JPH03199308A - Production of steel material having excellent drilling property - Google Patents

Production of steel material having excellent drilling property

Info

Publication number
JPH03199308A
JPH03199308A JP33869789A JP33869789A JPH03199308A JP H03199308 A JPH03199308 A JP H03199308A JP 33869789 A JP33869789 A JP 33869789A JP 33869789 A JP33869789 A JP 33869789A JP H03199308 A JPH03199308 A JP H03199308A
Authority
JP
Japan
Prior art keywords
steel
molten steel
ingot
content
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33869789A
Other languages
Japanese (ja)
Other versions
JP2862607B2 (en
Inventor
Masashi Ishii
石井 正師
Yoshiharu Yamamoto
義治 山本
Kenichi Amano
虔一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP33869789A priority Critical patent/JP2862607B2/en
Publication of JPH03199308A publication Critical patent/JPH03199308A/en
Application granted granted Critical
Publication of JP2862607B2 publication Critical patent/JP2862607B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce the steel material having an excellent drilling property by forging and hot rolling a steel ingot near the crater end thereof in such a manner that the ratio of the content of C in the axial central part of the ingot with respect to the content of C in the molten steel in a ladle attains a specific value at the time of continuous casting of the molten steel. CONSTITUTION:The molten steel having the compsn. contg., by weight%, 0.2 to 1.0% C, 0.1 to 1.5% Si, and 0.3 to 2.0% Mn, is forged near the crater end where the unsolidified molten steel in the ingot completes solidification in such a manner that the value of the ratio C/C0 of the carbon content C in the axial central part of the ingot with respect to the carbon content C0 of the molten steel in the ladle attains 0.70 to 1.05 at the time of continuously casting the above-mentioned molten steel in the ladle and producing the steel material suitable for steel parts requiring drilling. In succession, the bloom in produced by hot rolling, then after the bloom is hot rolled to a billet by blooming and ingot mill, the billet is hot rolled to large-diameters bars, steel bars, bar-in coils and wire rods. The steel product having the excellent drilling property are thus produced.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、ナツト、カラー及び潤滑剤の供給孔を有す
るシャフトやピン又は、旋盤、ドリルによる内部加工を
要する各種機械部品等の穴開は加工を必要とする製品に
有利に適合する鋼材の製造方法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) This invention is applicable to shafts and pins having nuts, collars, and lubricant supply holes, or various mechanical parts that require internal processing using a lathe or drill. The present invention relates to a method for producing steel materials that are advantageously suited for products that require processing.

(従来の技術) 一般に上記した製品の加工は、圧延材を所望の寸法、形
状に仕上げて穴開は加工を施した後、その製品の用途に
応じ、焼入れ法、浸炭法及び窒化法などにて表面の硬化
処理を行っている。
(Prior art) In general, the above-mentioned products are processed by finishing the rolled material into the desired dimensions and shape, drilling holes, and then using quenching, carburizing, nitriding, etc., depending on the use of the product. The surface is hardened.

上記の加工に供する鋼材は、圧延材を所望の寸法、形状
に仕上げる際の切断、切削及び研削等の加工性に優れ、
さらに続く穴開は工程での加工性にも優れることが要求
される。
The steel materials used for the above processing have excellent workability such as cutting, cutting, and grinding when finishing rolled materials into desired dimensions and shapes.
Furthermore, the subsequent drilling process requires excellent workability.

したがって鋼材としては内部欠陥のないことが肝要であ
り、とくに鋼材の中心部にみられる中心偏析は、圧延材
の中心部を通る穴や棒状材の軸方向に延びる穴の加工に
おいて、穴の真直性を阻害することがあり、生産性及び
歩留りの低下をまねく。
Therefore, it is important for steel materials to be free of internal defects.In particular, center segregation, which occurs in the center of steel materials, is a problem that occurs when machining a hole that passes through the center of a rolled material or a hole that extends in the axial direction of a bar material. This may impede productivity and lead to a decrease in productivity and yield.

このような弊害をもたらす中心偏析は、連続鋳造で得ら
れる鋳片の場合、特に凝固先端部の凝固収縮のほか、凝
固シェルのバルジングなどによって生じる空隙の真空吸
収力も加わって、凝固先端部にc、p、sなどの濃化溶
鋼成分が吸込まれる結果、鋳片の断面中心部に正偏析と
なって残るものであり、かかる中心偏析に起因して線材
圧延後の中心偏析部に粒界セメンタイトの析出やミクロ
組織の不均一などが生じる結果、穴加工の真直性に代表
される穴開は加工性が劣化するものである。
In the case of slabs obtained by continuous casting, the center segregation that causes such problems is caused not only by solidification shrinkage at the solidified tip, but also by the vacuum absorption force of the voids caused by bulging of the solidified shell, resulting in the center segregation at the solidified tip. As a result of the suction of concentrated molten steel components such as As a result of precipitation of cementite and non-uniformity of the microstructure, the machinability of hole drilling, typified by the straightness of hole drilling, deteriorates.

かかる中心偏析の防止策として、例えば2次冷却帯域に
おける電磁撹拌などが試みられたが、セミミクロ偏析ま
でを軽減するには至ってなく、その効果は十分とはいえ
ない。
As a measure to prevent such center segregation, attempts have been made to, for example, use electromagnetic stirring in the secondary cooling zone, but this has not been able to reduce even semi-micro segregation, and the effect cannot be said to be sufficient.

また、鋳片の凝固末期に一対のロールを用いて大圧下を
施すいわゆるインラインリダクション法(鉄と鋼第60
年(1974)第7号875〜884頁)の適用も試み
られたが、この方法では、未凝固層の大きい鋳片領域に
おける圧下が不十分な場合には凝固界面に割れが発生し
、逆に圧下が十分である場合には鋳片の厚み中心部に強
い負偏析が生じる等の問題があった。
In addition, the so-called in-line reduction method (Tetsu-to-Hagane No. 60
(1974) No. 7, pp. 875-884), but with this method, if the reduction in the area of the slab with a large unsolidified layer was insufficient, cracks would occur at the solidification interface, and the opposite effect would occur. If the rolling reduction is sufficient, there are problems such as strong negative segregation occurring at the center of the thickness of the slab.

その他、特開昭49−121738号公報には、鋳片の
凝固先端部付近でロール対による軽圧下を施して、該部
分の凝固収縮量を圧下により補償する方法が、また特開
昭52−54623号公報には、鋳造金型を用いて鋳片
の凝固完了点近傍を大圧下する方法がそれぞれ提案され
ている。
In addition, JP-A No. 49-121738 discloses a method in which a light reduction is applied with a pair of rolls near the solidified tip of a slab to compensate for the amount of solidification shrinkage in this area by reduction. Japanese Patent No. 54623 proposes a method of greatly reducing the area near the solidification completion point of a slab using a casting mold.

しかしながらロールによる軽圧下の場合には、複数対の
ロールにより数閣/−の圧下を施したとしても、ロール
ピッチ間に生じる凝固収縮やバルジングを十分に防止す
ることができず、また圧下位置が適切でなければかえっ
て中心偏析が悪化する不利があった。他方、鍛造金型を
用いて鋳片の凝固完了点近傍を大圧下する方法は、イン
ラインリダクション法のようなロールによる大圧下に比
べて凝固界面が割れにくく、また負偏析も極力回避する
ことが可能で、セミマクロ偏析まで改善できることが明
らかになっているものの、依然として未凝固層の大きい
鋳片領域における圧下が不十分だと凝固界面に割れが発
生し、逆に圧下が十分すぎると鋳片の中心部に強い負偏
析が生じる不利があり、さらには未凝固層の小さい領域
を圧下してもその効果が得られないことから、最適な圧
下条件を模索しているのが現状である。
However, in the case of light rolling by rolls, even if several pairs of rolls are used to roll down by several degrees, it is not possible to sufficiently prevent solidification shrinkage and bulging that occur between the roll pitches, and the rolling position is If it was not appropriate, there would be a disadvantage that center segregation would worsen. On the other hand, the method of applying a large reduction near the solidification point of the slab using a forging die makes the solidification interface less likely to crack than the in-line reduction method, which uses large reductions using rolls, and also avoids negative segregation as much as possible. However, if the reduction in the area of the slab with a large unsolidified layer is insufficient, cracks will occur at the solidification interface, and conversely, if the reduction is too large, cracks will occur in the slab. There is a disadvantage that strong negative segregation occurs in the center, and furthermore, the effect cannot be obtained even if a small area of the unsolidified layer is rolled down, so the current situation is to find the optimal rolling conditions.

従って鋳片に生成する中心偏析を飛躍的に改善するまで
には至ってなく、鋼種や用途によっては鋳片段階におい
て拡散焼鈍などを施して対処しているのが実状であり、
大幅なコストアップは免れず、とくに圧延材の中心部に
穴開は加工を施す際の真直性を低下させることが問題と
なっている。
Therefore, it has not yet been possible to dramatically improve the center segregation that occurs in slabs, and the reality is that depending on the steel type and application, diffusion annealing is applied at the slab stage to deal with it.
A significant increase in cost is inevitable, and in particular, drilling holes in the center of the rolled material poses a problem as it reduces the straightness during processing.

(発明が解決しようとする課題) この発明は、上記の問題を有利に解決するもので、連続
鋳造法を利用する場合であっても、中心偏析の生成を極
力低減し、もって穴開は加工時における真直性の向上を
可能ならしめた穴開は加工性に優れた鋼材の有利な製造
方法を提案することを目的とする。
(Problems to be Solved by the Invention) This invention advantageously solves the above problems, and even when using a continuous casting method, the generation of center segregation is reduced as much as possible, so that hole drilling is reduced by machining. The purpose of this study is to propose an advantageous manufacturing method for steel materials with excellent workability.

(課題を解決するための手段) すなわちこの発明は、 C:0.2〜1.0wt%(以下単に%で示す)、Si
:0.1〜1.5%および Mn : 0.3〜2.0% を含み、残部はFeおよび不可避的不純物の組成になる
溶鋼を連続鋳造し、その際、鋳片内部溶鋼が凝固を完了
するクレータエンド近傍にて、取鍋中溶鋼のC含有量(
C0)に対する鋳片軸心部におけるC含有量(C)の比
C/ COが0.70〜1.05となる鍛圧加工を施し
、ついで熱間圧延にて、太棒、棒鋼、バーインコイル及
び線材とすることを特徴とする穴開は加工性に優れた鋼
材の製造方法である。
(Means for Solving the Problems) That is, the present invention provides C: 0.2 to 1.0 wt% (hereinafter simply expressed as %), Si
: 0.1 to 1.5% and Mn: 0.3 to 2.0%, with the remainder consisting of Fe and unavoidable impurities. At that time, the molten steel inside the slab solidifies. Near the completed crater end, the C content of the molten steel in the ladle (
The cast slab is subjected to forging processing such that the ratio C/CO of the C content (C) at the axial center of the slab to C0) is 0.70 to 1.05, and then hot rolled to form thick bars, steel bars, bar-in coils and Drilling, which is characterized by the use of wire rods, is a method for manufacturing steel materials with excellent workability.

(作 用) まず、この発明において溶鋼の成分組成を上記の範囲に
限定した理由について説明する。
(Function) First, the reason why the composition of molten steel is limited to the above range in this invention will be explained.

C:0.2〜1.0% 主に機械部品に用いることから加工後の強度を保証する
必要があり、C量は0.2%を下限とした。
C: 0.2-1.0% Since it is mainly used for mechanical parts, it is necessary to guarantee the strength after processing, and the lower limit of the C content is set at 0.2%.

一方C量を高めるほど高強度の鋼線を得ることができる
が、反面で高C化は材料を脆化させ加工中の断線発生頻
度を高める。特に1.0%を超えると線材圧延後の制御
冷却中に、旧オーステナイト粒界に網目状のセメンタイ
トが析出し、その後の伸線加工性などを大きく阻害する
ので、上限は1.0%に定めた。
On the other hand, the higher the C content, the higher the strength of the steel wire, but on the other hand, increasing the C content makes the material brittle and increases the frequency of wire breakage during processing. In particular, if it exceeds 1.0%, mesh-like cementite will precipitate at the prior austenite grain boundaries during controlled cooling after wire rolling, which will greatly impede subsequent wire drawability, so the upper limit should be 1.0%. Established.

Si : 0.1〜1.5% Siは、脱酸剤としてだけでなく、マトリックスの強化
を図る上で有用な元素であり、少なくとも0.1%を必
要とする。一方Siは、Cの活量を上げる作用があり、
特に1.5%を超えて含有すると脱炭層の生成が顕著と
なって表面硬さが不十分になり、脱炭層を除去する工程
が必要になる上、歩留りの低下をもまねく。かかる理由
からSiの含有量は0.1−1.5%の範囲とした。
Si: 0.1-1.5% Si is an element useful not only as a deoxidizing agent but also for strengthening the matrix, and requires at least 0.1%. On the other hand, Si has the effect of increasing the activity of C,
In particular, if the content exceeds 1.5%, the formation of a decarburized layer becomes noticeable, resulting in insufficient surface hardness, requiring a step to remove the decarburized layer, and also resulting in a decrease in yield. For this reason, the Si content was set in the range of 0.1-1.5%.

Mn : 0.3〜2.0% Mnは、Siと同様、脱酸剤として作用するだけでなく
、鋼の脆化をもたらすSを固定し、またさらには焼入性
を向上させて強度及び延性を高める上でも有用な元素で
あるが、含有量が0.3%に満たないとその添加効果に
乏しく、一方2.0%を超えると高価となるばかりか熱
間圧延後の制御冷却あるいは加工途中の熱処理工程にお
いて当クロマルテンサイト組織の生成を促し、穴開は加
工性を害するので、0.3〜2.0%の範囲で添加する
ものとした。
Mn: 0.3-2.0% Like Si, Mn not only acts as a deoxidizing agent, but also fixes S, which causes embrittlement of steel, and also improves hardenability and increases strength. Although it is a useful element for increasing ductility, if the content is less than 0.3%, its addition effect will be poor, while if it exceeds 2.0%, it will not only be expensive but also require controlled cooling after hot rolling or Since it promotes the formation of the chromartensite structure in the heat treatment step during processing and the formation of holes impairs workability, it was added in a range of 0.3 to 2.0%.

さてこの発明では、上述したような好適成分組成になる
溶鋼の連続鋳造に際し、鋳片の内部溶鋼が凝固を完了す
るクレータエンド近傍にて鍛圧加工を施すことによって
、取鍋中溶鋼のC含有量 (Co)に対する鋳片軸心部
におけるC含有量(C)の比C/C,を0.70〜1.
05に制御する。
In the present invention, during continuous casting of molten steel having a suitable composition as described above, the C content of the molten steel in the ladle is reduced by performing forging near the crater end where the molten steel inside the slab completes solidification. The ratio C/C of the C content (C) in the axial center of the slab to (Co) is 0.70 to 1.
05.

ここに鍛圧加工によってC/CO比の制御が可能な理由
は、次のとおりである。
The reason why the C/CO ratio can be controlled by forging is as follows.

すなわち内部溶鋼の凝固末期には、Cの濃化が進んだ溶
鋼がクレータエンド近傍に存在するため、そのまま凝固
すれば中心偏析となるわけであるが、凝固前に鍛圧加工
を施すと、かようなC濃化溶鋼は上方に押し出される結
果、中心部におけるC濃度はさほど上昇することはない
。従って鍛圧加工の実施時期をCの濃化程度に応じて調
節すれば、鋳片軸心部におけるC含有量を調整できるわ
けである。
In other words, at the final stage of solidification of the internal molten steel, molten steel with advanced C concentration exists near the crater end, so if it solidifies as it is, it will become centrally segregated, but if forging is performed before solidification, this will occur. As a result of the C-enriched molten steel being pushed upward, the C concentration in the center does not increase much. Therefore, by adjusting the timing of forging according to the degree of enrichment of C, the C content in the axial center of the slab can be adjusted.

次にこの発明に従い連続鋳造鋳片に連続的に鍛圧加工を
行ったもの、ならびに鍛圧加工を行わない従来法に従い
得たもの、を棒鋼に圧延した後、その軸心部をドリルに
よって穴開は加工した際のドリル寿命を調べたところ、
鍛圧加工を行ったものは、鍛圧加工を行わないものに比
べて1.2〜1.5倍にまでドリル寿命を延ばすことが
できた。
Next, the continuously cast slabs subjected to continuous forging according to the present invention and those obtained according to the conventional method without forging are rolled into steel bars, and the axial center of the slabs is drilled. When we investigated the drill life during machining, we found that
The lifespan of drills that were subjected to forging was 1.2 to 1.5 times longer than those that were not subjected to forging.

さらに同様に鍛圧加工を行ったもの、ならびに鍛圧加工
を行わない従来法に従い得たものから、鋳片軸心部のC
/CO比が種々に異なる鋼材を採取し、棒鋼に圧延した
後、その軸心部をドリルによって穴開は加工した際のド
リルの真直性について調べたところ、C/Co比が0.
70未満の負偏析率の大きい場合、および逆にC/c、
比が1.05を超える正偏析率の大きい場合にはいずれ
も、ドリルの真直性が低下する。この理由は、負偏析率
が大きくなるとドリルの振れを誘発すること、また正偏
析率が大きい場合は成分濃化差を生じた部分の境界で負
偏析側にドリルが逃げること等が原因と考えられる。
Furthermore, the C
Steel materials with various C/Co ratios were sampled, rolled into steel bars, and then the shaft center was drilled with a drill.The straightness of the drill was investigated, and it was found that the C/Co ratio was 0.
In the case of a large negative segregation rate of less than 70, and conversely, C/c,
In any case where the ratio is greater than 1.05 and the positive segregation rate is large, the straightness of the drill decreases. The reason for this is thought to be that when the negative segregation rate becomes large, it induces the swing of the drill, and when the positive segregation rate is large, the drill escapes to the negative segregation side at the boundary of the part where the difference in component concentration occurs. It will be done.

従ってこの発明では、鍛圧加工によって制御すべき鋳片
軸心部におけるC /CO比を0.70〜1.05の範
囲に限定したのである。
Therefore, in this invention, the C/CO ratio in the axial center of the slab to be controlled by forging is limited to a range of 0.70 to 1.05.

なお、好ましい鍛圧加工法としては、発明者らが先に特
開昭60−82257号公報において開示した連続鍛圧
法がある。
In addition, as a preferable forging method, there is a continuous forging method previously disclosed by the inventors in JP-A-60-82257.

また上記したこの発明法に従う鍛圧加工法により、C/
C,比を0.70〜1.05に制御した鋳片を、熱間圧
延により棒鋼にし、これらの棒鋼のうち、横断面におけ
る中心部78.5mm”中の最高硬さとマトリックスの
平均硬さとの比が種々のものについて穴開は加工を行っ
たところ、ドリル寿命及び真直度は、硬さ比が1.1を
超えると急激に低下することが判明した。
In addition, by the forging method according to the above-mentioned method of the invention, C/
C. The slabs with a controlled ratio of 0.70 to 1.05 are made into steel bars by hot rolling, and among these bars, the highest hardness in the center 78.5 mm in the cross section and the average hardness of the matrix When drilling holes with various hardness ratios, it was found that the drill life and straightness decreased rapidly when the hardness ratio exceeded 1.1.

(実施例) 第1表に示す化学組成になる溶鋼(記号A−H)を27
0X340mmのモールドで連続鋳造し、引き抜き中の
鋳片に対し、鋳片内部の溶鋼が凝固を完了するクレータ
エンド近傍にて、鋳片軸心部のC/C。
(Example) Molten steel (symbols A-H) with the chemical composition shown in Table 1 was
C/C of the axial center of the slab in the vicinity of the crater end where the molten steel inside the slab completes solidification for the slab that is continuously cast in a 0x340mm mold and is being drawn.

比? 0.80を目標として連続的に鍛圧加工を施し、
C/CO比を0.70〜1.05の範囲に制御してプル
ームを製造した。その後、分塊及び鋼片ミルによって1
50 X 150mmのビレットに熱間圧延した。さら
に棒鋼ミルにて40mmφの棒鋼に熱間圧延した。
ratio? Continuously press-processed with a target of 0.80,
A plume was manufactured by controlling the C/CO ratio within a range of 0.70 to 1.05. Then 1 by blooming and billet mill
Hot rolled into a 50 x 150 mm billet. Furthermore, it was hot rolled into a 40 mmφ steel bar using a steel bar mill.

一方比較材は、従来工程どうり、連続鋳造後、鍛圧加工
を行わずに同様に棒鋼圧延までを行った。
On the other hand, the comparative material was subjected to the conventional process of continuous casting and then to bar rolling without forging.

なお出鋼時の溶鋼加熱度は、すべて25〜30℃の範囲
で鋳込んだ。また分塊圧延から棒鋼圧延までの熱間圧延
温度は、この発明に従って得られた鋼材及び比較材共に
同一温度履歴となるよう配慮した。
The molten steel was heated at a temperature of 25 to 30° C. during tapping. In addition, consideration was given to the hot rolling temperature from blooming to bar rolling so that both the steel material obtained according to the present invention and the comparison material had the same temperature history.

これらの圧延棒鋼の緒特性について調べた結果を第2表
に示す。
Table 2 shows the results of investigating the mechanical properties of these rolled steel bars.

ここに引張試験片は、ビレットの両端部及び中間部の位
置における圧延材から連続サンプリングした合計30本
の平均値で示す。その他の特性については、引張試験片
の直近から採取したものについて調査した結果を示して
いる。なおセンタースポットはその程度を問わず有無で
表した。
Here, the tensile test specimens are shown as the average value of a total of 30 specimens continuously sampled from the rolled material at both ends and the middle of the billet. Regarding other properties, the results of an investigation of samples taken from the immediate vicinity of the tensile test piece are shown. Note that the center spot was expressed as presence or absence regardless of its degree.

(wtX) 同表より明らかなように、この発明に従って得られた鋼
材は中心偏析を示すセンタースポットは全く認められず
、またミクロマルテンサイトや粒界セメンタイトの析出
もない。
( wt

これに対し比較材にはいずれも、センタースポットが認
められた。
In contrast, center spots were observed in all comparative materials.

このような差異は絞りに表れ、いずれの鋼材においても
適合例の方が明らかに高い値を示す。
Such a difference appears in the aperture, and the conforming example clearly shows a higher value for any steel material.

次に得られた棒鋼において、その中心軸へ向かうドリル
穴開は加工を施した際のドリル寿命について調べた結果
を、第1図に示す。
Next, in the obtained steel bar, the life of the drill was investigated when drilling a hole toward the center axis of the bar was performed. The results are shown in Fig. 1.

同図に示すように、鋼種Aの鍛圧加工を施さないもので
のドリル寿命を100としたとき、いずれの鋼種におい
てもは鍛圧加工を施したものが長寿命を示し有利であっ
た。
As shown in the figure, when the drill life of the steel type A that was not subjected to forging processing was set as 100, the drill that was subjected to forging processing had a long life and was advantageous for all steel types.

また第2図に、上記のドリル穴開は加工を施した際のド
リルの真直性について調べた結果を、C/Coとの関係
として示すように、真直性はC/C6が0.7〜0.8
5の範囲において最も高くなり、一方1.10をこえる
と急激に低下した。
In addition, as shown in Figure 2, the results of investigating the straightness of the drill when the above-mentioned drill hole was processed are shown as a relationship with C/Co. 0.8
It was highest in the range of 5, while it rapidly decreased when it exceeded 1.10.

(発明の効果) この発明に従い、連続鋳造時に鍛圧加工を連続的に付与
し鋳片軸心部のC/ COを制御することによって、特
に熱間圧延後の鋼材の穴開は加工における真直性が向上
された、穴開は加工性の優れた鋼材を提供でき、同時に
穴開は加工に使用するドリル寿命を延ばすことも可能で
ある。
(Effects of the Invention) According to the present invention, by continuously applying forging during continuous casting and controlling C/CO at the axial center of the slab, holes in the steel material after hot rolling can be made with straightness during processing. Drilling can provide steel materials with improved workability, and at the same time, drilling can extend the life of the drill used for processing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、各鋼種別の圧延棒鋼とドリル寿命との関係を
示したグラフ、 第2図は、圧延棒鋼のC/C,比とドリル真直性との関
係を示したグラフ、 である。 @1図 a趨 ClCO比
Figure 1 is a graph showing the relationship between rolled steel bars and drill life for each steel type, and Figure 2 is a graph showing the relationship between C/C ratio of rolled steel bars and drill straightness. @1 Figure a trend ClCO ratio

Claims (1)

【特許請求の範囲】 1、C:0.2〜1.0wt%、 Si:0.1〜1.5wt%および Mn:0.3〜2.0wt% を含み、残部はFeおよび不可避的不純物の組成になる
溶鋼を連続鋳造し、その際、鋳片内部溶鋼が凝固を完了
するクレータエンド近傍にて、取鍋中溶鋼のC含有量(
C_0)に対する鋳片軸心部におけるC含有量(C)の
比C/C_0が0.70〜1.05となる鍛圧加工を施
し、ついで熱間圧延にて、太棒、棒鋼、バーインコイル
及び線材とすることを特徴とする穴開け加工性に優れた
鋼材の製造方法。
[Claims] 1. Contains C: 0.2 to 1.0 wt%, Si: 0.1 to 1.5 wt%, and Mn: 0.3 to 2.0 wt%, the remainder being Fe and inevitable impurities. Molten steel with a composition of
The ratio C/C_0 of the C content (C) in the axial center of the slab to C_0) is 0.70 to 1.05.Then, hot rolling is performed to form thick bars, steel bars, bar-in coils and A method for manufacturing a steel material with excellent hole-drilling properties, characterized by making it into a wire rod.
JP33869789A 1989-12-28 1989-12-28 Manufacturing method of steel with excellent drilling workability Expired - Fee Related JP2862607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33869789A JP2862607B2 (en) 1989-12-28 1989-12-28 Manufacturing method of steel with excellent drilling workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33869789A JP2862607B2 (en) 1989-12-28 1989-12-28 Manufacturing method of steel with excellent drilling workability

Publications (2)

Publication Number Publication Date
JPH03199308A true JPH03199308A (en) 1991-08-30
JP2862607B2 JP2862607B2 (en) 1999-03-03

Family

ID=18320613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33869789A Expired - Fee Related JP2862607B2 (en) 1989-12-28 1989-12-28 Manufacturing method of steel with excellent drilling workability

Country Status (1)

Country Link
JP (1) JP2862607B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002103010A (en) * 2000-10-03 2002-04-09 Kawasaki Steel Corp Method for producing cast billet having good machinability in center part

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002103010A (en) * 2000-10-03 2002-04-09 Kawasaki Steel Corp Method for producing cast billet having good machinability in center part
JP4631145B2 (en) * 2000-10-03 2011-02-16 Jfeスチール株式会社 Method for producing a slab with good machinability at the center

Also Published As

Publication number Publication date
JP2862607B2 (en) 1999-03-03

Similar Documents

Publication Publication Date Title
CN114774771B (en) Carburized bearing steel for high-load rolling mill bearing and production method thereof
JP2007297674A (en) High-carbon steel wire rod superior in cuppy break resistance
JP4500246B2 (en) Steel pipe for machine structural member and manufacturing method thereof
JP3002392B2 (en) Method for manufacturing centrifugally cast composite roll
JP2986829B2 (en) Manufacturing method of bearing material with excellent rolling fatigue life
JPH11279695A (en) Steel wire rod for bearing and its production
JP2905243B2 (en) Manufacturing method of bearing material with excellent rolling fatigue life
JP2905241B2 (en) Manufacturing method of bearing material with excellent rolling fatigue life
JP2905242B2 (en) Method for producing low Cr bearing steel material with excellent rolling fatigue life
JP2007331022A (en) Method for manufacturing stainless steel welding wire
JPH0762204B2 (en) Manufacturing method of high-toughness non-heat treated steel for hot forging and its steel bars and parts
JP3091795B2 (en) Manufacturing method of steel bars with excellent drawability
JPH03199308A (en) Production of steel material having excellent drilling property
KR100920621B1 (en) Method for Manufacturing Billet of Bi-S Based Free-Cutting Steel
JPS6135249B2 (en)
JP4393344B2 (en) Manufacturing method of case hardening steel with excellent cold workability and grain coarsening resistance
JP3091794B2 (en) Method of manufacturing automotive shaft parts excellent in extrudability and forgeability
JPH03199307A (en) Production of steel products having excellent friction pressure weldability
JP3091792B2 (en) Method of manufacturing a stepped shaft
JPH05192736A (en) Manufacture of hexagon socket head cap screw
JP2004269981A (en) Production method of steel bar
JP2927823B2 (en) Method of manufacturing hot-rolled material for high carbon steel wire rod with high workability
JPH0292444A (en) Production of raw material for bearing steel ball
JPH03271319A (en) Production of bearing steel having long service life and high strength
JPH0814001B2 (en) Method for manufacturing hot forged non-heat treated parts

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees