JPH03196506A - Monostable electromagnet - Google Patents

Monostable electromagnet

Info

Publication number
JPH03196506A
JPH03196506A JP34000389A JP34000389A JPH03196506A JP H03196506 A JPH03196506 A JP H03196506A JP 34000389 A JP34000389 A JP 34000389A JP 34000389 A JP34000389 A JP 34000389A JP H03196506 A JPH03196506 A JP H03196506A
Authority
JP
Japan
Prior art keywords
armature
yoke
permanent magnet
magnetic flux
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34000389A
Other languages
Japanese (ja)
Other versions
JPH0642423B2 (en
Inventor
Kazutsugu Hayashi
和嗣 林
Hidetoshi Matsushita
松下 英敏
Shoichi Yamaguchi
彰一 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP1340003A priority Critical patent/JPH0642423B2/en
Publication of JPH03196506A publication Critical patent/JPH03196506A/en
Publication of JPH0642423B2 publication Critical patent/JPH0642423B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electromagnets (AREA)

Abstract

PURPOSE:To apply a monostable electromagnet to deviated spring load without requiring a working spring by installing a permanent magnet, which is arranged near the contacting and separating section of an armature and the direction of magnetization of which is approximately perpendicular to the direction of movement of the armature. CONSTITUTION:Permanent magnets 4 are fixed to another end section of a yoke 1 and arranged near a contacting and separating section 7, magnetic poles S are magnetically coupled with the inner side faces of both end sections of an approximately U-shaped auxiliary yoke 9, the direction of magnetization is made approximately perpendicular to the direction of movement of the contacting and separating section 7, and the magnetic poles N of the permanent magnets 4 are faced oppositely to the side sections of an armature 3. Consequently, magnetic flux PHI1 flows through the armature 3, the yoke 1 and the auxiliary yoke 9 by the magnetizing force of the permanent magnets 4, and force attracting the armature 3 in the return direction hardly works. When magnetic flux PHI2 is made to overlap magnetic flux PHI3 generated by exciting a coil 2, attraction force to the operation side of the armature 3 is increased, thus reducing the power consumption of the coil 2. Accordingly, a monostable electromagnet can be applied to deviated spring load without requiring a working spring.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、3相モーターの開閉用の電磁接触器や電磁
継電器などに適用される単安定i磁石に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a monostable i-magnet that is applied to electromagnetic contactors, electromagnetic relays, etc. for switching on and off three-phase motors.

〔従来の技術〕[Conventional technology]

従来ノこの種の単安定電磁石として、クラッパ形電磁石
などの磁気回路中に永久磁石を含まない、いわゆる無極
型の電磁石が一般的であった。この無極型の電磁石は低
コストではあるが、コイルの発生磁束しかアーマチュア
の駆動力に利用できないため、ある吸引力幅を得るため
に消費電力を大きくする必要があった。
Conventionally, as monostable electromagnets of this type, so-called non-polar electromagnets that do not include a permanent magnet in their magnetic circuits, such as clapper-type electromagnets, have been common. Although this non-polar electromagnet is low cost, only the magnetic flux generated by the coil can be used to drive the armature, so it is necessary to increase power consumption in order to obtain a certain range of attractive force.

これに対して、近年電磁石の低消費電力化のため磁気回
路中に永久磁石を含ませた育種電磁石装置が捷案されて
いる(例えば特公昭62−17333号、実公昭58−
10327号)。
In response to this, in recent years, breeding electromagnet devices that include permanent magnets in the magnetic circuit have been devised in order to reduce the power consumption of electromagnets (for example, Japanese Patent Publication No. 62-17333, Utility Model Publication No.
No. 10327).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

特公昭62−17333号の単安定tm石は、永久磁石
の磁束もアーマチュアの駆動力に利用できるので、ある
吸引力幅を得るときに無極型に比べて低消費電力にする
ことができる。しかし、双安定用の電磁石構造であるた
め、−船釣な電磁接触器などの片寄ったばね負荷には不
向きであった。
The monostable TM stone disclosed in Japanese Patent Publication No. 62-17333 can also use the magnetic flux of the permanent magnet for the driving force of the armature, so it can consume less power than the non-polar type when obtaining a certain range of attractive force. However, because of its bistable electromagnetic structure, it was unsuitable for uneven spring loads such as those used in electromagnetic contactors used on boats.

また、実公昭58−10327号の単安定電磁石は、無
極型と有極型の前記従来例との中間的な特性、すなわち
有極であるため低消費電力が図れ、前記従来例と異なり
非対称の磁気回路であるため片寄ったばね負荷に適した
特性を有している。
Furthermore, the monostable electromagnet of Utility Model Publication No. 58-10327 has an intermediate characteristic between the non-polar type and the polar type conventional example, that is, it is polar, so it can achieve low power consumption, and unlike the conventional example, it has an asymmetrical property. Since it is a magnetic circuit, it has characteristics suitable for uneven spring loads.

しかし、アーマチュアの復帰側において永久磁石の磁束
が閉ループを流れる構成であるため復帰方向への力が非
常に大きくなり、そのためばね負荷との整合においてア
ーマチュアを動作側に付勢する動作ばねが必要になるな
どの欠点を存していた。
However, since the magnetic flux of the permanent magnet flows in a closed loop on the return side of the armature, the force in the return direction becomes extremely large, and therefore an operating spring is required to bias the armature toward the operating side in alignment with the spring load. It had some shortcomings, such as:

したがって、この発明の目的は、動作ばねを必要とする
ことなく片寄ったばね負荷に適用できる有極の単安定電
磁石を堤供することである。
It is therefore an object of this invention to provide a polarized monostable electromagnet that can be applied to offset spring loads without the need for actuation springs.

〔課題を解決するための手段〕[Means to solve the problem]

請求項(1,1の単安定電磁石は、ヨークと、このヨ一
りに接離動作可能な接離部を有するアーマチュアと、前
記ヨークおよび前記アーマチュアの少なくともいずれか
一方に巻装されて励磁により前記アーマチュアを前記ヨ
ークに吸引させるコイルと、前記アーマチュアの接離部
の近傍に配置されて磁化方向が前記アーマチュアの移動
方向とほぼ垂直である永久磁石とを備えたものである。
The monostable electromagnet of claims 1 and 1 includes a yoke, an armature having a contact/separation portion capable of contacting/separating movement along the yoke, and a monostable electromagnet wound around at least one of the yoke and the armature and being excited by excitation. The magnet includes a coil that attracts the armature to the yoke, and a permanent magnet that is disposed near the contact/separation portion of the armature and whose magnetization direction is substantially perpendicular to the direction of movement of the armature.

請求項(2)の単安定電磁石は、請求項fi+において
、前記永久磁石を前記アーマチュアおよび前記ヨークの
少なくとも一方に固定し、その他方に対面する前記永久
磁石の磁極の前記接離部の移動方向と同方向の長さを、
前記接離部の移動範囲以上としたものである。
In the monostable electromagnet of claim (2), in claim fi+, the permanent magnet is fixed to at least one of the armature and the yoke, and the moving direction of the contacting and separating portion of the magnetic pole of the permanent magnet facing the other one is provided. The length in the same direction as
This is set to be greater than the movement range of the contact/separation portion.

請求項+3)の単安定電磁石は、請求項+11において
、前記永久磁石は磁極に集磁板を設けたものである。
The monostable electromagnet according to claim 3) is the monostable electromagnet according to claim 11, wherein the permanent magnet is provided with a magnetic flux collecting plate on its magnetic pole.

〔作用〕[Effect]

請求項filの単安定!磁石によれば、コイルを励磁す
るとアーマチュアの接離部がヨークに吸着されるように
動作する。この場合、コイルの励磁による磁束は、永久
磁石を含まないで、ヨークおよびアーマチュアによる閉
磁路を形成することができる。さらに永久磁石により発
生する磁束を前記コイルによる磁束に重畳させることが
できるのでアーマチュアの吸引力を増大でき、したがっ
て消費電力を低減できる。一方アーマチュアの復帰位置
においては、永久磁石の磁束が閉ループを作らない構成
となり、アーマチュアの復帰方向には永久磁石の磁束は
ほとんど作用しないので、従来のような動作ばねを必要
とすることなく片寄ったばね負荷に適用でき、ばね負荷
と整合しやすい吸引力特性が得られる。
Monostable in claim fil! According to the magnet, when the coil is excited, the contact/separation portion of the armature operates so as to be attracted to the yoke. In this case, the magnetic flux generated by the excitation of the coil can form a closed magnetic path by the yoke and armature without including a permanent magnet. Furthermore, since the magnetic flux generated by the permanent magnet can be superimposed on the magnetic flux generated by the coil, the attractive force of the armature can be increased, and power consumption can therefore be reduced. On the other hand, at the return position of the armature, the magnetic flux of the permanent magnet does not form a closed loop, and almost no magnetic flux of the permanent magnet acts in the direction of return of the armature. It can be applied to the load and provides suction force characteristics that are easily matched to the spring load.

請求項(2)の単安定電磁石によれば、請求項il+の
永久磁石の磁極の前記接離部の移動方向と同方向の長さ
を、前記接離部の移動範囲以上としたため、アーマチュ
アの接離部の移動範囲の全体に永久磁石の磁束が作用す
るので、請求項(11の作用とともに、移動範囲の全体
において効率的にアーマチュアの吸引力を増大すること
ができる。
According to the monostable electromagnet of claim (2), the length of the magnetic pole of the permanent magnet of claim il+ in the same direction as the moving direction of the contact/separation portion is set to be greater than or equal to the movement range of the contact/separation portion. Since the magnetic flux of the permanent magnet acts on the entire movement range of the approaching/separating portion, together with the effect of claim 11, the attractive force of the armature can be efficiently increased over the entire movement range.

請求項(3)の単安定電磁石によれば、前記永久磁石は
磁極に集磁板を設けているため、永久磁石より発生する
磁束をアーマチュアまたはヨークに洩れなく集めること
ができるので、より一層効率がよくなりコイルの励磁時
のアーマチュアの吸引力が向上する。
According to the monostable electromagnet of claim (3), since the permanent magnet is provided with a magnetic flux collecting plate on the magnetic pole, the magnetic flux generated by the permanent magnet can be collected without leaking into the armature or the yoke, so that the efficiency is further improved. This improves the attractive force of the armature when the coil is excited.

〔実施例〕〔Example〕

この発明の第1の実施例を第1図ないし第3図に基づい
て説明する。すなわち、この単安定電磁石は、ヨーク1
と、コイル2と、アーマチュア3と、永久磁石4とを有
する。
A first embodiment of the present invention will be described based on FIGS. 1 to 3. In other words, this monostable electromagnet has yoke 1
, a coil 2 , an armature 3 , and a permanent magnet 4 .

ヨーク1は平板を略コ字形に折曲形成している。The yoke 1 is formed by bending a flat plate into a substantially U-shape.

コイル2はヨークエの一片に巻装されている。アーマチ
ュア3はヨーク1の一端部6の板端面に磁気結合される
枢支部5を有するとともに、揺動によりヨーク1の他端
部8の板端面に接離する接離部7を有する。そして、接
離部7はコイル2の励磁によりヨーク1に吸着される。
The coil 2 is wrapped around a piece of yoke. The armature 3 has a pivot portion 5 that is magnetically coupled to the plate end surface of one end portion 6 of the yoke 1, and also has a contact portion 7 that moves toward and away from the plate end surface of the other end portion 8 of the yoke 1 by swinging. The contact/separation portion 7 is attracted to the yoke 1 by the excitation of the coil 2.

無励磁時は復帰ばね(図示せず)などにより復帰位置に
戻る。なお一端部6と枢支部5の枢支手段は、公知のヒ
ンジ手段を適用する。
When not energized, it returns to the return position by a return spring (not shown) or the like. Note that a known hinge means is used as the pivot means for the one end portion 6 and the pivot portion 5.

永久磁石4はヨークlの他端部8に固定されて接離部7
の近傍に配置されている。すなわち、永電磁石4は一対
を実施例とし、略コ字形の補助ヨーク9の両端部の内側
面に磁極Sが磁気結合されて固定され、中央部に孔IO
を形成してヨーク1の他端部8に嵌着している。また永
久磁石4の磁化方向は接離部7の移動方向とほぼ垂直で
あり、永久磁石4の磁極Nがアーマチュア3の側部に対
面し、かつ磁極Nの接離部7の移動方向と同方向の長さ
は接離部7の移動範囲よりも長く形成している。
The permanent magnet 4 is fixed to the other end 8 of the yoke l, and the contact/separation part 7
is located near. That is, a pair of permanent magnets 4 are used as an example, and magnetic poles S are magnetically coupled and fixed to the inner surfaces of both ends of a substantially U-shaped auxiliary yoke 9, and a hole IO is formed in the center.
is formed and fitted onto the other end portion 8 of the yoke 1. Further, the magnetization direction of the permanent magnet 4 is almost perpendicular to the moving direction of the contact/separation part 7, and the magnetic pole N of the permanent magnet 4 faces the side part of the armature 3, and the magnetic pole N is in the same direction as the movement direction of the contact/separation part 7. The length in the direction is longer than the movement range of the contact/separation part 7.

この実施例によれば、第3図fatに示すように、電磁
石の復帰状態において、永久磁石4の磁化力により磁束
Φ1はアーマチュア3、ヨーク1および補助ヨーク9を
経由して流れるが、磁気回路が相なる結合であるのでア
ーマチュア3を復帰方向に吸引する力はほとんど作用し
ない。一方、一部の磁束Φ2はアーマチュア3および補
助ヨーク9を経由して流れるが、この磁束Φ2はアーマ
チュア3をほぼ垂直に通過する磁束であり、かつ磁気回
路も粗なる結合であるのでアーマチュア3を復帰方向に
吸引する力はほとんど作用しない、従ってアーマチュア
3を復帰方向に吸引する力はほとんど作用しないので、
従来のような動作ばねを必要とすることな(片寄ったば
ね負荷に適用できる。
According to this embodiment, as shown in FIG. 3 fat, in the return state of the electromagnet, the magnetic flux Φ1 flows through the armature 3, the yoke 1, and the auxiliary yoke 9 due to the magnetizing force of the permanent magnet 4, but the magnetic flux Φ1 Since these are mutually coupled, the force that attracts the armature 3 in the return direction hardly acts. On the other hand, a part of the magnetic flux Φ2 flows through the armature 3 and the auxiliary yoke 9, but this magnetic flux Φ2 is a magnetic flux that passes through the armature 3 almost perpendicularly, and the magnetic circuit is also loosely coupled, so the armature 3 is Almost no force to attract the armature 3 in the return direction acts, therefore, almost no force acts to attract the armature 3 in the return direction.
Does not require a conventional operating spring (applicable to biased spring loads).

ついで、コイル2を励磁すると、アーマチュア3の枢支
部5を中心に接離部7がヨークlの他端部8に吸着され
るようにアーマチュア3が動作する。第3図tb+に示
すようにコイル2の励磁により発生した磁束Φ3は前述
の磁束Φ1とは逆方向に流れるように構成されており、
永久磁石4を含まないでヨーク1およびアーマチュア3
による閉磁路を流れるとともに、永久磁石4により発生
する磁束Φ2をコイル2の励磁により発生する磁束Φ3
に重畳させることになる。したがってコイル2の起磁力
を増加するに従いヨーク1とアーマチュア3の間に生じ
る吸引力が増大する一方、永久磁石4の磁束Φ2により
アーマチュア3の動作側への吸引力を増大できるため、
コイル2の消費電力を低減できる。
Next, when the coil 2 is energized, the armature 3 operates around the pivot portion 5 of the armature 3 so that the contact/separation portion 7 is attracted to the other end portion 8 of the yoke l. As shown in FIG. 3 tb+, the magnetic flux Φ3 generated by the excitation of the coil 2 is configured to flow in the opposite direction to the aforementioned magnetic flux Φ1,
Yoke 1 and armature 3 without permanent magnet 4
The magnetic flux Φ2 generated by the permanent magnet 4 and the magnetic flux Φ3 generated by excitation of the coil 2 flow through a closed magnetic path due to the magnetic flux Φ2 generated by the permanent magnet 4.
It will be superimposed on Therefore, as the magnetomotive force of the coil 2 increases, the attractive force generated between the yoke 1 and the armature 3 increases, and the magnetic flux Φ2 of the permanent magnet 4 can increase the attractive force toward the operating side of the armature 3.
Power consumption of the coil 2 can be reduced.

また永久磁石の磁極4の長さをアーマチュア3の接離部
7の移動範囲以上としているため、アーマチュア3の接
離部7の移動範囲の全体に永久磁石4の磁束Φ2が作用
するので、効率的にアーマチュア3の吸引力を増大する
ことができ、消費電力を低減できる。
In addition, since the length of the magnetic pole 4 of the permanent magnet is set to be longer than the moving range of the contacting and separating part 7 of the armature 3, the magnetic flux Φ2 of the permanent magnet 4 acts on the entire moving range of the contacting and separating part 7 of the armature 3, which improves efficiency. Therefore, the suction force of the armature 3 can be increased, and power consumption can be reduced.

しかも、永久磁石4をヨークlの他端部8に取り付ける
ことにより、永久磁石4より得られる磁束の増大により
吸引力を増大できるので消費電力をより一層低減するこ
とができる。
Furthermore, by attaching the permanent magnet 4 to the other end 8 of the yoke l, the magnetic flux obtained from the permanent magnet 4 increases, thereby increasing the attractive force, thereby further reducing power consumption.

次に、コイル2に流れる電流を切ると復帰ばね(図示せ
ず)などにより、アーマチュア3は第3図ta+に示す
状態に復帰する。
Next, when the current flowing through the coil 2 is cut off, the armature 3 returns to the state shown in FIG. 3 ta+ by a return spring (not shown) or the like.

なお、ヨーク1は部品1個を略コ字形に折曲により形成
したが、L字形ヨークと棒状または板状ヨークにより、
かしめなどによって略コ字折曲形に構成してもよい。ま
た永久磁石4の一極と接触する補助ヨーク9は別部材で
なくヨークlと一体形成された構造であってもよい。ま
た前記実施例は永久磁石4が一対であったが、1個でも
よい。
The yoke 1 was formed by bending one component into a substantially U-shape, but the L-shaped yoke and the rod-shaped or plate-shaped yoke
It may be formed into a substantially U-shaped bent shape by caulking or the like. Further, the auxiliary yoke 9 that contacts one pole of the permanent magnet 4 may be formed integrally with the yoke l instead of being a separate member. Furthermore, although the permanent magnet 4 is a pair in the above embodiment, it may be one.

さらに永久磁石4の磁極Sをヨーク1の他端部8に磁気
結合させたが、反対の磁極Nを磁気結合させてもよい。
Further, although the magnetic pole S of the permanent magnet 4 is magnetically coupled to the other end portion 8 of the yoke 1, the opposite magnetic pole N may be magnetically coupled.

さらに永久磁石4をヨーク1に固定したが、ヨーク1を
保持するケース、コイル2を巻装するコイル枠など(図
示せず)を介して固定してもよい。また永久磁石4はフ
ェライト磁石、希土類磁石、さらにはプラスチック磁石
でもよい。
Furthermore, although the permanent magnet 4 is fixed to the yoke 1, it may be fixed via a case that holds the yoke 1, a coil frame around which the coil 2 is wound, or the like (not shown). Further, the permanent magnet 4 may be a ferrite magnet, a rare earth magnet, or even a plastic magnet.

また前記実施例では、永久磁石4の磁化方向はアーマチ
ュアの移動方向と完全な垂直であったが、約45度程度
傾斜してもほぼ垂直の範囲である。
Further, in the embodiment described above, the magnetization direction of the permanent magnet 4 was completely perpendicular to the direction of movement of the armature, but even if it is tilted by about 45 degrees, it remains almost perpendicular.

また実施例では磁束Φ3は磁束Φ1と逆方向に流れる構
成としたが、磁束Φ1と同一方向に流れる構成でもよい
Further, in the embodiment, the magnetic flux Φ3 flows in the opposite direction to the magnetic flux Φ1, but the magnetic flux Φ3 may flow in the same direction as the magnetic flux Φ1.

この発明の第2の実施例を第4図および第5図に示す。A second embodiment of the invention is shown in FIGS. 4 and 5.

すなわち、この単安定電磁石は、永久磁石4をアーマチ
ュア3側の接離部7に固定したものであり、アーマチュ
ア3に一対のかぎ形の耳片11を一体に形成し、各耳片
11の内側に永久磁石4を取付け、磁極Sをヨーク1の
他端部8の側面に対向している。その他は第1の実施例
と同様である。
That is, in this monostable electromagnet, a permanent magnet 4 is fixed to a connecting/separating part 7 on the armature 3 side, a pair of hook-shaped ears 11 are integrally formed on the armature 3, and the inner side of each ear piece 11 is formed integrally with the armature 3. A permanent magnet 4 is attached to the yoke 1, and the magnetic pole S faces the side surface of the other end 8 of the yoke 1. The rest is the same as the first embodiment.

永久磁石4をアーマチュア3側に固定することにより可
動部の重量は大きくなるが、アーマチュア3と同時成型
等により製造することにより、部品点数の削減および組
立性の向上が図れる。
By fixing the permanent magnet 4 to the armature 3 side, the weight of the movable part increases, but by manufacturing it by simultaneous molding with the armature 3, the number of parts can be reduced and assembly efficiency can be improved.

なお、耳片11は別部材を用いてもよい、また永久磁石
4をアーマチュア3に直接固定したが、アーマチュア3
と同時動作する別部材を介してもよい。
Note that a separate member may be used for the lug 11, and although the permanent magnet 4 is directly fixed to the armature 3,
It is also possible to use a separate member that operates at the same time.

この発明の第3の実施例を第6図ないし第8図に示す。A third embodiment of the invention is shown in FIGS. 6 to 8.

すなわち、この単安定電磁石は、第1の実施例において
、永久磁石4の磁極Nに集磁板12を設けたものである
That is, this monostable electromagnet is the same as the first embodiment in which a magnetic flux collecting plate 12 is provided at the magnetic pole N of the permanent magnet 4.

この実施例によれば、磁束Φ1゜Φ2は集磁板12を通
して永久磁石4よりアーマチュア3に洩れな(流れるの
で効率を向上することができる。
According to this embodiment, the magnetic flux Φ1°Φ2 leaks (flows) from the permanent magnet 4 to the armature 3 through the magnetic flux collecting plate 12, so that efficiency can be improved.

したがって、アーマチュア3の復帰側では第3図体)の
ように磁気回路が粗なる結合であるため、アーマチュア
3を復帰方向に吸引する力はほとんど作用しないが、第
3図(blのように励磁時のアーマチュア3がヨークl
に接近すると閉磁路となるのでアーマチュア3の吸引力
の増大に寄与することができ、集磁板12がない第1の
実施例と比較して吸引力を増大することができる。
Therefore, on the return side of the armature 3, the magnetic circuit is loosely coupled as shown in Figure 3 (body 3), so the force that attracts the armature 3 in the return direction hardly acts. armature 3 is yoke l
Since it becomes a closed magnetic path when approaching , it can contribute to increasing the attraction force of the armature 3, and the attraction force can be increased compared to the first embodiment in which the magnetic collector plate 12 is not provided.

この発明の第4の実施例を第9図ないし第10図に示す
、すなわち、この単安定!磁石は、第2の実施例におい
て、永久磁石4の磁極SにS磁板12を設けたものであ
り、集磁板I2により磁極Sとヨーク1との間の磁束を
洩れなく流すことができるので、第3の実施例と同様の
効果がある。
A fourth embodiment of the invention is shown in FIGS. 9 and 10, namely, this monostable! In the second embodiment, the magnet is such that an S magnetic plate 12 is provided on the magnetic pole S of the permanent magnet 4, and the magnetic flux collecting plate I2 allows the magnetic flux to flow between the magnetic pole S and the yoke 1 without leakage. Therefore, there is an effect similar to that of the third embodiment.

なお、この発明において、コイル2および永久磁石4は
ヨーク1およびアーマチュア3の双方に設けられてもよ
い。
In addition, in this invention, the coil 2 and the permanent magnet 4 may be provided in both the yoke 1 and the armature 3.

〔発明の効果〕〔Effect of the invention〕

請求項fllの単安定電磁石は、アーマチュアの接離部
の近傍に磁化方向が接離部の移動方向とほぼ垂直である
永久磁石を配置したため、コイルの励磁による磁束は、
永久磁石を含まないで、ヨークおよびアーマチュアによ
る閉磁路を形成することができる。さらに永久磁石によ
り発生する磁束を前記コイルによる磁束に重畳させるこ
とができるのでアーマチュアの吸引力を増大でき、した
がって消費電力を低減できる。一方アーマチュアの復帰
位置においては、永久磁石の磁束が閉ループを作らない
構成となり、アーマチュアの復帰方向には永久磁石の磁
束はほとんど作用しないので、従来のような動作ばねを
必要とすることなく片寄ったばね負荷に適用でき、ばね
負荷と整合しやすい吸引力特性が得られるという効果が
ある。
In the monostable electromagnet of claim full, a permanent magnet whose magnetization direction is almost perpendicular to the moving direction of the approaching and separating parts of the armature is arranged near the moving parts of the armature, so that the magnetic flux due to the excitation of the coil is
A closed magnetic path can be formed by the yoke and armature without including a permanent magnet. Furthermore, since the magnetic flux generated by the permanent magnet can be superimposed on the magnetic flux generated by the coil, the attractive force of the armature can be increased, and power consumption can therefore be reduced. On the other hand, at the return position of the armature, the magnetic flux of the permanent magnet does not form a closed loop, and almost no magnetic flux of the permanent magnet acts in the direction of return of the armature. This has the effect of providing suction force characteristics that can be applied to loads and easily match spring loads.

請求項(2)の単安定電磁石は、請求項+11の永久磁
石の磁極の前記接離部の移動方向と同方向の長さを、前
記接離部の移動範囲以上としたため、アーマチュアの接
離部の移動範囲の全体に永久磁石の磁束が作用するので
、請求項(1ンの効果とともに、移動範囲の全体におい
て効率的にアーマチュアの吸引力を増大することができ
る。
In the monostable electromagnet according to claim (2), the length of the magnetic pole of the permanent magnet according to claim 11 in the same direction as the movement direction of the contact/separation portion is set to be greater than or equal to the movement range of the contact/separation portion. Since the magnetic flux of the permanent magnet acts over the entire movement range of the armature, in addition to the effect of claim 1, the attractive force of the armature can be efficiently increased over the entire movement range.

請求項(3)の単安定を磁石は、前記永久磁石は磁極に
集磁板を設けているため、永久磁石より発生する磁束を
アーマチュアまたはヨークに洩れなく集めることができ
るので、より一層効率がよくなりコイルの励磁時のアー
マチュアの吸引力が向上する。
In the monostable magnet according to claim (3), since the permanent magnet is provided with a magnetic flux collecting plate on the magnetic pole, the magnetic flux generated by the permanent magnet can be collected without leaking into the armature or the yoke, so that the efficiency is further improved. This improves the attraction force of the armature when the coil is energized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第1の実施例の斜視図、第2図はそ
の分解斜視図、第3図は動作状態の説明図、第4図は第
2の実施例の斜視図、第5図はその動作状態の説明図、
第6図は第3の実施例の斜視図、第7図はその分解斜視
図、第8図は動作状態の説明図、第9図は第4の実施例
の斜視図、第10図はその動作状態の説明図である。 1・・・ヨーク、2・・・コイル、3・・・アーマチュ
ア、4・・・永久磁石、7・・・接離部 第 3 図 (a) (b) 2 第 図 手続補正 書 (自発 1゜ ヰ呵牛の1しR 平成 1年特 許 願書340003号 2゜ 発明の名称 単安定電磁石 3゜ 補正をする者 事件との関係
FIG. 1 is a perspective view of the first embodiment of the invention, FIG. 2 is an exploded perspective view thereof, FIG. 3 is an explanatory diagram of the operating state, FIG. 4 is a perspective view of the second embodiment, and FIG. The figure is an explanatory diagram of its operating state,
Fig. 6 is a perspective view of the third embodiment, Fig. 7 is an exploded perspective view thereof, Fig. 8 is an explanatory diagram of the operating state, Fig. 9 is a perspective view of the fourth embodiment, and Fig. 10 is its exploded perspective view. It is an explanatory diagram of an operating state. 1... Yoke, 2... Coil, 3... Armature, 4... Permanent magnet, 7... Approach/separation part 3 Figure (a) (b) 2 Drawing procedure amendment (voluntary 1゜゜゜Cow 1shiR 1999 Patent Application No. 340003 2゜Name of the invention Monostable electromagnet 3゜Relationship with the amended case

Claims (3)

【特許請求の範囲】[Claims] (1)ヨークと、このヨークに接離動作可能な接離部を
有するアーマチュアと、前記ヨークおよび前記アーマチ
ュアの少なくともいずれか一方に巻装されて励磁により
前記アーマチュアを前記ヨークに吸引させるコイルと、
前記アーマチュアの接離部の近傍に配置されて磁化方向
が前記アーマチュアの移動方向とほぼ垂直である永久磁
石とを備えた単安定電磁石。
(1) a yoke, an armature having a contact portion that can move toward and away from the yoke, and a coil that is wound around at least one of the yoke and the armature and causes the armature to be attracted to the yoke by excitation;
A monostable electromagnet comprising: a permanent magnet disposed near a contact/separation portion of the armature, the magnetization direction of which is substantially perpendicular to the direction of movement of the armature.
(2)前記永久磁石は前記アーマチュアおよび前記ヨー
クの少なくとも一方に固定され、その他方に対面する前
記永久磁石の磁極の前記接離部の移動方向と同方向の長
さが、前記接離部の移動範囲以上である請求項(1)記
載の単安定電磁石。
(2) The permanent magnet is fixed to at least one of the armature and the yoke, and the length of the magnetic pole of the permanent magnet facing the other in the same direction as the moving direction of the contact and separation portion is such that the length of the contact and separation portion is The monostable electromagnet according to claim 1, which has a movement range or more.
(3)前記永久磁石は磁極に集磁板を設けている請求項
(1)記載の単安定電磁石。
(3) The monostable electromagnet according to claim (1), wherein the permanent magnet is provided with a magnetic flux collecting plate on its magnetic pole.
JP1340003A 1989-12-25 1989-12-25 Monostable electromagnet Expired - Fee Related JPH0642423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1340003A JPH0642423B2 (en) 1989-12-25 1989-12-25 Monostable electromagnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1340003A JPH0642423B2 (en) 1989-12-25 1989-12-25 Monostable electromagnet

Publications (2)

Publication Number Publication Date
JPH03196506A true JPH03196506A (en) 1991-08-28
JPH0642423B2 JPH0642423B2 (en) 1994-06-01

Family

ID=18332818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1340003A Expired - Fee Related JPH0642423B2 (en) 1989-12-25 1989-12-25 Monostable electromagnet

Country Status (1)

Country Link
JP (1) JPH0642423B2 (en)

Also Published As

Publication number Publication date
JPH0642423B2 (en) 1994-06-01

Similar Documents

Publication Publication Date Title
JPH0442770B2 (en)
JPH0291901A (en) Polarized electromagnet device
JPH0992526A (en) Electromagnetic device
JPH03196506A (en) Monostable electromagnet
JPH0372605A (en) Monostable electromagnet
JPH01168011A (en) Polarized electromagnet
JPH03196507A (en) Monostable electromagnetic
JPH03196504A (en) Monostable electromagnet
JPH03196505A (en) Monostable electromagnet
JPS63133604A (en) Polarized electromagnet
JPH10116551A (en) Polarized relay
JPH0226004A (en) Polarized electromagnet device
JPH0117797Y2 (en)
JPH02312205A (en) Monostable electromagnet
JPH03265103A (en) Monostable electromagnet
JPH0343683Y2 (en)
JP2538884B2 (en) Electromagnet device
JPH0322837Y2 (en)
JPH0347294Y2 (en)
JPH0226005A (en) Monostable electromagnet
JPH0481843B2 (en)
JPH0316192Y2 (en)
JPH0722048B2 (en) Electromagnetic device
JPH05251227A (en) Polarized electromagnet
JPH0446357Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees