な形状とすることも、表面にエンボス加
工などの高次加工を施すことも可能である。
The resin of the present invention can be formed into a flat plate or a simple shape and then laminated with inorganic or organic materials, or can be made into a complex shape by adhesion or fusion, or can be formed into a high-quality material such as embossing on the surface. It is also possible to perform processing.

本発明の樹脂を例えば読み出し専用光記録媒体用基体の
材料として用いる場合には、捷ず本発明の樹脂をグルー
プや信号等を記録した金型な用いて射出成形等によ#)
jlii形することによシ、該基体を得る。この基体に
アル□ニウム等の金属を真空蒸着等の方法によう情報面
上に成膜し、次いで保護ポリマー層を成形するか、また
は該表面が金属で成膜された情報面を面と面で2枚貼シ
合わせる。
When the resin of the present invention is used, for example, as a material for a substrate for a read-only optical recording medium, the resin of the present invention is used in a mold in which groups, signals, etc. are recorded, and is used for injection molding, etc.)
The substrate is obtained by molding. On this substrate, a metal such as aluminum is deposited on the information surface using a method such as vacuum evaporation, and then a protective polymer layer is formed, or the information surface on which the surface is made of metal is placed face-to-face. Paste the two sheets together.

情報記録層は本発明の樹脂からなる平担な基体の上に光
硬化性の樹脂を用いて2P法によって設けてもよい。筐
た、例えば、成形した基体の表面に酸化テルル、テルビ
ウム−鉄−コノくルト系合金等の無機物筐たはシアニン
系色素等の有機物の薄膜を設けることによっても情報記
録層を構成することができる。
The information recording layer may be provided by a 2P method using a photocurable resin on a flat substrate made of the resin of the present invention. For example, the information recording layer can also be formed by providing a thin film of an inorganic material such as tellurium oxide or terbium-iron-conolite alloy, or an organic material such as cyanine dye on the surface of a molded substrate. can.

本発明の樹脂は上記のような優れた特性を活かして、次
のような用途に用いることができる。
The resin of the present invention can be used for the following applications by taking advantage of the above-mentioned excellent properties.

■ 照明器具部品 ■ 各種看板類 ■ 窓、風防等の分野におけるガラス代替品■ 液晶等
各種表示素子用基板 ■ 眼鏡、カメラ、ルーペ、ビデオプロジェクタ等に用
いられる凹/凸レンズ、フレネルレンズ等の各種レンズ ■ 光デイスクプレーヤピックアップ、分光素子、光学
的ローパスフィルタ等の回折格子 ■ プリズム、光導波路、ビームスプリッタ等の各種光
学素子 ■ 光ファイバ ■ 光ディスク、光カード等の光記録媒体用基体〔実施
例〕 以下、実施例によシ本発明を具体的に説明する。
■ Lighting equipment parts ■ Various signboards ■ Glass substitutes for windows, windshields, etc. ■ Substrates for various display elements such as liquid crystals ■ Various lenses such as concave/convex lenses and Fresnel lenses used in glasses, cameras, loupes, video projectors, etc. ■ Diffraction gratings for optical disk player pickups, spectroscopic elements, optical low-pass filters, etc. ■ Various optical elements such as prisms, optical waveguides, beam splitters, etc. ■ Optical fibers ■ Substrates for optical recording media such as optical disks and optical cards [Example] Below The present invention will be specifically explained using Examples.

なお、物性値は下記の方法に従って測定した。In addition, the physical property values were measured according to the following method.

■ 数平均分子量:GPC(ポリスチレン換算)によう
求めた。
■ Number average molecular weight: Determined by GPC (polystyrene equivalent).

■ ガラス転移温度:示差熱分析法(窒素中、昇温速度
10℃/分)により′測定した。
(2) Glass transition temperature: Measured by differential thermal analysis (in nitrogen, heating rate 10°C/min).

■ 光透過率:熱プレスにより2wm厚に成形した試料
の波長400nm% 600nmおよび800 nmの
光の透過率を分光光度計によシ測定した。
(2) Light transmittance: The transmittance of light at wavelengths of 400 nm%, 600 nm, and 800 nm of a sample molded to a thickness of 2 wm by hot pressing was measured using a spectrophotometer.

■ 複屈折(リターデーション):直径40jIII1
1厚さ6閣に成形した試料を熱プレスによ!1llsa
s厚に圧延し、中心から30■の点について偏光顕微鏡
(波長5 g 9 run )を用いて測定した。
■ Birefringence (retardation): diameter 40jIII1
Heat press a sample molded into 1 thickness and 6 layers! 1llsa
The sample was rolled to a thickness of 30 cm and measured using a polarizing microscope (wavelength: 5 g 9 run ) at a point 30 cm from the center.

■ 表面硬度:鉛筆硬度試験(JIS  K5400)
によう求めた。
■ Surface hardness: Pencil hardness test (JIS K5400)
asked.

■ 飽和吸水率=23℃の蒸留水中にて吸水による重量
増加が認められなくなった時の重量増加率を求めること
により測定した。
(2) Saturated water absorption rate = Measured by determining the weight increase rate when no weight increase due to water absorption was observed in distilled water at 23°C.

■ 吸水反F) : 2crnX 10mX 2511
1厚の板状試料の片面にアルミニウムを1000人厚に
蒸着し、これを23℃の蒸留水に浸漬して発生した反す
の最大値を吸水反シとした。
■ Water absorption anti-F): 2crnX 10mX 2511
Aluminum was vapor-deposited to a thickness of 1000 on one side of a 1-thick plate sample, and the sample was immersed in distilled water at 23° C., and the maximum value of rumination generated was taken as the water absorption rumination.

■ アイゾツト衝撃強度: JIS  K7110 (
ノツチ付)に準拠して測定し、ビスフェノールAポリカ
ーボネートのアイゾツト衝撃強度を基準として、それと
同程度のアイゾツト衝撃強度を有するものを並とし、そ
れよりも高いアイゾツト衝撃強度を有するものを良とし
、また低いアイゾツト衝撃強度を有するものを不良とし
た。
■Izotsu impact strength: JIS K7110 (
(with a notch), and based on the izod impact strength of bisphenol A polycarbonate, those with the same izod impact strength as that are considered average, those with higher izod impact strength are considered good, and Those with low Izod impact strength were judged as defective.

実施例1 攪拌装置、窒素ガス流入口および冷却管を備えた1ぶ容
三つロフラスコに、ベルヒドロ−1,4:5.8−ジメ
タノナフタレン−2,3−ジカルボン酸ジメチル139
F(0,50モル)、トランス−1゜4−シクロヘキサ
ンジカルボン酸ジメチル100F (0,50モル)、
ベルヒドロ−1,4:5,8−ジメタノナフタレン−2
,3,−ジメタツール222f(1,0モル)およびテ
トラブチルオルンチタネート0.342(l□リモル)
を仕込み、窒素気流中にてオイルバスで200℃に加熱
して30分間攪拌した。次いで、230℃で50分間、
250℃で80分間攪拌したのち、系内な1. Ojl
lW Hfに減圧し、この減圧下にさらに60分間攪拌
して、淡黄色透明の樹脂380fを得た。この樹脂のI
HNMRスペクトル(90MHz 1重クロロホルム中
、テトラメチルシラン基準)を第1図に示す。
Example 1 Dimethyl perhydro-1,4:5.8-dimethanonaphthalene-2,3-dicarboxylate 139 was placed in a 1-volume three-neck flask equipped with a stirrer, a nitrogen gas inlet, and a cooling tube.
F (0.50 mol), trans-1゜4-cyclohexanedicarboxylic acid dimethyl 100F (0.50 mol),
Berhydro-1,4:5,8-dimethanonaphthalene-2
,3,-dimethatol 222f (1,0 mol) and tetrabutylorone titanate 0.342 (l rimole)
was charged, heated to 200°C in an oil bath in a nitrogen stream, and stirred for 30 minutes. Then, at 230°C for 50 minutes,
After stirring at 250°C for 80 minutes, 1. Ojl
The pressure was reduced to 1W Hf, and the mixture was further stirred for 60 minutes under this reduced pressure to obtain a pale yellow transparent resin 380f. I of this resin
The HNMR spectrum (in 90 MHz monochloroform, based on tetramethylsilane) is shown in FIG.

得られた樹脂の各種物性についての測定結果を第2表に
示す。
Table 2 shows the measurement results for various physical properties of the obtained resin.

実施例2〜8、比較例1および比較例2実施例1におい
て原料化合物および/筐たはその仕込量を変える以外は
同様にして反応を行うことによシ各種の樹脂を得た。た
だし、原料化合物の一部にジフェニルカーボネートを用
いた場合には、テトラブテルオルンテタネート0.34
f(1ミリモル)の代わシに水素化リチウム8.0町(
1ミリモル)を使用した。用いた原料化合物および仕込
量を第1表に示す。
Examples 2 to 8, Comparative Example 1 and Comparative Example 2 Various resins were obtained by carrying out the reaction in the same manner as in Example 1 except that the raw material compound and/or the amount charged thereof were changed. However, when diphenyl carbonate is used as a part of the raw material compound, tetrabuterolonetetanate 0.34
In place of f (1 mmol), 8.0% of lithium hydride (
1 mmol) was used. The raw material compounds used and the amounts charged are shown in Table 1.

実施例2〜3、比較例1および比較例2で得られた樹脂
の各種物性についての測定結果を第2表に示す。同表に
、比較例3としてビスフェノールAポリカーボネートの
物性を示した。
Table 2 shows the measurement results for various physical properties of the resins obtained in Examples 2 to 3, Comparative Example 1, and Comparative Example 2. The same table shows the physical properties of bisphenol A polycarbonate as Comparative Example 3.

実施例4〜8で得られた樹脂もガラス転移温度が130
℃以上と高く、リターデーションは5nm程度以下と低
く、良好な物性を有していた。
The resins obtained in Examples 4 to 8 also had a glass transition temperature of 130.
It had a high retardation of about 5 nm or less, and had good physical properties.

なお、実施例1〜8で得られた樹脂はいずれも飽和吸水
率が0.4多以下と低く、吸水反シが0.1厘以下と小
さく、筐た表面硬度がH以上と高いものであった。
In addition, all of the resins obtained in Examples 1 to 8 had a low saturated water absorption of 0.4 or less, a small water absorption coefficient of 0.1 or less, and a high casing surface hardness of H or more. there were.

以下余白 〔発明の効果〕 本発明により次の特長を有し、光学用成形品をはじめと
する各種用途に好適に用いられるポリエステルまたはポ
リエステルカーボネート樹脂が提供される。
Margins below [Effects of the Invention] The present invention provides a polyester or polyester carbonate resin that has the following features and is suitably used for various uses including optical molded products.

■ 優れた透明性を有すること。■Have excellent transparency.

■ ガラス転移点が高く、耐熱性が良好であること。■ High glass transition point and good heat resistance.

■ 表面硬度がH以上と高いこと。■ High surface hardness of H or higher.

■ 飽和吸水率が0.4%以下と低く、吸水による反シ
・変形がほとんど生じないこと。
■ The saturated water absorption rate is as low as 0.4% or less, and there is almost no cracking or deformation due to water absorption.

■ 成形品の複屈折がビスフェノールAポリカーボネー
トの1/4程度以下と非常に小さいこと。
■ The birefringence of the molded product is extremely small, about 1/4 or less of that of bisphenol A polycarbonate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1で得られたポリエステル樹脂の1HN
MRスペクトルである。
Figure 1 shows the 1HN polyester resin obtained in Example 1.
This is an MR spectrum.

Claims (1)

【特許請求の範囲】 下記式( I )、(II)、(III)、(IV)および(V)
で示される構造単位 ( I ):▲数式、化学式、表等があります▼ (式中、mは0、1または2を表す。) (II):▲数式、化学式、表等があります▼ (式中、Aは2価の飽和脂肪族炭化水素基、飽和脂環式
炭化水素基または芳香族炭化水 素基を表す。) (III):▲数式、化学式、表等があります▼ (IV)▲数式、化学式、表等があります▼ (式中、nは0、1または2を表す。) (V):▲数式、化学式、表等があります▼ (式中、Bは2価の飽和脂肪族炭化水素基、飽和脂環式
炭化水素基または芳香族炭化水 素基を表す。) からなり、構造単位( I )のモル分率と構造単位(II
)のモル分率と構造単位(III)のモル分率の和が構造
単位(IV)のモル分率と構造単位(V)のモル分率の和
に実質的に等しく、構造単位( I )のモル分率および
構造単位(IV)のモル分率がそれぞれ5モル%以上であ
り、かつ該構造単位( I )のモル分率と構造単位(IV
)のモル分率の和が50〜95モル%である組成を有す
る数平均分子量10,000〜100,000のポリエ
ステルまたはポリエステルカーボネート樹脂。
[Claims] The following formulas (I), (II), (III), (IV) and (V)
Structural unit represented by (I): ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (In the formula, m represents 0, 1, or 2.) (II): ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (Formula (A represents a divalent saturated aliphatic hydrocarbon group, a saturated alicyclic hydrocarbon group, or an aromatic hydrocarbon group.) (III): ▲ Contains mathematical formulas, chemical formulas, tables, etc. ▼ (IV) ▲ Mathematical formulas , chemical formulas, tables, etc. ▼ (In the formula, n represents 0, 1, or 2.) (V): ▲ Numerical formulas, chemical formulas, tables, etc. ▼ (In the formula, B is divalent saturated aliphatic carbonization represents a hydrogen group, a saturated alicyclic hydrocarbon group, or an aromatic hydrocarbon group), and the molar fraction of the structural unit (I) and the structural unit (II)
) and the sum of the mole fractions of the structural unit (III) are substantially equal to the sum of the mole fractions of the structural unit (IV) and the mole fraction of the structural unit (V), and the structural unit (I) The mole fraction of the structural unit (I) and the mole fraction of the structural unit (IV) are each 5 mol% or more, and the mole fraction of the structural unit (I) and the structural unit (IV
) A polyester or polyester carbonate resin having a number average molecular weight of 10,000 to 100,000 and having a composition in which the sum of the mole fractions of 50 to 95 mol %.
JP1342329A 1989-12-28 1989-12-28 Polyester or polyester carbonate resin Expired - Lifetime JPH0713128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1342329A JPH0713128B2 (en) 1989-12-28 1989-12-28 Polyester or polyester carbonate resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1342329A JPH0713128B2 (en) 1989-12-28 1989-12-28 Polyester or polyester carbonate resin

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP28064291A Division JPH055026A (en) 1991-09-30 1991-09-30 Polyester resin

Publications (2)

Publication Number Publication Date
JPH03200830A true JPH03200830A (en) 1991-09-02
JPH0713128B2 JPH0713128B2 (en) 1995-02-15

Family

ID=18352887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1342329A Expired - Lifetime JPH0713128B2 (en) 1989-12-28 1989-12-28 Polyester or polyester carbonate resin

Country Status (1)

Country Link
JP (1) JPH0713128B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000068291A1 (en) * 1999-05-07 2000-11-16 Kabushiki Kaisha Ueno Seiyaku Oyo Kenkyujo Liquid-crystal polymer
US6309719B1 (en) 2000-05-04 2001-10-30 Arteva North America S.A.R.L. Amorphous copolyester resin composition
WO2009134595A1 (en) * 2008-05-02 2009-11-05 3M Innovative Properties Company Optical film comprising birefringent naphthalate copolyester having branched or cyclic c4-c10 alkyl units
US10246404B2 (en) 2015-03-25 2019-04-02 Mitsubishi Gas Chemical Company, Inc. Bifunctional compound having norbornane skeleton and production method therefor
WO2023058632A1 (en) 2021-10-05 2023-04-13 三菱瓦斯化学株式会社 Polyester resin and method for producing same, and resin composition, molded body, and optical member

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7179869B2 (en) 2004-03-22 2007-02-20 Mitsubishi Gas Chemical Company, Inc. Process for producing polyester resins

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000068291A1 (en) * 1999-05-07 2000-11-16 Kabushiki Kaisha Ueno Seiyaku Oyo Kenkyujo Liquid-crystal polymer
US6388045B1 (en) 1999-05-07 2002-05-14 Kabushiki Kaisha Ueno Seiyaku Oyo Kenkyujo Liquid-crystalline polymer
US6309719B1 (en) 2000-05-04 2001-10-30 Arteva North America S.A.R.L. Amorphous copolyester resin composition
WO2009134595A1 (en) * 2008-05-02 2009-11-05 3M Innovative Properties Company Optical film comprising birefringent naphthalate copolyester having branched or cyclic c4-c10 alkyl units
US8012571B2 (en) 2008-05-02 2011-09-06 3M Innovative Properties Company Optical film comprising birefringent naphthalate copolyester having branched or cyclic C4-C10 alkyl units
US8263731B2 (en) 2008-05-02 2012-09-11 3M Innovative Properties Company Optical film comprising birefringent naphthalate copolyester having branched or cyclic C4-C10 alkyl units
US10246404B2 (en) 2015-03-25 2019-04-02 Mitsubishi Gas Chemical Company, Inc. Bifunctional compound having norbornane skeleton and production method therefor
WO2023058632A1 (en) 2021-10-05 2023-04-13 三菱瓦斯化学株式会社 Polyester resin and method for producing same, and resin composition, molded body, and optical member

Also Published As

Publication number Publication date
JPH0713128B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
US6126992A (en) Optical articles comprising isosorbide polyesters and method for making same
JP2001072872A (en) Resin composition and optical lens
JP2002117580A (en) Optical disk substrate and optical disk
JP2002332345A (en) Resin composition and optical lens
JPH03200830A (en) Polyester or polyester carbonate resin
EP0357073B1 (en) Polycarbonate or polyestercarbonate resins
KR100664340B1 (en) Data storage medium containing polyestercarbonate
JPH0269520A (en) Alicyclic polycarbonate and production thereof
JPH02180954A (en) Resin composition of excellent optical property and its production
JPH0292936A (en) Production of transparent resin or molded product
US5859833A (en) Optical disk grade copolyestercarbonates derived from hydroxyphenylindanols
JPH02222416A (en) Polycarbonate resin
JPH01102502A (en) Optical molding
JPH02253201A (en) Optical molded product
JPH10231359A (en) Optical disk-grade copolyester carbonate derived from hydroxyphenylindanol
JPH02215833A (en) Polycarbonate or polyester carbonate resin
JPH0269519A (en) Polycarbonate resin
JPH02173953A (en) Substrate for optical recording medium
JPH0220518A (en) Transparent resin and its manufacture
JPH0286618A (en) Manufacture of polycarbonate, polyester-carbonate or polyester
JPH01102501A (en) Optical molding
JP4605854B2 (en) Polycarbonate resin for manufacturing substrates for optical information media
JP4052444B2 (en) Optical disc substrate
JPS63156825A (en) Substrate for optical recording media
US20030104234A1 (en) Polyester carbonate and a data carrier therefrom