JPH03196856A - Rotor for centrifugal separator and its production - Google Patents

Rotor for centrifugal separator and its production

Info

Publication number
JPH03196856A
JPH03196856A JP33932589A JP33932589A JPH03196856A JP H03196856 A JPH03196856 A JP H03196856A JP 33932589 A JP33932589 A JP 33932589A JP 33932589 A JP33932589 A JP 33932589A JP H03196856 A JPH03196856 A JP H03196856A
Authority
JP
Japan
Prior art keywords
main body
rotor
carbon fiber
reinforcing
body part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33932589A
Other languages
Japanese (ja)
Other versions
JP2627094B2 (en
Inventor
Shinichiro Uotani
魚谷 真一郎
Takeshi Nishijima
西島 武
Kazuyuki Sato
和幸 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP33932589A priority Critical patent/JP2627094B2/en
Publication of JPH03196856A publication Critical patent/JPH03196856A/en
Application granted granted Critical
Publication of JP2627094B2 publication Critical patent/JP2627094B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Centrifugal Separators (AREA)

Abstract

PURPOSE:To enhance peeling strength by laminating woven fabric made of carbon fiber in pseudoisotropy to form a sample housing cavity and winding woven fabric made of carbon fiber on the outer circumference of a main body part to form a reinforcing part and constituting the rotor of both the main body part provided with the sample housing cavity and the reinforcing part. CONSTITUTION:A rotor 10 for a centrifugal separator made of carbon fiber reinforcing composite material is manufactured by providing a plurality of pieces of sample housing cavity 25 symmetrically for a central axis 20. In this case, a main body part 10-1 is formed by laminating woven fabric made of carbon fiber wherein a mold of the cavity 25 is previously drawn out. A reinforcing member 10-2 is formed by winding this woven fabric on the outer circumference of the main body part in a surrounded shape. The main body part 10-1 and the reinforcing member 10-2 are integrally molded by arranging them in the molds 40-1, 40-2 while holding the width of the reinforcing layer at the same thickness as the thickness obtained after molding of the main body part. As a result, the manufacture is made easy and the rotor 10 is manufactured which is durable to high-speed rotation and free from interlaminar peeling in the inside of the main body and between the main body and the reinforcing member.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、繊維強化複合材料からなる遠心分離機用ロー
タ及びその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a rotor for a centrifuge made of a fiber-reinforced composite material and a method for manufacturing the rotor.

〔従来の技術〕[Conventional technology]

従来、高速遠心分離機用ロータには、遠心荷重を担持す
る能力を高めるために、アルミニウム及びチタンのよう
な均質な材料が使用されていたが、エネルギー損失など
の問題から、軽量である繊維強化複合材料の使用に発展
してきた。
Conventionally, homogeneous materials such as aluminum and titanium have been used in rotors for high-speed centrifuges to increase their ability to carry centrifugal loads, but due to issues such as energy loss, lightweight fiber-reinforced materials have been used. The use of composite materials has evolved.

しかし、繊維強化複合材料を用いた場合、遠心力による
層間剥離の問題があり、これを防ぐために、特開昭58
−218958号公報及び特公平34659号公報にあ
るように、繊維強化複合材料からなる中央ディスク(本
体部)の外周にアルミニウム、チタン又は繊維強化複合
材料製のリング(補強部)が設けられていた。
However, when fiber-reinforced composite materials are used, there is a problem of delamination due to centrifugal force, and in order to prevent this, Japanese Patent Laid-Open No. 58
As stated in Japanese Patent Publication No. 218958 and Japanese Patent Publication No. 34659, a ring (reinforcement part) made of aluminum, titanium, or fiber reinforced composite material was provided around the outer periphery of a central disk (main body part) made of fiber reinforced composite material. .

〔発明か解決[7ようとする課題] 従来の繊維強化複合材料製ロータは、中央ディスクを成
形硬化させた後に、中央ディスクと別途作成した外周の
リングとを組み合わせ接着1−でいたため、製造工程が
複雑であり、接着部の強度にも問題かあった。
[Invention or Solution [Problem to be Solved 7] Conventional rotors made of fiber-reinforced composite materials were manufactured by molding and curing the central disk, and then combining and adhering the central disk and a separately prepared outer ring. The process was complicated, and there were problems with the strength of the bonded parts.

すなわち、成形後に接着する方法によると中央ディスク
部とリング部との間に接着材層の形成か必要であり、こ
の接着材層において剥離が発生ずるから−Cある。
That is, according to the method of adhering after molding, it is necessary to form an adhesive layer between the central disk part and the ring part, and peeling occurs in this adhesive layer, resulting in -C.

本発明の[1的は、製造か容易で、Hつ、高速回転に耐
え、本体内部及び本体と補強部との間の層間剥離のない
繊維強化複合材料製遠心分離機用ロータを提供すること
にある。
One object of the present invention is to provide a rotor for a centrifuge made of fiber-reinforced composite material that is easy to manufacture, can withstand high-speed rotation, and has no delamination inside the main body or between the main body and the reinforcing part. It is in.

〔発明の構成〕[Structure of the invention]

本発明は)記の構成からなる。 The present invention consists of the following configuration.

(1)中心軸にり・1し対称に、複数個の試料収納キャ
ビテ、イを設けた炭素繊維強化複合材料製遠心分離機用
ロータにおいて、該ロータが炭素繊維織物を擬似等方性
に積層してなる試料収納キャビティを設けた本体部と、
本体部外周に炭素繊維織物を巻き付けてなる補強部とか
らなる、炭素繊維強化複合材料製遠心分離機用ロータ。
(1) In a rotor for a centrifuge made of carbon fiber-reinforced composite material, which is provided with a plurality of sample storage cavities symmetrically around the central axis, the rotor has carbon fiber fabrics laminated in a quasi-isotropic manner. a main body portion provided with a sample storage cavity;
A rotor for a centrifuge made of carbon fiber-reinforced composite material, comprising a reinforcing part formed by wrapping a carbon fiber fabric around the outer periphery of the main body.

(2)中心軸に対1. &・1称に、複数個の試料収納
キャビティを設けた炭素繊維強化複合材料製遠心分離機
用ロータを製造する方法において、予めキャビティの型
を抜いた炭素繊維織物を積層した本体部材と、本体部材
外周を該織物にて周回状に包被した補強部祠とを、補強
層の幅を本体部の成形後の厚さと同一にして金型に配置
し、一体成形することを特徴とする遠心分離機用ロータ
の製造方法。
(2) Pair 1 to the central axis. &. In a method for manufacturing a rotor for a centrifuge made of a carbon fiber-reinforced composite material provided with a plurality of sample storage cavities, a main body member made of laminated carbon fiber fabrics with cavities cut out in advance, and a main body A centrifugal method characterized in that a reinforcing part whose outer periphery is covered with the fabric in a circumferential manner is placed in a mold with the width of the reinforcing layer being the same as the thickness of the main body part after molding, and integrally molded. A method for manufacturing a rotor for a separator.

このような炭素繊維複合材料製ロータは、製造か容易で
、Ftつ、高速回転への耐久性において優れている。
Such a rotor made of carbon fiber composite material is easy to manufacture and has excellent durability against high-speed rotation.

本発明の遠心分離機用ロータは、試料収納キャビティを
有する本体部と本体部の外周を補強してなる補強部とか
ら構成されている。
A rotor for a centrifuge according to the present invention includes a main body portion having a sample storage cavity and a reinforcing portion formed by reinforcing the outer periphery of the main body portion.

本発明のロータを図面によって説明する。The rotor of the present invention will be explained with reference to the drawings.

第1図は、本発明の炭素繊維複合材料製ロタの一例を示
す平面図である。
FIG. 1 is a plan view showing an example of a rotor made of carbon fiber composite material of the present invention.

第1図において、10−1はロータの本体部、102は
補強部である。第2図は第1図におけるA部の積層構成
の一部拡大図を示している。
In FIG. 1, 10-1 is the main body of the rotor, and 102 is a reinforcing portion. FIG. 2 shows a partially enlarged view of the laminated structure of section A in FIG. 1.

第3図は第1図B−B一部の断面図である。FIG. 3 is a cross-sectional view of a portion of FIG. 1 taken along line B-B.

第3図において20は中心軸、25はロータの中心軸2
0と点ス・J称に設けられた試料収納キャビティである
In Fig. 3, 20 is the central axis, and 25 is the central axis 2 of the rotor.
This is a sample storage cavity provided at the points 0 and 2.

本体部10−1は、炭素繊維織物か擬似等方性に積層さ
れて構成されている。
The main body portion 10-1 is constructed by laminating carbon fiber fabrics in a pseudo-isotropic manner.

炭素繊維織物は平織物、朱子織物であって、繊維はフィ
ラメントを使用したものが好ましい。
The carbon fiber woven fabric is a plain woven fabric or a satin woven fabric, and preferably uses filaments as the fiber.

炭素繊維織物を使用することによって、一方向の材料を
用いたものと比べて、後加工性に優れ、パリの発生がな
い。また、ブツシュを入れた場合の強度に優れる。
By using carbon fiber fabric, it has excellent post-processability and does not generate flakes compared to those using unidirectional materials. Also, it has excellent strength when a bush is inserted.

補強部10−2は、炭素繊維織物からなり、本体部10
−1の外周に周回状に配設されている。補強部jO−1
の好ましい厚さの範囲は、ロータの直径の5%以下であ
る。これより厚くなると、高速回転時に遠心力により補
強層の層間て剥離を生しやすくなる。
The reinforcing part 10-2 is made of carbon fiber fabric, and the main body part 10
-1 is arranged in a circular manner around the outer circumference of the device. Reinforcement part jO-1
The preferred thickness range is 5% or less of the rotor diameter. If it is thicker than this, the reinforcing layer is likely to peel off due to centrifugal force during high-speed rotation.

補強部10−2の構成は、ロータ外周面内で回転軸に対
し、繊維軸が0790度に一致するように配設するのか
よい。これは高速回転時、補強部の伸びを防止し、剥離
を防く効果があるためである。
The structure of the reinforcing portion 10-2 may be such that the fiber axis is aligned at 0790 degrees with respect to the rotational axis within the outer circumferential surface of the rotor. This is because it has the effect of preventing the reinforcing portion from elongating and peeling during high-speed rotation.

本体部10−1と補強部1f)−2は一体成形されてい
る。成形に使用される樹脂は、エポキン樹脂、フェノー
ル樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂等の
熱硬化性樹脂であり、また、ポリスルホン樹脂、ポリエ
ーテルイミド樹脂、ポリエーテルエーテルケトン樹脂等
の熱可塑性樹脂である。
The main body part 10-1 and the reinforcing part 1f)-2 are integrally molded. The resins used for molding are thermosetting resins such as Epoquin resin, phenol resin, unsaturated polyester resin, and polyimide resin, and thermoplastic resins such as polysulfone resin, polyetherimide resin, and polyether ether ketone resin. It is.

本発明の炭素繊維複合材料製ロータの製造方法について
説明する。
A method for manufacturing a carbon fiber composite material rotor of the present invention will be explained.

通常は、炭素繊維織物のプリプレグを使用して成形され
るが、熱可塑性樹脂をマトリックスとする場合には、炭
素繊維織物と樹脂フィルムとの絹み合わせによって成形
してもよい。成形前の段階で、樹脂を20〜80重量%
含むものが好ましい。特に好ましくは30〜50重−%
である。
Usually, it is molded using a carbon fiber woven prepreg, but if a thermoplastic resin is used as the matrix, it may be molded by interlacing a carbon fiber woven fabric and a resin film. 20-80% by weight of resin before molding
Preferably. Particularly preferably 30 to 50% by weight
It is.

ロータ本体部としての炭素繊維織物は、予め試料収納キ
ャビティの型を抜いたものが使用される。この際、キャ
ビティの切り抜きは、積層方向を考慮し、角度を変えて
抜かなければならない。
The carbon fiber fabric used as the rotor main body is made by cutting out a sample storage cavity in advance. At this time, the cavity must be cut out at a different angle, taking into consideration the stacking direction.

補強部材としての炭素繊維織物は、予定されたロータの
成形後の厚さの帯状に切断したちのフ ティの配設位置は避ける。
The carbon fiber fabric used as a reinforcing member is cut into strips having a predetermined thickness after the rotor is formed, and the placement position at the foot is avoided.

本1fj発明では、上記の本体部材と補強部材とを金型
に配置して、一体成形する。両者を一体成形するには、
本体部材と補強部材との熱膨張の違いや、補強部に均一
に圧をかけることか困難であるなとの問題点があったか
、以下の方法により問題を解決した。
In the present 1fj invention, the above-described main body member and reinforcing member are placed in a mold and integrally molded. To mold both together,
There were problems such as the difference in thermal expansion between the main body member and the reinforcing member, and the difficulty in applying pressure uniformly to the reinforcing part.The problem was solved by the following method.

熱膨張の違いについては、補強部の積層の幅を予め本体
部の成形後の厚さと同一にして金型に配置することによ
り解決した。
The difference in thermal expansion was resolved by making the width of the laminated reinforcing part the same as the thickness of the main body after molding, and placing it in the mold.

補強部への加圧については、本体部からの樹脂フローの
力によって、補強部に加圧することにより解決した。炭
素繊維織物を用いると、樹脂フローの力を補強部に加え
やすく、繊維を乱さすに樹脂フローが起きるので好まし
い。樹脂フローによる加圧で気泡を抜くこともでき、均
一に圧を加えることかできる。
The problem of applying pressure to the reinforcing part was solved by applying pressure to the reinforcing part using the force of the resin flow from the main body. It is preferable to use a carbon fiber fabric because the force of the resin flow can be easily applied to the reinforcing portion, and the resin flow can occur without disturbing the fibers. Air bubbles can be removed by pressurizing the resin flow, and pressure can be applied evenly.

〔実施例〕〔Example〕

実施例1 ビスフェノール系のエポキシ樹脂を含浸させた炭素繊維
平織クロスから試料収納キャビティ、ロータ駆動用コー
ンさし込み穴の型を抜いた、直径20 、4cmの円形
の本体部構成用のクロスを切り出した。これをクロスの
繊維方向を30度づつずらしながら、101枚積層した
Example 1 A circular cloth with a diameter of 20.4 cm was cut out from a carbon fiber plain weave cloth impregnated with bisphenol-based epoxy resin, with a sample storage cavity and a rotor drive cone insertion hole cut out. Ta. 101 sheets of this cloth were laminated while shifting the fiber direction of the cloth by 30 degrees.

次に、本体部の積層方向に対し垂直に、本体部を構成す
る炭素繊維平織クロスと同じものをつ 本体部の外周に10回巻き母けて補強部を構成した。こ
のとき、補強部の平織クロスの幅は、本体部の成形後の
厚さと同し20mmとした。
Next, a reinforcing portion was formed by wrapping the same carbon fiber plain weave cloth that constitutes the main body 10 times around the outer periphery of the main body perpendicular to the laminating direction of the main body. At this time, the width of the plain weave cloth of the reinforcing part was 20 mm, which is the same as the thickness of the main body part after molding.

この積層体を第4図に示すように金型に配置し、この金
型を予熱されているホットプレス内にセットして、成形
温度にまで昇温した後、加圧成形した。成形後、成形物
を金型から取り出し、ポストキュアを行ない、完全硬化
させた。
This laminate was placed in a mold as shown in FIG. 4, the mold was set in a preheated hot press, and after the temperature was raised to the molding temperature, pressure molding was performed. After molding, the molded product was taken out of the mold and post-cured to completely cure it.

得られた成形体は、本体部と補強部が強固に接着されて
おり、外観も良好であった。
The obtained molded article had a main body portion and a reinforcing portion firmly adhered to each other, and had a good appearance.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明の遠心分離機用ロータは
、炭素繊維強化複合材料からなる本体部と補強部により
構成され、両者を一体成形しているため、特に剥離強度
が高い。
As explained above, the rotor for a centrifuge of the present invention is composed of a main body portion and a reinforcing portion made of a carbon fiber reinforced composite material, and since both are integrally molded, the rotor has particularly high peel strength.

これは、成形時に本体部を圧縮することによって、樹脂
フローと共に積層された織物の繊維の一部が外周方向に
拡がり、この結果外周の補強部織物と本体部織物とが密
接して一体化されるため、従来法にみられるような、樹
脂単独層の介在かないことによるものである。
This is because by compressing the main body part during molding, some of the fibers of the laminated fabrics spread in the outer circumferential direction along with the resin flow, and as a result, the outer reinforcing fabric and the main body fabric are closely integrated. This is due to the fact that there is no intervening single layer of resin as seen in conventional methods.

成形後接着する従来の方法にあっては、接着時に外周か
らの圧力の付与が困難なため、接着面をテーパー状にし
て圧入接着するなどの方法がとられており、このような
テーパー状接着面においても補強部か脱落する危険があ
った。しかし、本発明においては、このような脱落の危
険は全くない。
In the conventional method of bonding after molding, it is difficult to apply pressure from the outer periphery during bonding, so methods such as press-fitting the bonding surface with a tapered shape are used. There was also a risk that the reinforced parts would fall off. However, in the present invention, there is no risk of such falling off.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一例となる遠心分離機用ロタの平面図
である。第2図は第1図A部の積層構成の部分拡大図で
ある。第3図は第1図のB−B一部の断面図である。第
4図は積層体を配置した金型の断面図を示す。 符号の説明 10:遠心分離機用ロータ、10−1:本体部、1〇−
2補強部、20:中心軸、25:試料容器収納キャビテ
ィ、30: ロータ駆動用コーンさし込み穴、40−1
 、:雄型、40−2 :雌型第 1 図 第 図 第 図 第 図 、40−1
FIG. 1 is a plan view of a rotor for a centrifuge, which is an example of the present invention. FIG. 2 is a partially enlarged view of the laminated structure of section A in FIG. 1. FIG. 3 is a cross-sectional view of a portion taken along line BB in FIG. FIG. 4 shows a cross-sectional view of the mold in which the laminate is placed. Explanation of symbols 10: Centrifuge rotor, 10-1: Main body, 10-
2 Reinforcement part, 20: Central axis, 25: Sample container storage cavity, 30: Rotor drive cone insertion hole, 40-1
, : Male type, 40-2 : Female type 1 Fig. Fig. Fig. Fig. 40-1

Claims (2)

【特許請求の範囲】[Claims] (1)中心軸に対し対称に、複数個の試料収納キャビィ
を設けた炭素繊維強化複合材料製遠心分離機用ロータに
おいて、該ロータが、炭素繊維織物を擬似等方性に積層
してなる試料収納キャビティを設けた本体部と、本体部
外周に炭素繊維織物を巻きつけてなる補強部とからなる
、炭素繊維強化複合材料製遠心分離機用ロータ。
(1) In a rotor for a centrifuge made of carbon fiber reinforced composite material, which is provided with a plurality of sample storage cavities symmetrically about the central axis, the rotor has a sample storage cavity made of carbon fiber fabrics laminated in a quasi-isotropic manner. A rotor for a centrifuge made of carbon fiber-reinforced composite material, comprising a main body provided with a storage cavity and a reinforcing part formed by wrapping a carbon fiber fabric around the outer periphery of the main body.
(2)中心軸に対し対称に、複数個の試料収納キャビテ
ィを設けた炭素繊維強化複合材料製遠心分離機用ロータ
を製造する方法において、予めキャビティの型を抜いた
炭素繊維織物を積層した本体部と、本体部材外周を該織
物にて周回状に包被した補強部材とを、補強層の幅を本
体部の成形後の厚さと同一にして金型に配置し、一体成
形することを特徴とする遠心分離機用ロータの製造方法
(2) In a method for manufacturing a rotor for a centrifuge made of carbon fiber-reinforced composite material with multiple sample storage cavities provided symmetrically about the central axis, the main body is made of laminated carbon fiber fabrics with cavities cut out in advance. and a reinforcing member whose outer periphery of the main body member is circumferentially covered with the fabric are placed in a mold with the width of the reinforcing layer being the same as the thickness of the main body after molding, and are integrally molded. A method for manufacturing a rotor for a centrifuge.
JP33932589A 1989-12-27 1989-12-27 Rotor for centrifuge and method for manufacturing the same Expired - Fee Related JP2627094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33932589A JP2627094B2 (en) 1989-12-27 1989-12-27 Rotor for centrifuge and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33932589A JP2627094B2 (en) 1989-12-27 1989-12-27 Rotor for centrifuge and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH03196856A true JPH03196856A (en) 1991-08-28
JP2627094B2 JP2627094B2 (en) 1997-07-02

Family

ID=18326391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33932589A Expired - Fee Related JP2627094B2 (en) 1989-12-27 1989-12-27 Rotor for centrifuge and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2627094B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002537994A (en) * 1999-03-09 2002-11-12 アルファ ラヴァル アクチボラゲット Seal ring for centrifuge
US7367932B2 (en) * 2004-06-08 2008-05-06 Hitachi Koki Co., Ltd. Centrifuge including a rotating chamber having a bowl and a cylinder
JP2010162538A (en) * 2009-01-19 2010-07-29 Fiberlite Centrifuge Llc Swing bucket centrifuge rotor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002537994A (en) * 1999-03-09 2002-11-12 アルファ ラヴァル アクチボラゲット Seal ring for centrifuge
US7367932B2 (en) * 2004-06-08 2008-05-06 Hitachi Koki Co., Ltd. Centrifuge including a rotating chamber having a bowl and a cylinder
JP2010162538A (en) * 2009-01-19 2010-07-29 Fiberlite Centrifuge Llc Swing bucket centrifuge rotor

Also Published As

Publication number Publication date
JP2627094B2 (en) 1997-07-02

Similar Documents

Publication Publication Date Title
US5354195A (en) Composite molding apparatus for high pressure co-cure molding of lightweight honeycomb core composite articles having ramped surfaces utilizing low density, stabilized ramped honeycomb cores
US7419627B2 (en) Co-cured vacuum-assisted resin transfer molding manufacturing method
EP2123431B1 (en) Method for manufacturing a composite
US4413860A (en) Composite disc
JPH10146898A (en) Molding of fiber reinforced composite material
US4591400A (en) Method of forming a fiber reinforced composite article of a complex configuration
EP0904929A1 (en) Method for forming a caul plate during moulding of a part
US6666651B2 (en) Composite propeller blade with unitary metal ferrule and method of manufacture
JP2011042170A (en) Fiber-reinforced plastic structure and method for manufacturing the same
WO2014147201A1 (en) Methods of manufacturing an impregnated metal insert
US7374715B2 (en) Co-cured resin transfer molding manufacturing method
EP3188899B1 (en) Pre-polymerized thermosetting composite part and methods for making such a part
JPH03196856A (en) Rotor for centrifugal separator and its production
JP3590346B2 (en) FRP structure
TWI674979B (en) Bicycle wheel and manufacturing method thereof
JP2002248620A (en) Base material for molding fiber-reinforced plastic and molding method of fiber-reinforced plastic
JP4353599B2 (en) Rotating body
JPH01135550A (en) Rotor for centrifuge
JPH1024133A (en) Manufacture of golf club shaft
JPS613732A (en) Molding method of filament winding
EP3632701A1 (en) Bicycle wheel and method of manufacturing the same
JPH04268342A (en) Production of carbon fiber-reinforced composite material
JPH07108617A (en) Fiber-reinforced resin tubular body and manufacture thereof
JPH05276854A (en) Fishing rod
JP2008055770A (en) Fiber-reinforced resin composite material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080418

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees