JPH0319672B2 - - Google Patents

Info

Publication number
JPH0319672B2
JPH0319672B2 JP56035861A JP3586181A JPH0319672B2 JP H0319672 B2 JPH0319672 B2 JP H0319672B2 JP 56035861 A JP56035861 A JP 56035861A JP 3586181 A JP3586181 A JP 3586181A JP H0319672 B2 JPH0319672 B2 JP H0319672B2
Authority
JP
Japan
Prior art keywords
electrolyte
anode
anode mixture
separator
excess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56035861A
Other languages
Japanese (ja)
Other versions
JPS57148879A (en
Inventor
Koji Koide
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP3586181A priority Critical patent/JPS57148879A/en
Publication of JPS57148879A publication Critical patent/JPS57148879A/en
Publication of JPH0319672B2 publication Critical patent/JPH0319672B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/08Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with cup-shaped electrodes

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明はアルカリ電池の製造の改良に係り、
陽極合剤への電解液の浸潤を促進化して、製造時
間の短縮をはかることを目的とする。 アルカリ電池においては、陽極合剤側の電解液
を既に加圧成形した陽極合剤に浸潤させなければ
ならないという制約があるため、電解液の陽極合
剤への浸潤に際して、筒型電池の場合、従来は陽
極缶にリング状に加圧成形した陽極合剤を挿入
し、該陽極合剤に接してコツプ状のセパレータを
配置し、陽極合剤およびセパレータが吸収する液
量よりも大過剰の電解液をセパレータ内に注入
し、室温で5時間以上放置してセパレータを介し
て電解液を陽極合剤に浸潤させ、残つた過剰の電
解液を吸引して陽極缶内から除去するという方法
が採用されていた。そのため電池製造時間が長く
なるとともに、大量の中間製品を長時間保管しな
ければならず保管場所の確保や保管中の管理面の
問題、さらには電解液が空気中の炭酸ガスを吸収
することにより生じる電気容量のバラツキや耐漏
液性の低下などの種々の問題を生じ、電解液の陽
極合剤への浸潤は電池製造上におけるネツクとな
つていた。 この発明者らは、そのような事情に鑑みて種々
研究を重ねた結果、陽極合剤を電解液とともに加
熱することによつて電解液が迅速に陽極合剤に浸
潤し、その結果、電池の製造時間が大巾に短縮さ
れ、前述の問題が容易に解消されることを見出
し、この発明を完成するにいたつた。 陽極合剤を電解液とともに加熱することによつ
て、電解液が迅速に陽極合剤に浸潤する理由は必
らずしも明らかではないが、加熱により陽極合剤
中に圧縮状態で包含されていた空気などの気体が
膨張して陽極合剤中からぬけでて、陽極合剤にそ
の内部から表面に達する細孔が形成され、加熱に
より粘度が低下した電解液が該細孔を通つて陽極
合剤中に浸入していくことによるものと考えられ
る。 この発明の実施に際して加熱は60℃以上で電解
液の沸点以下の温度で行なうことが好ましく、ま
た加熱時間としては加熱温度などによつても異な
るが通常は1〜10分間を採用するのが好ましい。
ただし加熱時間が10分を超えてもさしつかえな
い。そして加熱終了後、室温になるまで約10分間
程度放冷すると、冷却による減圧効果により陽極
合剤への電解液の浸潤がより一層確実になるので
好ましい。なお上記加熱時間の短縮をはかり、か
つ粘度を低下させ取扱いを容易にするために、電
解液を陽極缶に注入する前に50〜70℃程度に加温
しておくのが好ましい。 この発明は次のような種々の方法により達成で
きる。 (イ) 陽極缶に陽極合剤を収納した後、陽極合剤に
浸潤させる量より過剰の電解液を注入し、それ
ら全体を加熱して電解液を陽極合剤に浸潤させ
た後、余剰の電解液を取り除く方法。 (ロ) 陽極缶に陽極合剤およびセパレータを収納し
た後、陽極合剤とセパレータに浸潤させる量よ
り過剰の電解液を注入し、それら全体を加熱し
て電解液を陽極合剤およびセパレータに浸潤さ
せた後、余剰の電解液を取り除く方法。 (ハ) 陽極缶に陽極合剤を収納した後、それらを加
熱し、その中に陽極合剤に浸潤させる量より過
剰の電解液を注入し、電解液を陽極合剤に浸潤
させた後、余剰の電解液を取り除く方法。 (ニ) 陽極缶に陽極合剤およびセパレータを収納し
た後、それらを加熱し、その中に陽極合剤とセ
パレータに浸潤させる量より過剰の電解液を注
入し、電解液を陽極合剤およびセパレータに浸
潤させた後、余剰の電解液を取り除く方法。 つぎにこの発明の一実施例((ロ)の方法)を図面
とともに説明する。 内径12.5mm、高さ44.6mmのニツケルメツキを施
した厚さ0.3mmの鉄製陽極缶5に、二酸化マンガ
ン100重量部とりん状黒鉛16.8重量部とを2.5t/cm2
で加圧成形した内径8.3mm、外径12.3mm、高さ10
mmの合剤成形体を4個積み重ねて収納し、加圧し
て陽極合剤1となし、陽極缶5の開口部を屈曲さ
せてその開口端近くに溝5aを形成し、陽極合剤
1に接して厚さ0.16mmのビニロン−レーヨン混抄
紙を3重巻きしたコツプ状のセパレータ3を挿入
し、ついで第2図に示すように60℃に加温した電
解液163.0gをセパレータ3内に注入し、これ
ら全体を電気炉に入れ、90℃で5分間加熱し、加
熱終了後、室温になるまで約10分間放冷して電解
液16を陽極合剤1およびセパレータ3に浸潤さ
せた。その後吸引ノズルにより余剰の電解液をセ
パレータ3内から取り除いた。なお余剰の電解液
は1.4gであつた。 つぎに、陽極缶5内のセパレータ3内に陰極剤
2を入れ、ついで陰極リード棒4およびワツシヤ
7を挿着したプラスチツク製封口体6を陽極缶5
の開口部に挿入し、陽極缶5の溝5aから先の部
分を半径方向に締め付けて封口体6と密着させ陽
極缶5の開口部を封口し、ついで陰極側に樹脂チ
ユーブ11、紙リング10、板バネ8および陰極
端子板9を取り付け、樹脂チユーブ12で包被
し、陽極端子板13および樹脂リング15を陽極
側に取り付け、外装缶14で被覆して第1図に示
すようなLR6型のアルカリ・マンガン電池Aを製
造した。なお使用された陰極剤には電解液が1.6
g、亜鉛粉末が2.6g含まれている。そして使用
された電解液は5重量%の酸化亜鉛を溶解させた
35重量%苛性カリ水溶液よりなるものである。 比較のため陽極缶5に陽極合剤1およびセパレ
ータ3を収納したのち、電解液3.0gを注入し、
室温で5時間放置して、電解液を陽極合剤1およ
びセパレータ3に浸潤させたのち、過剰の電解液
を吸引して回収し、以後前記と同様にしてLR6型
のアルカリ・マンガン電池Bを製造した。 つぎに、これらの電池AおよびBについて低
温、重負荷で間欠放電を行ない、放電持続時間を
測定し、その結果を第1表に示した。なお試験に
は各電池10個ずつが使用され、放電は端子電圧が
0.9Vになるまで5秒放電/5秒休止で行なわれ
た。
This invention relates to improvements in the production of alkaline batteries,
The purpose is to shorten manufacturing time by accelerating the infiltration of electrolyte into the anode mixture. In alkaline batteries, there is a restriction that the electrolyte on the anode mixture side must be infiltrated into the anode mixture that has already been pressure-molded. Conventionally, a ring-shaped anode mixture is inserted into an anode can, and a pot-shaped separator is placed in contact with the anode mixture. The method used is to inject the solution into the separator, leave it at room temperature for 5 hours or more, allow the electrolyte to infiltrate into the anode mixture through the separator, and remove the remaining excess electrolyte from the anode can by suction. It had been. As a result, battery manufacturing time becomes longer, and a large amount of intermediate products must be stored for a long time, causing problems in securing storage space and management during storage.Furthermore, the electrolyte absorbs carbon dioxide gas from the air. This causes various problems such as variations in capacitance and decreased leakage resistance, and the infiltration of the electrolyte into the anode mixture has been a bottleneck in battery production. In view of these circumstances, the inventors conducted various studies and found that by heating the anode mixture together with the electrolyte, the electrolyte quickly infiltrates the anode mixture, and as a result, the battery The inventors have discovered that the manufacturing time can be greatly shortened and the above-mentioned problems can be easily solved, leading to the completion of this invention. It is not always clear why the electrolyte quickly infiltrates into the anode mixture when the anode mixture is heated together with the electrolyte, but it is possible that the electrolyte is contained in the anode mixture in a compressed state by heating. Gas such as air expands and escapes from the anode mixture, forming pores in the anode mixture that reach the surface from the inside, and the electrolyte whose viscosity has decreased due to heating passes through the pores to the anode. This is thought to be due to penetration into the mixture. When carrying out this invention, heating is preferably carried out at a temperature of 60°C or above and below the boiling point of the electrolytic solution, and although the heating time varies depending on the heating temperature, it is usually preferable to employ 1 to 10 minutes. .
However, there is no problem even if the heating time exceeds 10 minutes. After the heating is completed, it is preferable to allow the electrolyte to cool to room temperature for about 10 minutes, because the depressurizing effect of cooling will further ensure the infiltration of the electrolyte into the anode mixture. In order to shorten the heating time and reduce the viscosity to facilitate handling, it is preferable to heat the electrolytic solution to about 50 to 70° C. before pouring it into the anode can. This invention can be achieved in various ways as follows. (b) After storing the anode mixture in the anode can, pour in an amount of electrolyte in excess of the amount to be infiltrated into the anode mixture, heat the entire assembly to infiltrate the anode mixture with the electrolyte, and then drain the excess. How to remove electrolyte. (b) After storing the anode mixture and separator in the anode can, inject an amount of electrolyte in excess of the amount to be infiltrated into the anode mixture and separator, and heat them all to infiltrate the electrolyte into the anode mixture and separator. How to remove excess electrolyte after (c) After storing the anode mixture in the anode can, heating them, and injecting an electrolyte in excess of the amount to be infiltrated into the anode mixture, and infiltrating the anode mixture with the electrolyte, How to remove excess electrolyte. (d) After storing the anode mixture and separator in the anode can, heat them, inject an amount of electrolyte in excess of the amount to be infiltrated into the anode mixture and separator, and pour the electrolyte into the anode mixture and separator. A method for removing excess electrolyte after infiltrating the Next, one embodiment of the present invention (method (b)) will be described with reference to the drawings. 100 parts by weight of manganese dioxide and 16.8 parts by weight of phosphorous graphite were added to a nickel-plated iron anode can 5 with an inner diameter of 12.5 mm and a height of 44.6 mm and a thickness of 0.3 mm at a rate of 2.5 t/cm 2 .
Pressure molded with inner diameter 8.3 mm, outer diameter 12.3 mm, height 10
4 mm mixture molded bodies are stacked and stored, pressurized to form the anode mixture 1, the opening of the anode can 5 is bent to form a groove 5a near the opening end, and the anode mixture 1 is A cup-shaped separator 3 made of triple-wound vinylon-rayon mixed paper with a thickness of 0.16 mm was inserted in contact with the separator 3, and then 163.0 g of an electrolytic solution heated to 60°C was poured into the separator 3 as shown in Figure 2. The whole was placed in an electric furnace and heated at 90° C. for 5 minutes, and after the heating was completed, it was allowed to cool to room temperature for about 10 minutes to infiltrate the electrolytic solution 16 into the anode mixture 1 and the separator 3. Thereafter, excess electrolyte was removed from inside the separator 3 using a suction nozzle. Note that the surplus electrolyte was 1.4 g. Next, the cathode agent 2 is put into the separator 3 inside the anode can 5, and then the plastic sealing body 6 into which the cathode lead rod 4 and washer 7 are inserted is placed inside the anode can 5.
The opening of the anode can 5 is sealed by tightening the part beyond the groove 5a of the anode can 5 in the radial direction to bring it into close contact with the sealing body 6, and then the resin tube 11 and the paper ring 10 are placed on the cathode side. , the leaf spring 8 and the cathode terminal plate 9 are attached, the resin tube 12 is attached, the anode terminal plate 13 and the resin ring 15 are attached to the anode side, and the outer can 14 is attached to form the LR6 type as shown in FIG. Alkaline manganese battery A was manufactured. The electrolyte in the cathode used was 1.6
g, contains 2.6g of zinc powder. The electrolyte used dissolved 5% by weight of zinc oxide.
It consists of a 35% by weight aqueous caustic potassium solution. For comparison, after storing anode mixture 1 and separator 3 in anode can 5, 3.0 g of electrolyte was injected.
After leaving the electrolyte at room temperature for 5 hours to infiltrate the anode mixture 1 and separator 3, the excess electrolyte was collected by suction, and then an LR6 type alkaline manganese battery B was prepared in the same manner as above. Manufactured. Next, these batteries A and B were subjected to intermittent discharge at low temperature and under heavy load, and the discharge duration was measured. The results are shown in Table 1. In addition, 10 batteries were used for each test, and the discharge was performed at a terminal voltage of
The voltage was discharged for 5 seconds/paused for 5 seconds until the voltage reached 0.9V.

【表】 第1表に示されるように、従来法で製造された
電池Bの放電持続時間が短かく、かつバラツキが
大きいのは、陽極合剤の成形密度やセパレータの
厚さの変動や、放置中に空気中の炭酸ガスを電解
液が吸収したことなどによつて、陽極合剤やセパ
レータに浸潤、保持される電解液量が変動あるい
は変質することに基づくものと考えられる。これ
に対し、この発明の方法においては、陽極合剤お
よびセパレータに保持させる電解液を半強制的に
陽極合剤およびセパレータに浸潤させるので、短
時間の間に浸潤が完了し電解液の炭酸ガスによる
変質が少なく、その結果、第1表の電池Aにみら
れるように、電気容量のバラツキが少なく、放電
性能がすぐれた電池が得られることになる。 つぎの第2表は、前記電池AおよびB各100個
ずつについて、60℃、相対湿度90%で5カ月間保
存した際に、漏液が発生した電池個数を示すもの
である。
[Table] As shown in Table 1, the short discharge duration and large variations in the discharge duration of Battery B manufactured using the conventional method are due to variations in the molding density of the anode mixture and the thickness of the separator. This is thought to be due to the fact that the amount of electrolyte infiltrated into and retained in the anode mixture and separator fluctuates or changes in quality due to the electrolyte absorbing carbon dioxide gas in the air during storage. In contrast, in the method of the present invention, the electrolyte held in the anode mixture and separator is semi-forced to infiltrate into the anode mixture and separator, so that the infiltration is completed in a short time and the carbon dioxide gas in the electrolyte is As a result, as shown in Battery A in Table 1, a battery with less variation in electric capacity and excellent discharge performance can be obtained. The following Table 2 shows the number of batteries in which leakage occurred when 100 each of the batteries A and B were stored at 60° C. and 90% relative humidity for 5 months.

【表】 第2表に示されるように、この発明の方法で製
造された電池Aは、従来法で製造された電池Bに
比べて耐漏液性がすぐれている。 このように従来法で製造された電池Bの耐漏液
性が悪いのは、電解液をセパレータ内に注入した
まま長時間放置しておくため、セパレータ内に注
入された電解液が該放置中に、陽極缶の開口端ま
ではい上るためであると考えられる。これに対
し、この発明の方法では、電解液の注入後、短時
間のうちに封口されるので、陽極缶の開口部への
解液のはい上りが少なく、その結果、耐漏液性の
良好な電池が得られる。 以上詳述したように、この発明によれば従来法
に比べて電池製造時間が大巾に短縮でき、電池の
製造が高能率化するとともに、中間製品での保管
が大巾に削減できるので、保管場所の確保や保管
中における管理面などの問題、さらには電気容量
のバラツキや耐漏液性の低下などの問題がほぼ全
面的に解消される。
[Table] As shown in Table 2, Battery A manufactured by the method of the present invention has better leakage resistance than Battery B manufactured by the conventional method. The reason for the poor leakage resistance of Battery B manufactured by the conventional method is that the electrolyte is injected into the separator and left for a long time, so the electrolyte injected into the separator is This is thought to be because the particles crawl up to the open end of the anode can. In contrast, in the method of the present invention, the electrolyte is sealed within a short time after being injected, so there is less leakage of the electrolyte into the opening of the anode can, and as a result, the electrolyte has good leakage resistance. A battery is obtained. As detailed above, according to the present invention, compared to conventional methods, battery manufacturing time can be significantly shortened, battery manufacturing becomes highly efficient, and storage of intermediate products can be greatly reduced. Problems such as securing storage space and management during storage, as well as problems such as variations in electrical capacity and reduced leakage resistance, are almost completely resolved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の方法により製造された筒型
アルカリ・マンガン電池の一例を示す半截断面
図、第2図はこの発明の方法により電池を製造す
る際の一工程を示す断面図である。 1……陽極合剤、3……セパレータ、5……陽
極缶、16……電解液。
FIG. 1 is a half-cut sectional view showing an example of a cylindrical alkaline manganese battery manufactured by the method of the present invention, and FIG. 2 is a sectional view showing one step in manufacturing the battery by the method of the present invention. 1... Anode mixture, 3... Separator, 5... Anode can, 16... Electrolyte.

Claims (1)

【特許請求の範囲】 1 陽極缶に陽極合剤を収納した後、陽極合剤に
浸潤させる量より過剰の電解液を注入し、それら
全体を加熱して電解液を陽極合剤に浸潤させた
後、余剰の電解液を取り除くことを特徴とするア
ルカリ電池の製造法。 2 陽極缶に陽極合剤およびセパレータを収納し
た後、陽極合剤とセパレータに浸潤させる量より
過剰の電解液を注入し、それら全体を加熱して電
解液を陽極合剤およびセパレータに浸潤させた
後、余剰の電解液を取り除くことを特徴とするア
ルカリ電池の製造法。 3 陽極缶に陽極合剤を収納した後、それらを加
熱しその中に陽極合剤に浸潤させる量より過剰の
電解液を注入し、電解液を陽極合剤に浸潤させた
後、余剰の電解液を取り除くことを特徴とするア
ルカリ電池の製造法。 4 陽極缶に陽極合剤およびセパレータを収納し
た後、それらを加熱しその中に陽極合剤とセパレ
ータに浸潤させる量より過剰の電解液を注入し、
電解液を陽極合剤およびセパレータに浸潤させた
後、余剰の電解液を取り除くことを特徴とするア
ルカリ電池の製造法。
[Scope of Claims] 1. After storing the anode mixture in the anode can, an excess of electrolyte than the amount to be infiltrated into the anode mixture is injected, and the whole is heated to infiltrate the electrolyte into the anode mixture. A method for producing an alkaline battery, which is characterized by removing excess electrolyte. 2. After storing the anode mixture and separator in the anode can, an excess amount of electrolyte was injected into the anode mixture and separator, and the whole was heated to allow the electrolyte to infiltrate into the anode mixture and separator. A method for producing an alkaline battery, which is characterized by removing excess electrolyte. 3 After storing the anode mixture in the anode can, heat them and inject an amount of electrolyte in excess of the amount to be infiltrated into the anode mixture. A method for producing alkaline batteries characterized by removing liquid. 4. After storing the anode mixture and separator in the anode can, heat them and inject an amount of electrolyte in excess of the amount to be infiltrated into the anode mixture and separator.
A method for producing an alkaline battery, which comprises infiltrating an anode mixture and a separator with an electrolyte and then removing excess electrolyte.
JP3586181A 1981-03-11 1981-03-11 Production of alkaline cell Granted JPS57148879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3586181A JPS57148879A (en) 1981-03-11 1981-03-11 Production of alkaline cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3586181A JPS57148879A (en) 1981-03-11 1981-03-11 Production of alkaline cell

Publications (2)

Publication Number Publication Date
JPS57148879A JPS57148879A (en) 1982-09-14
JPH0319672B2 true JPH0319672B2 (en) 1991-03-15

Family

ID=12453760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3586181A Granted JPS57148879A (en) 1981-03-11 1981-03-11 Production of alkaline cell

Country Status (1)

Country Link
JP (1) JPS57148879A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49121133A (en) * 1973-03-28 1974-11-19
JPS51121134A (en) * 1975-04-15 1976-10-22 Fuji Electrochemical Co Ltd Method of making alkali batteries
JPS5242220A (en) * 1975-09-30 1977-04-01 Toshiba Ray O Vac Method of producing dry element battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49121133A (en) * 1973-03-28 1974-11-19
JPS51121134A (en) * 1975-04-15 1976-10-22 Fuji Electrochemical Co Ltd Method of making alkali batteries
JPS5242220A (en) * 1975-09-30 1977-04-01 Toshiba Ray O Vac Method of producing dry element battery

Also Published As

Publication number Publication date
JPS57148879A (en) 1982-09-14

Similar Documents

Publication Publication Date Title
US3625765A (en) Production of battery electrode
US3418172A (en) Method of manufacturing a small, button-type alkaline cell having a loose, powdered zinc anode
JPH0319672B2 (en)
US3040117A (en) Process for manufacturing primary dry cells
JPH0578141B2 (en)
US3575724A (en) Cylindrical primary dry cells
JPH09171818A (en) Nickel-metal hydride storage battery and its preparation
CN109509847A (en) A kind of miniature lithium ion battery and its manufacturing method
JP5262046B2 (en) Dry cell, method for manufacturing the same, and apparatus for manufacturing the same
JPH06203830A (en) Battery
JPH06283196A (en) Sealed nickel-hydrogen secondary battery
JPH10326626A (en) Manufacture of wound type battery
JPS5819866A (en) Manufacture of cadmium electrode for secondary battery
JP3851053B2 (en) Coin-type lithium-ion battery
JPH0345866B2 (en)
JPS59121785A (en) Non-aqueous solvent cell
JPH1012245A (en) Manufacture of alkaline dry battery
JPS6247348B2 (en)
JPH0259588B2 (en)
JPS58165255A (en) Method of manufacturing silver oxide battery
JPS6028175A (en) Sodium-sulfur battery
JP2001283863A (en) Non-sintering electrode for alkaline battery and manufacturing method
JP2004139897A (en) Manufacturing method of battery
JPS636993B2 (en)
JPH0437547B2 (en)