JPH03198831A - Ophthalmologic apparatus - Google Patents

Ophthalmologic apparatus

Info

Publication number
JPH03198831A
JPH03198831A JP1343469A JP34346989A JPH03198831A JP H03198831 A JPH03198831 A JP H03198831A JP 1343469 A JP1343469 A JP 1343469A JP 34346989 A JP34346989 A JP 34346989A JP H03198831 A JPH03198831 A JP H03198831A
Authority
JP
Japan
Prior art keywords
cornea
eye
light receiving
light source
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1343469A
Other languages
Japanese (ja)
Inventor
Yoshi Kobayakawa
小早川 嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1343469A priority Critical patent/JPH03198831A/en
Publication of JPH03198831A publication Critical patent/JPH03198831A/en
Pending legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

PURPOSE:To facilitate a state of positioning with an eye to be inspected while enabling accurate positioning by providing a ring-shaped photodetecting sensor circumferentially outside a circular photodetecting sensor to detect the state of positioning with the eye to be inspected based on outputs of both the sensors. CONSTITUTION:Cornea Ec of an eye E to be inspected is subjected to a fixed cornea deformation by blowing air from a nozzle 7. An intensity of air which caused the fixed cornea deformation is measured with a pressure sensor 6 within a current blowing means 5 to be converted to an eye pressure. A light source 1 serves concurrently for detecting the cornea deformation and for positioning. The cornea Ec is irradiated with a luminous flux from the light source 1 through a lens 2 and the light reflectogaed from the cornea is received with a lens 3 to form a light source image on a photoelectric sensor 4. The photoelectric sensor 4 is provided adjoining on a circular center part element 41 and a ring- shaped peripheral part element 42 surrounding it to obtain an output independently. When positioning is proper, a reflection image 10 from the cornea of the light source 1 becomes almost the same in shape as the center element 41. The position of the image 10 is deviated vertical to an optical axis or in a direction of the optical axis and thus, it involves the peripheral element.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は被検眼との位置合わせ状態を簡便な構成で検出
できる眼科装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ophthalmologic apparatus that can detect the alignment state with an eye to be examined with a simple configuration.

[従来の技術] 眼科装置、例えば非接触眼圧計において被検眼に対し光
軸垂直方向及び光軸方向に位置合わせがなされていない
状態で測定すると本来の値と異なる値となり測定値の信
頼性に欠ける。
[Prior art] If an ophthalmological device, such as a non-contact tonometer, is used to measure the eye to be examined in a state where the optical axis is not aligned perpendicularly or in the optical axis direction, the value will be different from the original value and the reliability of the measured value will be affected. Missing.

そこで測定前に被検眼との位置合わせを行なう必要があ
るが、光軸垂直方向の位置合わせ検出と光軸方向の位置
合わせ検出を全く独立したセンサで行なうことが考えら
れている。
Therefore, it is necessary to perform alignment with the eye to be examined before measurement, and it has been considered to use completely independent sensors to detect alignment in the direction perpendicular to the optical axis and in the direction of the optical axis.

[発明が解決しようとしている課題] しかしながら上記従来例では独立したセンサを設ける関
係上、構造が複雑化してしまう。
[Problems to be Solved by the Invention] However, in the conventional example described above, the structure becomes complicated because an independent sensor is provided.

本発明の目的は上記従来例の問題点を解決する眼科装置
を提供することにある。
An object of the present invention is to provide an ophthalmologic apparatus that solves the problems of the conventional technique described above.

[課題を解決するための手段] 上記目的を達成するため本発明では、被検眼角膜を照射
する光源と、該光源から出て被検眼角膜で反射される光
を受光する受光光学系と、該受光光学系の受光面に設け
られる光検出部を備える眼科装置において、前記光検出
部は円形受光センサと、該円形受光センサの外側であっ
て円周方向に設けられるリング状受光センサを備え、被
検眼との位置合わせが適正な場合に前記光検出部におけ
る前記光源の角膜反射像が前記円形受光センサ又は前記
リング状受光センサと同形であり、前記円形受光センサ
と前記リング状受光センサの双方の出力を基に被検眼と
の位置合わせ状態を検出する手段を有することを特徴と
する。
[Means for Solving the Problems] In order to achieve the above object, the present invention includes a light source that irradiates the cornea of the eye to be examined, a light receiving optical system that receives light emitted from the light source and reflected by the cornea of the eye to be examined; In an ophthalmological apparatus including a light detection unit provided on a light receiving surface of a light receiving optical system, the light detection unit includes a circular light receiving sensor and a ring shaped light receiving sensor provided outside the circular light receiving sensor in a circumferential direction, When the alignment with the subject's eye is proper, the corneal reflection image of the light source in the photodetector has the same shape as the circular light receiving sensor or the ring-shaped light receiving sensor, and both the circular light receiving sensor and the ring-shaped light receiving sensor It is characterized by having means for detecting the state of alignment with the eye to be examined based on the output of the eye.

[実施例] 第1図に非接触眼圧計に適用した本発明の第1の実施例
を示す。被検眼Eの角膜ECにノズル7がら空気を吹き
付ける一定の角膜変形を与える。
[Example] Fig. 1 shows a first example of the present invention applied to a non-contact tonometer. Air is blown from the nozzle 7 onto the cornea EC of the eye E to be examined to give a certain degree of corneal deformation.

一定の角膜変形がなされたその時の空気の強さを気流吹
き付は手段5の内部の圧力センサ6で測り眼圧に換算す
る。
The strength of the air at the time when a certain corneal deformation is achieved is measured by a pressure sensor 6 inside the airflow blowing means 5 and converted into intraocular pressure.

光源1は角膜変形検出用及び位置合わせ用に兼用される
ものである。レンズ2を介して光源lからの光束が角膜
ECを照射し角膜反射光はレンズ3で受光され、光源像
が光電センサ4に形成される。光電センサ4は第2図(
a)に示す如く円形状の中心部要素41とそれを囲むリ
ング状の周辺部要素42が隣接して設けられていて独立
に出力が得られる。位置合わせが適正な場合光源1の角
膜反射像10は中心部要素41とほぼ同形であり、それ
が投影された様子を第2図(b)に示す。第2図(C)
は光軸垂直方向或いは光軸方向に位置がずれている状態
を示し像10は周辺要素にもかかっている。ここで第2
図(d)は気流を吹き付けた時、角膜が変形して光源像
10°がぼけて拡大した状態を示す。
The light source 1 is used for both corneal deformation detection and position alignment. The light beam from the light source l illuminates the cornea EC via the lens 2, and the corneal reflected light is received by the lens 3, and a light source image is formed on the photoelectric sensor 4. The photoelectric sensor 4 is shown in Fig. 2 (
As shown in a), a circular center element 41 and a ring-shaped peripheral element 42 surrounding it are provided adjacent to each other, and outputs can be obtained independently. When the alignment is proper, the corneal reflection image 10 of the light source 1 has approximately the same shape as the central element 41, and the projected state thereof is shown in FIG. 2(b). Figure 2 (C)
indicates a state where the position is shifted in the direction perpendicular to the optical axis or in the direction of the optical axis, and the image 10 also covers peripheral elements. Here the second
Figure (d) shows a state in which the cornea is deformed and the light source image is blurred and enlarged by 10 degrees when the airflow is blown onto the cornea.

さて第3図はそれら各要素の出力Iの時間的変化を示す
。第3図(a)は位置合わせ時を示し、I1は中心部要
素41の出力、I2は周辺部要素42の出力である。位
置が合っていれば実質的にI1のみ現われ12はゼロと
なる。第3図(b)は気流の吹き付は時の変化を示す、
t、は空気吹き付は開始を示し、t2では光源像10’
は第2図(d)の如くぼけ要素41.42にほぼ均一の
光があたって、要素41.42の面積が同じなら要素4
1.42から同じ出力が得られる。第3図(C)は中心
部要素41と周辺部要素42の出力差ll−12を示す
、モしてI、−I、の値が時刻t1の時の11の値の半
分になった瞬間の気流吹き付は手段内の圧力を圧力セン
サ6で読み、これから眼圧を求める。なお差1.−1.
の代りにコントラストたる(II −I2 )/(II
 +12)、或いは11のみを変形検知に用いても良い
Now, FIG. 3 shows temporal changes in the output I of each of these elements. FIG. 3(a) shows the alignment, where I1 is the output of the center element 41 and I2 is the output of the peripheral element 42. If the positions are correct, only I1 will substantially appear and 12 will be zero. Figure 3(b) shows the change in airflow over time.
t, indicates the start of air blowing, and at t2, the light source image 10'
As shown in FIG. 2(d), if almost uniform light hits the blurring elements 41 and 42 and the areas of the elements 41 and 42 are the same, then the element 4
1.42 gives the same output. FIG. 3(C) shows the output difference ll-12 between the central element 41 and the peripheral element 42, at the moment when the value of I, -I, becomes half of the value of 11 at time t1. When the airflow is blown, the pressure inside the device is read by a pressure sensor 6, and the intraocular pressure is determined from this. Note that the difference is 1. -1.
Instead of contrast (II − I2 )/(II
+12) or only 11 may be used for deformation detection.

次に第4図は別の実施例を示す、気流吹き付は手段12
から管13を通しノズル11がら空気等の気流を吹き付
ける。一方、光軸上に設けられた光源15からの光束は
ハーフミラ−16、レンズ17.18を介し被検眼の角
膜曲率中心に投影される。角膜反射光は同じ光路を戻り
ハーフミラ−16で反射し光源像を光電センサ14に投
影する。光電センサ14は光電センサ4と同じように中
心部要素と周辺部要素からなり角膜変形と位置ずれを検
出する。
Next, FIG. 4 shows another embodiment, in which the air blowing means 12
A stream of air or the like is blown from the nozzle 11 through the tube 13. On the other hand, a light beam from a light source 15 provided on the optical axis is projected onto the center of corneal curvature of the eye to be examined via a half mirror 16 and lenses 17 and 18. The corneal reflected light returns along the same optical path and is reflected by the half mirror 16 to project a light source image onto the photoelectric sensor 14. Like the photoelectric sensor 4, the photoelectric sensor 14 is composed of a central element and a peripheral element, and detects corneal deformation and positional deviation.

さて第5図は光電センサ4の変形例を示す。Now, FIG. 5 shows a modification of the photoelectric sensor 4. In FIG.

第5図で中心部要素41に隣接するリング状の周辺部要
素は42a〜42dと4分割され位置合わせずれがある
とき、そのずれ方向が左右上下いずれの方向であるかを
識別できる。
In FIG. 5, the ring-shaped peripheral element adjacent to the center element 41 is divided into four parts 42a to 42d, and when there is a misalignment, it is possible to identify whether the direction of the misalignment is left, right, up, or down.

[変形例] さて、以上の説明で光源1は光電センサ4の中心部要素
と同形の円形状としたが、周辺部要素と同形のリング状
としても同じような効果が得られる。
[Modification] Now, in the above description, the light source 1 is made into a circular shape having the same shape as the central element of the photoelectric sensor 4, but the same effect can be obtained even if it is made into a ring shape having the same shape as the peripheral part element.

[発明の効果] 以上、本発明によれば簡便な構成にて被検眼との位置合
わせ状態を容易に検出できる。しかも角膜反射率の相違
に拘らず正確な位置合わせを行なうことができる。
[Effects of the Invention] As described above, according to the present invention, the state of alignment with the eye to be examined can be easily detected with a simple configuration. Moreover, accurate positioning can be performed regardless of differences in corneal reflectance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例の図、 第2図(a)(b)(c)(d)は各々光電センサ、位
置合わせが適正な場合の光電センサと光源像の関係、位
置合わせが不適正な場合の光電センサと光源像の関係、
角膜が空気流で変形されたときの光電センサと光源像の
関係を示す図、第3図(a)(b)(c)は各々位置合
わせ時の出力、気流吹ぎ付は時の出力、光電センサの中
心部要素と周辺部要素の出力差の時間的変化を示す図、 第4図は本発明の第2の実施例の図、 第5図は光電センサの変形例の図、 図中Eは被検眼、ECは角膜、1.15は光源、4,1
4は光電センサ、5.12は気流吹ぎ付は手段、6は圧
力センサ、7,11はノズル、10は光源像、41は中
心部要素、42は周辺部要素である。 V(四〇 唱2−図 窄″′;3図
Fig. 1 is a diagram of the first embodiment of the present invention, Fig. 2 (a), (b), (c), and (d) respectively show the photoelectric sensor, the relationship between the photoelectric sensor and the light source image when alignment is proper, and Relationship between photoelectric sensor and light source image when alignment is incorrect,
A diagram showing the relationship between the photoelectric sensor and the light source image when the cornea is deformed by airflow. Figure 3 (a), (b), and (c) are the outputs at the time of positioning, respectively, and the outputs at the time of airflow blowing. A diagram showing a temporal change in the output difference between a central element and a peripheral element of a photoelectric sensor. Figure 4 is a diagram of a second embodiment of the present invention. Figure 5 is a diagram of a modified example of a photoelectric sensor. E is the eye to be examined, EC is the cornea, 1.15 is the light source, 4,1
4 is a photoelectric sensor, 5 and 12 are air flow blowing means, 6 is a pressure sensor, 7 and 11 are nozzles, 10 is a light source image, 41 is a central element, and 42 is a peripheral element. V (40 chants 2-Fig. 3)

Claims (2)

【特許請求の範囲】[Claims] (1)被検眼角膜を照射する光源と、該光源から出て被
検眼角膜で反射される光を受光する受光光学系と、該受
光光学系の受光面に設けられる光検出部を備える眼科装
置において、前記光検出部は円形受光センサと、該円形
受光センサの外側であって円周方向に設けられるリング
状受光センサを備え、 被検眼との位置合わせが適正な場合に前記光検出部にお
ける前記光源の角膜反射像が前記円形受光センサ又は前
記リング状受光センサと同形であり、前記円形受光セン
サと前記リング状受光センサの双方の出力を基に被検眼
との位置合わせ状態を検出する手段を有することを特徴
とする眼科装置。
(1) An ophthalmological device that includes a light source that illuminates the cornea of the eye to be examined, a light receiving optical system that receives light emitted from the light source and reflected by the cornea of the eye to be examined, and a light detection section provided on the light receiving surface of the light receiving optical system. In this, the light detecting section includes a circular light receiving sensor and a ring-shaped light receiving sensor provided outside the circular light receiving sensor in the circumferential direction, and when the alignment with the subject's eye is proper, the light detecting section has a circular light receiving sensor. A corneal reflection image of the light source has the same shape as the circular light receiving sensor or the ring-shaped light receiving sensor, and means for detecting an alignment state with the eye to be examined based on outputs of both the circular light receiving sensor and the ring-shaped light receiving sensor. An ophthalmological device characterized by having the following.
(2)前記リング状受光センサは4分割センサである請
求項1記載の眼科装置。
(2) The ophthalmologic apparatus according to claim 1, wherein the ring-shaped light receiving sensor is a four-segment sensor.
JP1343469A 1989-12-27 1989-12-27 Ophthalmologic apparatus Pending JPH03198831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1343469A JPH03198831A (en) 1989-12-27 1989-12-27 Ophthalmologic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1343469A JPH03198831A (en) 1989-12-27 1989-12-27 Ophthalmologic apparatus

Publications (1)

Publication Number Publication Date
JPH03198831A true JPH03198831A (en) 1991-08-30

Family

ID=18361769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1343469A Pending JPH03198831A (en) 1989-12-27 1989-12-27 Ophthalmologic apparatus

Country Status (1)

Country Link
JP (1) JPH03198831A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110582224A (en) * 2017-04-28 2019-12-17 株式会社尼康 Ophthalmic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110582224A (en) * 2017-04-28 2019-12-17 株式会社尼康 Ophthalmic device

Similar Documents

Publication Publication Date Title
JP3560746B2 (en) Eye refractive power measuring device
JPH0354574B2 (en)
JPS6324383B2 (en)
US5781275A (en) Eye refractometer and eye refractive power measuring apparatus for electro-optically measuring the refractive power of the eye
US7128417B2 (en) Refractive power measurement apparatus
JPH03198831A (en) Ophthalmologic apparatus
JPH0355125B2 (en)
JP3206936B2 (en) Eye refractometer
JPH0580206B2 (en)
JP2614324B2 (en) Corneal shape measuring device
JP4412998B2 (en) Eye refractive power measuring device
JPH01242029A (en) Positioning apparatus of ophthalmic machines
JP3085679B2 (en) Eye refractometer
JPH0430296B2 (en)
JP3106127B2 (en) Ophthalmic equipment
JPH02220626A (en) Apparatus for measuring shape of cornea
JPS6230768B2 (en)
JPH0898814A (en) Ophthalmological device
JP2736649B2 (en) Non-contact tonometer
JPH02264633A (en) Sight line detector
JPS6150450B2 (en)
JP3052280B2 (en) Eye refraction measuring device
JP3181893B2 (en) Eye refractometer
JP3056799B2 (en) Ophthalmic equipment
JPH07171112A (en) Ophthalmotonometer