JPH03199693A - Circular flow type liquid pump - Google Patents

Circular flow type liquid pump

Info

Publication number
JPH03199693A
JPH03199693A JP1341437A JP34143789A JPH03199693A JP H03199693 A JPH03199693 A JP H03199693A JP 1341437 A JP1341437 A JP 1341437A JP 34143789 A JP34143789 A JP 34143789A JP H03199693 A JPH03199693 A JP H03199693A
Authority
JP
Japan
Prior art keywords
pump
passage
impeller
casing assembly
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1341437A
Other languages
Japanese (ja)
Other versions
JPH073239B2 (en
Inventor
Hiroshi Yoshioka
浩 吉岡
Shingo Iwai
信悟 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1341437A priority Critical patent/JPH073239B2/en
Priority to KR1019900018644A priority patent/KR910012550A/en
Priority to GB9025699A priority patent/GB2239487B/en
Priority to DE4039712A priority patent/DE4039712C2/en
Publication of JPH03199693A publication Critical patent/JPH03199693A/en
Priority to US07/858,434 priority patent/US5221178A/en
Publication of JPH073239B2 publication Critical patent/JPH073239B2/en
Priority to KR2019950001178U priority patent/KR950006578Y1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D5/00Pumps with circumferential or transverse flow
    • F04D5/002Regenerative pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D5/00Pumps with circumferential or transverse flow
    • F04D5/002Regenerative pumps
    • F04D5/007Details of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/048Arrangements for driving regenerative pumps, i.e. side-channel pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/20Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines characterised by means for preventing vapour lock
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D9/00Priming; Preventing vapour lock
    • F04D9/001Preventing vapour lock
    • F04D9/002Preventing vapour lock by means in the very pump
    • F04D9/003Preventing vapour lock by means in the very pump separating and removing the vapour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/50Inlet or outlet
    • F05B2250/503Inlet or outlet of regenerative pumps

Abstract

PURPOSE:To avoid generation of a vapor lock by providing a gas ventilation passage having a step and directed from a passage bottom portion toward the inside in a radial direction and a through hole having a cross sectional area larger than that of the gas ventilation passage and communicating to the outside of the casing assembly in the vicinity of an impeller on the inner circumference of a passage of a casing assembly. CONSTITUTION:When an impeller 4 is rotated and driven clockwise liquid fuel is sucked from a suction port 8 in a pump passage 7 and discharged from a discharge port 9. In this time, air bubbles generated at a contact face between the blade portion 5 of the impeller 4 and the liquid are collected and stored in the vicinity of an impeller on the inner circumference of the pump passage 7 and flow in the same direction as that of the rotation of the impeller together with the liquid and when they approach a gas ventilation passage 11 which has a step 10 from a passage bottom portion 10 and extends in the direction matching that of a swirl flow generated by the impeller, the air bubbles containing no liquid are forcibly guided to flow in the passage 11 due to static pressure in the pump passage and dynamic pressure caused by the swirl flow 13 so as to communicate with the passage 11, and discharged outside a casing assembly 1 via a through hole 10, having a cross sectional area large than that of the passage without any resistance. Consequently, the lowering of pump capacity can be avoided.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発IjAは、円周流式液体ポンプに係り、特に車両用
内燃機関において燃料タンクよりガソリンのような液体
燃料を汲み上げる燃料ポンプとして用いられる円周流式
液体ポンプに関する。
[Detailed Description of the Invention] [Industrial Application Field] The IJA of the present invention relates to a circumferential flow liquid pump, and is particularly used as a fuel pump for pumping liquid fuel such as gasoline from a fuel tank in a vehicle internal combustion engine. This invention relates to a circumferential flow liquid pump.

〔従来の技術〕[Conventional technology]

第4図および第5図は例えば特開昭60−79193号
公報に示されたような従来の円周流式液体ポンプと同種
類のポンプを示す断面図である。図において、(1)は
ポンプケーシングの組立体を示しており、この組立体は
ポンプケーシング本体(2)とカバー(3)との組立体
により構成されている。ポンプケーシング組立体(1)
内には外周縁部に羽根部(5)を有するインペラ(4)
が設けられており、このインペラ(4)は中心軸(6)
によってポンプケーシング組立体(1)に対して自身の
中心軸線の周りに一転可能に支持されている。
FIGS. 4 and 5 are cross-sectional views showing a pump of the same type as a conventional circumferential flow liquid pump as disclosed in, for example, Japanese Unexamined Patent Publication No. 60-79193. In the figure, (1) shows a pump casing assembly, and this assembly is composed of a pump casing body (2) and a cover (3). Pump casing assembly (1)
Inside is an impeller (4) having a blade part (5) on the outer periphery.
is provided, and this impeller (4) is connected to the central shaft (6).
The pump casing assembly (1) is rotatably supported around its own central axis by the pump casing assembly (1).

ポンプケーシング組立体(1)は、インペラ(4)の外
周縁部に沿って延在する円弧帯状のポンプ流路(7)及
びこのポンプ流路(7)の両端部に開口する吸入口(8
)と吐出口(9)とを郭定し、ポンプ流路(7)にイン
ペラ(4)の羽根部(5)を受は入れている。
The pump casing assembly (1) includes an arc belt-shaped pump channel (7) extending along the outer peripheral edge of the impeller (4) and an inlet port (8) that opens at both ends of the pump channel (7).
) and a discharge port (9), and the blade portion (5) of the impeller (4) is inserted into the pump channel (7).

ポンプ流路(7)には、このポンプ流路(7)の吸入口
(8)側の低圧部分にポンプ概略断面積が大きくされた
拡大流路部(7a)が吸入口から始まって所定長さを有
する円弧状に形成され、この拡大流路部(7a)の終端
である反吸入口側に流路断1lLl積か縮小する段差部
(7b)が設けられている。この段差部(7b)から吐
出口(9)にわたって拡大M’t−K 部(7a)より
もポンプ流部1す1凹積が小さくされたポンプ流路の高
圧部分が設けられ、ポンプ流路内とポンプケーシング組
立体(1)とを連a’lる小孔状の気体抜き孔(ロ)が
拡大流路部内におい′C1段差部(7b)に陶拉して設
けられている。
The pump flow path (7) has an enlarged flow path section (7a) having a large pump approximate cross-sectional area in a low-pressure portion on the suction port (8) side of the pump flow path (7), which extends for a predetermined length starting from the suction port. A stepped portion (7b) is provided on the side opposite to the suction port, which is the end of the expanded flow path portion (7a). A high-pressure part of the pump flow path is provided extending from this step part (7b) to the discharge port (9), and the pump flow path has a smaller concave area than the enlarged M't-K part (7a). A small gas vent hole (b) connecting the inner part of the pump casing assembly (a'l) and the pump casing assembly (1) is provided in the enlarged flow passage part at the step part (7b) of the casing assembly (7b).

インペラ(4)の中心軸(6)は1勺周流式液体ポンプ
に連結された電動機りυの卸転子叫0中心軸として構成
され、その両端部を動受α0と四とによって回転可能l
こ支持されている。
The central shaft (6) of the impeller (4) is configured as the central shaft of an electric motor υ connected to a circular flow liquid pump, and its both ends can be rotated by bearings α0 and 4. l
This is supported.

四はエンドカバーで、チエツク弁@、液体出口cljl
lとを備えると共にブラケットに)を保持している。
4 is the end cover, check valve @, liquid outlet cljl
1) and is held on the bracket.

ポンプケーシング組立体(1)とエンドカバー四とは電
動機Q5のヨーク−によって互いに連結されている。ヨ
ーク−は、内部に一転子・仙oを収容し且つポンプケー
シング組立体(υとエンドカバーOIとの間に吐出口(
9)より吐出される液体燃料のような液体を貯容する液
体室9υを郭定し、内周部に固定子として作用する永久
磁石−を組付けられている。
The pump casing assembly (1) and the end cover 4 are connected to each other by the yoke of the electric motor Q5. The yoke accommodates a single trochanter and a trochanter inside, and has a discharge port (υ) between the pump casing assembly (υ) and the end cover OI.
9) A liquid chamber 9υ is defined to store a liquid such as liquid fuel discharged from the fuel tank, and a permanent magnet acting as a stator is attached to the inner circumference of the liquid chamber 9υ.

液体室1jl)は、エンドカバー(114こ設けられた
チエツク弁(2)を有する液体出口−に連通し、またブ
ラケット(ハ)には回転子Qiの整流子(7)に摺接す
る給電用ブラシ(ロ)を有している。
The liquid chamber 1jl) communicates with the end cover (liquid outlet having 114 check valves (2)), and the bracket (c) has a power supply brush that slides into contact with the commutator (7) of the rotor Qi. (b).

次に動作について説明する。上述のような構成によりな
る円周流式液体ポンプにおいては、電動機α場によって
インペラ(4)が第5図で見て時計廻り方向に細幅駆動
されることにより吸入口(8)より液体燃料のような液
体がポンプ流路(7)の一端部に吸入され、この液体は
ポンプ流路内のインペラの羽根部(5)が高速で回転す
ることにより生じる流体摩擦抵抗により昇圧され、ポン
プ流路(7)を第5図で見て時計廻り方向へ流れてその
他端部の吐出口(9)より液体室υυへ流出する。また
、ポンプ流路(7)内には、インペラの羽根部(5)と
液体との接触血で発生した燃料蒸気による気泡のような
気体が発生して液体室なりへ流出しようとする。気泡の
ような気体が液体室すυへ流出して内燃機関に給送され
ると各種の不具合を生じる。従って拡大流路部内の段差
部(7b)に隣接して設けられた気体抜き孔(14Bこ
よりできる限りポンプケーシング組立体(1)の外へ排
出されるようになされている。
Next, the operation will be explained. In the circumferential flow type liquid pump configured as described above, the impeller (4) is narrowly driven in the clockwise direction as seen in FIG. A liquid like this is sucked into one end of the pump flow path (7), and this liquid is pressurized by the fluid friction resistance generated by the high speed rotation of the impeller blades (5) in the pump flow path, and the pump flow is increased. The liquid flows clockwise through the passage (7) in FIG. 5 and flows out from the discharge port (9) at the other end into the liquid chamber υυ. In addition, bubble-like gas is generated in the pump channel (7) due to fuel vapor generated by contact between the impeller blade (5) and the liquid, and tends to flow out into the liquid chamber. When gas such as bubbles leaks into the liquid chamber υ and is fed to the internal combustion engine, various problems occur. Therefore, the gas is discharged as much as possible out of the pump casing assembly (1) through the gas vent hole (14B) provided adjacent to the stepped portion (7b) in the enlarged flow path.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

燃料ポンプとして用いられる円周流式肢体ポンプにおい
て、燃料蒸気による気泡がポンプ流路内に発生してこれ
がポンプ流路に溜ると、いわゆるベーパロックが生じ、
液体燃料の流れが阻害され、ポンプ容量が著しく低下す
る恐れがある。このような問題に鑑みて、従来の円周流
式液体ポンプはポンプ流路の中間部分をポンプケーシン
グ組立体外へ連通せしめる気体抜き孔を有し、この気体
抜き孔によりポンプ流路内に発生した燃料蒸気による気
泡のような気体をポンプケーシング組立体外へ排出する
ように構成されている。しかしながら、気体抜き孔が拡
大流路部内の底肉部に設けられた小孔であるため各種の
問題があった。即ち、ポンプ流路内のインペラの羽根部
と液体燃料のような液体との接触面で気泡のような気体
が発生するが、この気体は遠心力と液体との比重差によ
りポンプ流路の内周部のインペラ近傍に集まって流れる
In a circumferential flow limb pump used as a fuel pump, when bubbles due to fuel vapor are generated in the pump flow path and accumulate in the pump flow path, a so-called vapor lock occurs.
Liquid fuel flow may be obstructed and pump capacity may be significantly reduced. In view of these problems, conventional circumferential flow liquid pumps have a gas vent hole that connects the middle part of the pump flow path to the outside of the pump casing assembly. The pump is configured to vent gas, such as fuel vapor bubbles, out of the pump casing assembly. However, since the gas vent hole is a small hole provided in the bottom wall of the enlarged channel, there are various problems. In other words, bubble-like gas is generated at the contact surface between the impeller blades and a liquid such as liquid fuel in the pump flow path, and this gas is caused by centrifugal force and the difference in specific gravity between the liquid and the inside of the pump flow path. It gathers and flows near the impeller on the periphery.

この気体をポンプケーシング組立体外へ排出するために
は、ポンプ流路の底一部近傍に存在する気体分をほとん
ど含まない液体を表組にポンプケーシング組立体外へ排
出することが必要である。また、気体抜き孔が流路断―
槓の小さな小孔状であるために気体が液体とともにポン
プケーシング組立体外へ排出される際に大きな旅路抵抗
を受Cブねばならない。更に、気体抜き孔がポンプ流路
の底肉部に対して鉛直に延在しているためにポンプ流路
内の渦流による動圧力が気体をポンプケーシング組立体
外へ排出する際に利用できず、ポンプ流路内の静圧力の
みで気体を排出せねばならないなどといった間起点があ
る。従って燃料蒸気が多く発生する悪条件下においては
燃料蒸気による気泡のような気体は十分にポンプケーシ
ング組立体外へ排出されないことがあり、ベーパロック
の発生が確実に回避されない恐れがある。
In order to discharge this gas to the outside of the pump casing assembly, it is necessary to discharge the liquid that is present near the bottom portion of the pump flow path and contains almost no gas to the outside of the pump casing assembly. In addition, the gas vent hole disconnects the flow path.
Because of the small pores of the ram, the gas must experience significant travel resistance as it exits the pump casing assembly along with the liquid. Furthermore, since the gas vent hole extends perpendicularly to the bottom wall of the pump flow path, the dynamic pressure caused by the vortex flow within the pump flow path cannot be used to discharge gas out of the pump casing assembly. There are cases where gas must be evacuated using only static pressure within the pump flow path. Therefore, under adverse conditions where a large amount of fuel vapor is generated, gas such as bubbles caused by the fuel vapor may not be sufficiently discharged to the outside of the pump casing assembly, and there is a possibility that vapor lock may not be reliably prevented from occurring.

本発明は上記のような問題点を解決するためになされた
もので、ポンプ流路内に発生した燃料蒸気による気泡の
ような気体が確実にポンプ流路よりポンプケーシング組
立体外へ排出されるよう構成され、ベーパロックが発生
する恐れがない改良された円周流式液体ポンプを提供す
ることを目的としている。
The present invention has been made to solve the above-mentioned problems, and is designed to ensure that gas such as bubbles due to fuel vapor generated in the pump flow path is discharged from the pump flow path to the outside of the pump casing assembly. It is an object of the present invention to provide an improved circumferential flow liquid pump which is constructed so as to avoid the risk of vapor lock.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る円周流式液体ポンプは、外周縁部に羽根部
を有するインペラと、前記インペラを回転可能に支持し
前記インペラの外周14部に沿って延在する円弧帯状の
ポンプ流路及びこのポンプ流路の両端部に開口する吸入
口と吐出口を郭定するポンプケーシング組立体とを有す
る円周流式液体ポンプであって、前記ポンプケーシング
組立体には、前記ポンプ流路の内周部の前記インペラ近
傍に前記ポンプ流路の底一部から段差を有して開口し径
方向に延在する気体抜き通路と、この気体抜き通路に比
して十分大きな断面積を持ち前記気体抜き通路と前記ポ
ンプケーシング組立体外とを連通せしめる貫通孔とによ
り気体抜き孔を形成したものである。
A circumferential flow liquid pump according to the present invention includes an impeller having a blade portion on an outer peripheral edge, an arcuate belt-shaped pump channel that rotatably supports the impeller and extends along an outer periphery 14 of the impeller; A circumferential flow liquid pump having a pump casing assembly defining an inlet and a discharge port opening at both ends of the pump flow path, the pump casing assembly including an inner wall of the pump flow path. a gas venting passage that opens with a step from a bottom part of the pump flow path and extends in the radial direction near the impeller on the periphery; A gas vent hole is formed by a through hole that communicates the vent passage with the outside of the pump casing assembly.

〔作用〕[Effect]

本発明における円周流式液体ポンプにおいては、ポンプ
流路の内周部のインペラ近傍に集まって流れる燃料蒸気
による気泡のような気体は、次のようにして排出される
。先ず、上記気泡のような気体は、ポンプ流路の内周部
のインペラ近傍にポンプ流路の底面部から段差を有して
開口しインペラが引き起こすポンプ流路内の渦流の方向
と一致する径方向に延在する気体抜き通路ヘボンブ作用
によるポンプ流路内の静圧力とインペラが引き起こすポ
ンプ流路内の渦流による動圧力によってポンプ流路の屈
曲部近傍に存在する液体をほとんど含むことなく強制的
に流入される。次に、上記の気体抜き通路と連通し気体
抜き通路に比して十分大きな断面積を持つ貫通孔より流
路抵抗をほとんど受けることなくポンプケーシング組立
体外へ排出される。このようにしてポンプ流路で発生し
た気体が高い効率にてポンプケーシング組立体外へ排出
され、ポンプケーシング組立体に気体が溜ることが回避
される。
In the circumferential flow type liquid pump according to the present invention, bubble-like gas caused by fuel vapor that collects and flows near the impeller on the inner circumference of the pump channel is discharged as follows. First, the bubble-like gas is opened near the impeller on the inner circumference of the pump flow path with a step from the bottom of the pump flow path, and has a diameter that matches the direction of the vortex flow in the pump flow path caused by the impeller. Due to the static pressure in the pump flow path due to the bombing effect on the gas vent passage extending in the direction and the dynamic pressure due to the vortex flow in the pump flow path caused by the impeller, the liquid near the bend in the pump flow path is forcibly removed. is flowing into the country. Next, the gas is discharged out of the pump casing assembly through a through hole that communicates with the gas vent passage and has a sufficiently larger cross-sectional area than the gas vent passage, with almost no flow resistance. In this way, the gas generated in the pump flow path is discharged out of the pump casing assembly with high efficiency, and gas accumulation in the pump casing assembly is avoided.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図ないし第3図は本発明による円周流式液体ポンプ
の一実施例を示している。図において、(11はポンプ
ケーシングの組立体を示しており、この組立体はポンプ
ケーシング本体(2)とカバー(3)とにより構成され
ている。ポンプケーシング組立体(1)内には外周線部
に羽根部(5)を有するインペラ(4)が設けられてお
り、このインペラ(4)は中心軸(67によってポンプ
ケーシング組立体(1)に対して自身の中心軸線の周り
に回転可能に支持されている。
1 to 3 show an embodiment of a circumferential flow liquid pump according to the present invention. In the figure, (11 indicates a pump casing assembly, which is composed of a pump casing body (2) and a cover (3). An impeller (4) having a vane section (5) is provided in the section, the impeller (4) being rotatable about its own central axis relative to the pump casing assembly (1) by means of a central axis (67). Supported.

ポンプケーシング組立体(1)は、インペラ(4)の外
周縁部に沿って延在する円弧帯状のポンプ流路(7)及
びこのポンプ流路(7)の両端部に開口する吸入口(8
)と吐出口(9)とを郭定し、ポンプ流路(7)にイン
ペラ(4)の羽根部(5)を受は入れている。
The pump casing assembly (1) includes an arc belt-shaped pump channel (7) extending along the outer peripheral edge of the impeller (4) and an inlet port (8) that opens at both ends of the pump channel (7).
) and a discharge port (9), and the blade portion (5) of the impeller (4) is inserted into the pump channel (7).

ポンプケーシング組立体(1)、更に詳細には、第3図
に示すようにカバー(3)にはポンプ流路(7)の内周
部のインペラ近傍にポンプ流路(7)の底内部四から段
差を有して開口し径方向に沿った気体抜き通路0υと、
この気体抜き通路(IJIに比して十分大きな断面積を
持ち気体抜き通路αυとポンプケーシング組立体(1)
外とを連通せしめる貫通孔(2)とが設けられている。
The pump casing assembly (1), more specifically, as shown in FIG. a gas venting passage 0υ that opens with a step and extends along the radial direction;
This gas venting passage (which has a sufficiently large cross-sectional area compared to IJI) and the pump casing assembly (1)
A through hole (2) is provided for communication with the outside.

上記実施例において、気体抜き通路0υと貫通孔Q′4
の断面積の大きさはポンプの大きさにより異なる。一般
の乗用車の場合、気体抜き通路C1υは例えば巾4ミリ
メートル、高さ0.2ミリメートルの平角状断面の通路
とし、貫通孔Q′4は例えば直径2.5ミリメートルの
円形断面の通路とする。
In the above embodiment, the gas vent passage 0υ and the through hole Q'4
The size of the cross-sectional area varies depending on the size of the pump. In the case of a general passenger car, the gas vent passage C1υ is, for example, a passage with a rectangular cross section of 4 mm in width and 0.2 mm in height, and the through hole Q'4 is a passage with a circular cross section of, for example, 2.5 mm in diameter.

インペラ(4)の中心軸(6)は円周流式液体ポンプに
連結された電NJJWAabの回転子Goの中心軸とし
て構成され、回転子四はその両端部を軸受(171とr
yeとによってポンプケーシング組立体(1)とエンド
カバー四より回転可能に支持されている。
The central axis (6) of the impeller (4) is configured as the central axis of the electric NJJWAab rotor Go connected to the circumferential flow type liquid pump, and the rotor 4 has both ends mounted on bearings (171 and r
The pump casing assembly (1) and the end cover 4 are rotatably supported by the pump casing assembly (1) and the end cover (4).

ポンプケーシング組立体(1)とエンドカバーQ1とは
電動機abのヨーク(イ)によって互いに連結されてい
る。ヨーク(イ)は、内部に回転子Uttを収容し且つ
ポンプケーシング組立体(1)とエンドカバー06ノ間
に吐出口(9)より吐出される液体燃料のような液体を
貯容する液体室←υを郭定し、内周部に固定子として作
用する永久磁石−を組付けられている。
The pump casing assembly (1) and the end cover Q1 are connected to each other by a yoke (a) of the electric motor ab. The yoke (A) accommodates the rotor Utt inside and has a liquid chamber that stores liquid such as liquid fuel discharged from the discharge port (9) between the pump casing assembly (1) and the end cover 06. υ is defined, and a permanent magnet that acts as a stator is installed on the inner circumference.

液体室しυは、エンドカバー四に設けられたチエツク弁
@を有する液体出口−に連通し、また回転子Uりの整流
子−に摺接する給電用ブラシ■とを有している。
The liquid chamber υ communicates with a liquid outlet having a check valve @ provided on the end cover 4, and also has a power supply brush ⑅ that comes into sliding contact with a commutator on the rotor U.

上記のような構成によりなる円周流式液体ポンプにおい
ては、電動機Q#によってインペラ(4)が第2図で見
て時計廻り方向に回転駆動されることにより吸入口(3
)より液体燃料のような液体がポンプ流路(7)の一端
部に吸入され、この液体はポンプ流路(7)を第2図で
見て時計廻り方向へ流れてその他端部の吐出口(9)よ
り液体室なりへ流出する。このポンプ作用時においてポ
ンプtAi路(7)内のインペラ(4)の羽根部(5)
と燃料のような液体との接触面で発生した燃料蒸気によ
る気泡のような気体は、遠心力と液体との比重差により
ポンプ流路(7)の内周部のインペラ近傍に集め溜めら
れて液体とともにポンプ流路(7)内を第2図で見て時
計廻り方向へ、即ちインペラ(4)の回転方向と同じ方
向に流れる。そしてポンプ流路(7)の内周部のインペ
ラ近傍にポンプ流路の底一部叫から段差を有して開口し
インペラが引き起こすポンプ流路内の渦流u1の方向と
一致する方向に延在する気体抜き通路Oυの部分に差し
掛かると、ポンプ作用によるポンプ流路内の静圧力とイ
ンペラが引き超こすポンプ流路内の渦流(ト)による動
圧力により、インペラ近傍に集め溜められた気体がポン
プ流路の底面部uO近傍に存在する液体をほとんど含む
ことなく強制的に気体抜き通路QIJに流入される。f
Ai人した気体は、気体抜き通路Qυと連通し気体抜き
通路Oυに比して十分大きな断面積を持つ貫通孔叫より
流路抵抗をほとんど受けることなくポンプケーシング組
立体(1)外へ排出される。
In the circumferential flow liquid pump configured as described above, the impeller (4) is rotationally driven in the clockwise direction as seen in FIG. 2 by the electric motor Q#, so that the suction port (3
), a liquid such as liquid fuel is sucked into one end of the pump channel (7), and this liquid flows clockwise when looking at the pump channel (7) in FIG. 2 to the discharge port at the other end. (9) It flows out into the liquid chamber. During this pump operation, the blade portion (5) of the impeller (4) in the pump tAi path (7)
Gas bubbles caused by fuel vapor generated at the interface between fuel and a liquid such as fuel are collected near the impeller on the inner periphery of the pump flow path (7) due to centrifugal force and the difference in specific gravity between the liquid and the fuel. The liquid flows in the pump flow path (7) in a clockwise direction as seen in FIG. 2, that is, in the same direction as the rotation direction of the impeller (4). The inner circumferential portion of the pump flow path (7) is opened with a step from the bottom of the pump flow path near the impeller, and extends in a direction that coincides with the direction of the vortex u1 in the pump flow path caused by the impeller. When the gas venting passage Oυ is reached, the gas collected near the impeller due to the static pressure in the pump flow path due to the pump action and the dynamic pressure due to the vortex flow (G) in the pump flow path caused by the impeller. is forced to flow into the gas venting passage QIJ without containing almost any liquid present near the bottom surface uO of the pump passage. f
The absorbed gas is discharged to the outside of the pump casing assembly (1) with almost no flow resistance through the through hole which communicates with the gas vent passage Qυ and has a sufficiently large cross-sectional area compared to the gas vent passage Oυ. Ru.

〔発明の効果〕〔Effect of the invention〕

以上のように、このyb明によればポンプケーシング組
立体(1)を、ポンプ流路(7)の内周部のインペラ(
4)近傍にポンプ流路の底西部OOから段差を有してI
JOII L径方向内側に向かう気体抜き通路QDと、
この気体抜き通路に比して十分大きな断i71!積を持
ち気体抜き通路Oυとポンプケーシング組立体(1)の
外とを連通せしめる直通孔四とを有するように構成した
。この構成により、ポンプ流N (7)内で発生した気
体がポンプ流路内の静圧力と動圧力によって液体をほと
んど含むことq<強制的に気体抜き通路0υに流入され
てこれよりN通孔04を紅で流路抵抗をほとんど受ける
ことなくポンプケーシング組立体(1)外へ排出される
。従って、ポンプ流路(7)で発生した気体の排出が効
率よく確実に行なわれ、ポンプ流路(7)に気体が溜る
ことが細道され、ポンプ流路(7)に気体が溜ったこと
によってポンプ容量が低下することが確実に凹避される
As mentioned above, according to this YB light, the pump casing assembly (1) is connected to the impeller (
4) There is a step from the bottom west OO of the pump channel near I.
JOII L A gas venting passage QD heading inward in the radial direction,
A sufficiently large section i71 compared to this gas vent passage! The pump casing assembly (1) is configured to have four through holes which communicate with each other and connect the gas vent passage Oυ with the outside of the pump casing assembly (1). With this configuration, the gas generated in the pump flow N (7) is forced to contain most of the liquid due to the static pressure and dynamic pressure in the pump flow path, and is forced to flow into the gas vent passage 0υ from here to the N vent. 04 is discharged out of the pump casing assembly (1) with almost no flow resistance. Therefore, the gas generated in the pump channel (7) is efficiently and reliably discharged, and the accumulation of gas in the pump channel (7) is prevented. A decrease in pump capacity is reliably avoided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による出向流式液体ポンプの一つの実施
例を示す縦断作図、第2図は第1図の線トIに沿う拡大
断匣図、第3図は第2図の線ロー1に沿う拡大断面図、
第4図は従来の円周流式液体ポンプの縦断面図、第5図
は第4図の線Iv−IVに沿う拡大断面図である。 (1)・・・ポンプケーシングの組立体、(2)・・・
ポンプケーシング本体、(3)・・・カバー、(4)・
・・インペラ、(5)・・・羽根部、(6)・・・中心
軸、(7)・・・ポンプ流路、(7a)・・・拡大流路
部、(7b)・・・段差部、(8)・・・吸入口、(9
)・・・吐出口、aO・・・ポンプ流路の屈曲部、Qυ
・・・気体抜き通路、四・・・貫通孔、aJ・・・ポン
プ流路内の渦流、a<・・・気体抜き孔、四・・・電動
機、Oす・・・回転子、U″り、(ト)・・・軸受、四
・・・エンドカバー、(1)・・・ヨーク、9υ・・・
液体室、(2)・・・チエツク弁、(2)・・・液体出
口、に)・・・永久磁石、(ホ)・・・整流子、(ホ)
・・・給電用ブラシ。 なお、各図中、同一符号は同一、または相当部分を示す
FIG. 1 is a longitudinal cross-sectional view showing one embodiment of a counterflow type liquid pump according to the present invention, FIG. 2 is an enlarged cross-sectional view taken along line T I in FIG. 1, and FIG. An enlarged sectional view along 1,
FIG. 4 is a longitudinal sectional view of a conventional circumferential flow type liquid pump, and FIG. 5 is an enlarged sectional view taken along line Iv-IV in FIG. 4. (1)... Pump casing assembly, (2)...
Pump casing body, (3)...cover, (4)...
...Impeller, (5)...Blade portion, (6)...Central axis, (7)...Pump channel, (7a)...Enlarged channel section, (7b)...Step part, (8)...intake port, (9
)...Discharge port, aO...Bending part of pump flow path, Qυ
... Gas vent passage, 4... Through hole, aJ... Eddy flow in pump flow path, a<... Gas vent hole, 4... Electric motor, Os... Rotor, U'' ri, (g)...Bearing, 4...End cover, (1)...Yoke, 9υ...
Liquid chamber, (2)...Check valve, (2)...Liquid outlet, ni)...Permanent magnet, (E)...Commutator, (E)
...Brush for power supply. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 外周縁部に羽根部を有するインペラと、前記インペラを
回転可能に支持し前記インペラの外周縁部に沿って延在
する円弧帯状のポンプ流路及びこのポンプ流路の両端部
に開口する吸入口と吐出口を郭定するポンプケーシング
組立体とを有する円周流式液体ポンプにおいて、前記ポ
ンプケーシング組立体に、前記ポンプ流路の内周部の前
記インペラ近傍に前記ポンプ流路の底面部から段差を有
して開口し径方向内側に向かう気体抜き通路と、この気
体抜き通路に比して十分大きな断面積を持ち前記気体抜
き通路と前記ポンプケーシング組立体外とを連通せしめ
る貫通孔とを設けたことを特徴とする円周流式液体ポン
プ。
an impeller having blades on an outer peripheral edge; an arcuate belt-shaped pump channel that rotatably supports the impeller and extends along the outer circumferential edge of the impeller; and an inlet opening at both ends of the pump channel. and a pump casing assembly defining a discharge port, wherein the pump casing assembly includes a pump from the bottom of the pump flow path near the impeller on the inner circumference of the pump flow path. A gas venting passage that opens with a step and goes radially inward, and a through hole that has a sufficiently larger cross-sectional area than the gas venting passage and communicates the gas venting passage with the outside of the pump casing assembly. A circumferential flow liquid pump characterized by:
JP1341437A 1989-12-26 1989-12-26 Circular flow type liquid pump Expired - Lifetime JPH073239B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1341437A JPH073239B2 (en) 1989-12-26 1989-12-26 Circular flow type liquid pump
KR1019900018644A KR910012550A (en) 1989-12-26 1990-11-17 Cylindrical liquid pump
GB9025699A GB2239487B (en) 1989-12-26 1990-11-27 Circumferential flow type liquid pump
DE4039712A DE4039712C2 (en) 1989-12-26 1990-12-12 Peripheral pump
US07/858,434 US5221178A (en) 1989-12-26 1992-03-24 Circumferential flow type liquid pump
KR2019950001178U KR950006578Y1 (en) 1989-12-26 1995-01-26 Circumferential flow type liquid pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1341437A JPH073239B2 (en) 1989-12-26 1989-12-26 Circular flow type liquid pump

Publications (2)

Publication Number Publication Date
JPH03199693A true JPH03199693A (en) 1991-08-30
JPH073239B2 JPH073239B2 (en) 1995-01-18

Family

ID=18346072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1341437A Expired - Lifetime JPH073239B2 (en) 1989-12-26 1989-12-26 Circular flow type liquid pump

Country Status (4)

Country Link
JP (1) JPH073239B2 (en)
KR (2) KR910012550A (en)
DE (1) DE4039712C2 (en)
GB (1) GB2239487B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5348442A (en) * 1993-08-18 1994-09-20 General Motors Corporation Turbine pump
JP2015200305A (en) * 2014-04-01 2015-11-12 パナソニックIpマネジメント株式会社 Liquid pump and rankine cycle device
JP6462831B1 (en) * 2017-11-09 2019-01-30 三菱電機株式会社 Fuel supply device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960001631B1 (en) * 1991-05-14 1996-02-03 미쓰비시덴키가부시키가이샤 Circumferential flow type liquid pump
DE4322370C2 (en) * 1992-07-08 1998-10-29 Mannesmann Vdo Ag Liquid pump
US5586858A (en) * 1995-04-07 1996-12-24 Walbro Corporation Regenerative fuel pump
DE19744037C1 (en) * 1997-10-06 1999-06-02 Mannesmann Vdo Ag Feed pump
DE69926144T2 (en) * 1999-09-30 2006-05-18 Mitsubishi Denki K.K. MOTOR DRIVEN FUEL PUMP
US6547515B2 (en) * 2001-01-09 2003-04-15 Walbro Corporation Fuel pump with vapor vent

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB671309A (en) * 1948-12-31 1952-04-30 Johannes Hinsch An improved self-priming circulating pump
GB776635A (en) * 1954-11-24 1957-06-12 Fabig Georg Improvements relating to centrifugal pumps
DE2622155C2 (en) * 1976-05-19 1984-04-05 Robert Bosch Gmbh, 7000 Stuttgart Fuel pump
DE2740002C2 (en) * 1977-09-06 1985-10-03 Robert Bosch Gmbh, 7000 Stuttgart Fuel delivery unit
JPS59141762A (en) * 1983-01-31 1984-08-14 Nippon Denso Co Ltd Fuel pump
DE3303352A1 (en) * 1983-02-02 1984-08-02 Robert Bosch Gmbh, 7000 Stuttgart AGGREGATE FOR PROMOTING FUEL, PREFERABLY FROM A STORAGE TANK FOR THE INTERNAL COMBUSTION ENGINE, ESPECIALLY A MOTOR VEHICLE
JPS6079193A (en) * 1983-10-05 1985-05-04 Nippon Denso Co Ltd Fuel pump for car
US4692092A (en) * 1983-11-25 1987-09-08 Nippondenso Co., Ltd. Fuel pump apparatus for internal combustion engine
DE3424520C2 (en) * 1984-07-04 1986-07-10 SWF Auto-Electric GmbH, 7120 Bietigheim-Bissingen Fuel pump
US4844621A (en) * 1985-08-10 1989-07-04 Nippondenso Co., Ltd. Fuel pump with passage for attenuating noise generated by impeller
JPS63223388A (en) * 1987-03-12 1988-09-16 Honda Motor Co Ltd Pumping plant
GB2239050B (en) * 1989-11-17 1993-10-06 Mitsubishi Electric Corp Circumferential flow type fuel pump

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5348442A (en) * 1993-08-18 1994-09-20 General Motors Corporation Turbine pump
JP2015200305A (en) * 2014-04-01 2015-11-12 パナソニックIpマネジメント株式会社 Liquid pump and rankine cycle device
JP6462831B1 (en) * 2017-11-09 2019-01-30 三菱電機株式会社 Fuel supply device

Also Published As

Publication number Publication date
JPH073239B2 (en) 1995-01-18
GB2239487A (en) 1991-07-03
GB9025699D0 (en) 1991-01-09
DE4039712C2 (en) 1995-04-20
DE4039712A1 (en) 1991-07-04
KR950006578Y1 (en) 1995-08-14
GB2239487B (en) 1993-07-21
KR910012550A (en) 1991-08-08

Similar Documents

Publication Publication Date Title
KR100402063B1 (en) Pumps with improved flow path
JPS5914639B2 (en) fuel conveyance device
JP4972259B2 (en) Centrifugal pump
US20100266436A1 (en) Fuel pump
JP2003532009A (en) Feed pump
JPH03199693A (en) Circular flow type liquid pump
JP4637990B2 (en) In-tank fuel pump / reservoir assembly
US5024578A (en) Regenerative pump with two-stage stripper
JPH06280777A (en) Fuel pump with back flow prevention opening
JP4095799B2 (en) Fuel pump with steam vent
US5221178A (en) Circumferential flow type liquid pump
US4478550A (en) Pump apparatus
GB2393761A (en) Fuel pump with noise reducing means
JPS60138297A (en) Circumferential flow type liquid pump
US6283704B1 (en) Circumferential flow type liquid pump
US20140169960A1 (en) Fuel pump
KR100904601B1 (en) Fuel pump and fuel feed apparatus having the same
JP2546943B2 (en) Integrated centrifugal pump and motor
JP2004052664A (en) Motor driven pump
US20070134083A1 (en) Regenerative pump
US20020131860A1 (en) Fuel pump
JP3843961B2 (en) Fuel pump
JP3170148B2 (en) Double suction pump
JP2783101B2 (en) Circular flow liquid pump
JP7330508B2 (en) impeller and submersible pump

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080118

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090118

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100118

Year of fee payment: 15

EXPY Cancellation because of completion of term