JPH03196505A - Monostable electromagnet - Google Patents

Monostable electromagnet

Info

Publication number
JPH03196505A
JPH03196505A JP34000289A JP34000289A JPH03196505A JP H03196505 A JPH03196505 A JP H03196505A JP 34000289 A JP34000289 A JP 34000289A JP 34000289 A JP34000289 A JP 34000289A JP H03196505 A JPH03196505 A JP H03196505A
Authority
JP
Japan
Prior art keywords
armature
yoke
magnetic pole
permanent magnet
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34000289A
Other languages
Japanese (ja)
Other versions
JPH0642422B2 (en
Inventor
Kazutsugu Hayashi
和嗣 林
Hidetoshi Matsushita
松下 英敏
Shoichi Yamaguchi
彰一 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP34000289A priority Critical patent/JPH0642422B2/en
Publication of JPH03196505A publication Critical patent/JPH03196505A/en
Publication of JPH0642422B2 publication Critical patent/JPH0642422B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electromagnets (AREA)

Abstract

PURPOSE:To apply a monostable electromagnet to deviated spring load without requiring a working spring by fixing one magnetic pole of a permanent magnet approximately parallel with the direction of movement of an armature and installing a magnetic pole plate oppositely faced to the other magnetic pole to another side of the yoke. CONSTITUTION:Permanent magnets 4 are fixed at another end section 8 of a yoke l and arranged near a contacting and separating section 7, and magnetic pole plates 11 oppositely faced to the permanent magnets 4 are mounted to an armature 3. Consequently, magnetic flux PHI1 flows through the magnetic pole plates 11, the armature 3, the yoke 1 and an auxiliary yoke 9 by the magnetizing force of the permanent magnets 4, but force attracting the armature 3 in the return direction does not work approximately because a magnetic circuit is formed in loose coupling. When magnetic flux PHI2 is overlapped to magnetic flux PHI3 generated by exciting a coil 2, attraction force to the operation side of the armature 3 can be increased by magnetic flux PHI2, thus reducing the power consumption of the coil 2, then augmenting attraction force with approach to a magnetic pole N of the magnetic pole plates 21. Accordingly, a monostable electromagnet can be applied to deviated spring load without requiring a working spring.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、3相モーターの開閉用の電磁接触器や電磁
継電器などに適用される単安定電磁石に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a monostable electromagnet that is applied to electromagnetic contactors, electromagnetic relays, etc. for switching on and off three-phase motors.

〔従来の技術〕[Conventional technology]

従来のこの種の単安定電磁石として、クラッパ形電磁石
などの磁気回路中に永久磁石を含まない、いわゆる無極
型の電磁石が一般的であった。この無極型の!磁石は低
コストではあるが、コイルの発生磁束しかアーマチュア
の駆動力に利用できないため、ある吸引力幅を得るため
に消費電力を大きくする必要があった。
Conventional monostable electromagnets of this type have generally been so-called non-polar electromagnets that do not include a permanent magnet in their magnetic circuits, such as clapper-type electromagnets. This non-polar type! Although magnets are low-cost, only the magnetic flux generated by the coil can be used to drive the armature, so it is necessary to increase power consumption in order to obtain a certain range of attractive force.

これに対して、近年電磁石の低消費電力化のため磁気回
路中に永久磁石を含ませた有極it磁石装置が提案され
ている(例えば特公昭62−17333号、実公昭58
−10327号)。
On the other hand, in recent years, polarized IT magnet devices in which a permanent magnet is included in the magnetic circuit have been proposed in order to reduce the power consumption of electromagnets (for example, Japanese Patent Publication No. 17333/1983, Japanese Utility Model Publication No. 58
-10327).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

特公昭62−17333号の単安定電磁石は、永久磁石
の磁束もアーマチュアの駆動力に利用できるので、ある
吸引力幅を得るときに無極型に比べて低消費電力にする
ことができる。しかし、双安定用の電磁石構造であるた
め、−船釣な電磁接触器などの片寄ったばね負荷には不
向きであった。
The monostable electromagnet disclosed in Japanese Patent Publication No. 62-17333 can use the magnetic flux of the permanent magnet for the driving force of the armature, so it can consume less power than the non-polar type when obtaining a certain range of attractive force. However, because of its bistable electromagnetic structure, it was unsuitable for uneven spring loads such as those used in electromagnetic contactors used on boats.

また、実公昭58−10327号の単安定Nfi1石は
、無極型と有極型の前記従来例との中間的な特性、すな
わち有極であるため低消費電力が図れ、前記従来例と異
なり非対称の磁気回路であるため片寄ったばね負荷に適
した特性を有している。
In addition, the monostable Nfi 1 stone of Utility Model Publication No. 58-10327 has characteristics intermediate between the non-polar type and the polar type conventional example, that is, it is polar, so it can achieve low power consumption, and unlike the conventional example, it is asymmetric. Because it is a magnetic circuit, it has characteristics suitable for uneven spring loads.

しかし、アーマチュアの復帰側において永久磁石の磁束
が閉ループを流れる構成であるため復帰方向への力が非
常に大きくなり、そのためばね負荷との整合においてア
ーマチュアを動作側に付勢する動作ばねが必要になるな
どの欠点を有していた。
However, since the magnetic flux of the permanent magnet flows in a closed loop on the return side of the armature, the force in the return direction becomes extremely large, and therefore an operating spring is required to bias the armature toward the operating side in alignment with the spring load. It had drawbacks such as:

したがって、この発明の目的は、動作ばねを必要とする
ことなく片寄ったばね負荷6二適用できる有極の単安定
電磁石を捉供することである。
It is therefore an object of the present invention to provide a polarized monostable electromagnet that can be applied with a biased spring load without the need for actuation springs.

〔課題を解決するための手段〕[Means to solve the problem]

この発明の単安定!磁石は、ヨークと、このヨークに接
継動作可能な接離部を有するアーマチュアと、前記ヨー
クおよび前記アーマチュアの少なくともいずれか一方に
巻装されて励磁により前記アーマチュアを前記ヨークに
吸引させるコイルと。
This invention is monostable! The magnet includes a yoke, an armature having a connecting/separating part that can be connected to and connected to the yoke, and a coil that is wound around at least one of the yoke and the armature and attracts the armature to the yoke by excitation.

前記アーマチュアの接離部の近傍に配置されて磁化方向
が前記アーマチュアの移動方向とほぼ平行である永久磁
石とを備えた単安定電磁石において、前記永久磁石の一
方の磁極を前記ヨークおよび前記アーマチュアの一方に
固定し、他方の磁捲に対面する磁極板を前記ヨークおよ
び前記アーマチュアの他方に設けたことを特徴とするも
のである。
In a monostable electromagnet comprising a permanent magnet disposed near a contact/separation portion of the armature and whose magnetization direction is substantially parallel to the moving direction of the armature, one magnetic pole of the permanent magnet is connected to the yoke and the armature. It is characterized in that a magnetic pole plate fixed to one side and facing the magnetic winding of the other is provided on the other of the yoke and the armature.

〔作用〕[Effect]

この発明の単安定電磁石によれば、コイルを励磁すると
アーマチュアの接離部がヨークに吸着されるように動作
する。この場合、コイルの励磁による磁束は、永久磁石
を含まないで、ヨークおよびアーマチュアによる閉磁路
を形成することができる。さらに永久磁石により発生す
る磁束を前記コイルによる磁束に重畳させることができ
るとともに、永久磁石と磁極板との間に吸引力が働くの
でアーマチュアの吸引力を増大でき、したがって消費電
力を低減できる。一方アーマチュアの復帰位1において
は、永久磁石の磁束が閉ループを作らない構成となり、
アーマチュアの復帰方向には永久磁石の磁束はほとんど
作用しないので、従来のような動作ばねを必要とするこ
となく片寄ったばね負荷に適用でき、ばね負荷と整合し
やすい吸引力特性が得られる。
According to the monostable electromagnet of the present invention, when the coil is excited, the contact/separation portion of the armature operates so as to be attracted to the yoke. In this case, the magnetic flux generated by the excitation of the coil can form a closed magnetic path by the yoke and armature without including a permanent magnet. Furthermore, the magnetic flux generated by the permanent magnet can be superimposed on the magnetic flux generated by the coil, and since an attractive force acts between the permanent magnet and the magnetic pole plate, the attractive force of the armature can be increased, and power consumption can therefore be reduced. On the other hand, in the return position 1 of the armature, the magnetic flux of the permanent magnet does not form a closed loop.
Since the magnetic flux of the permanent magnet hardly acts in the return direction of the armature, it can be applied to a biased spring load without requiring a conventional operating spring, and an attractive force characteristic that easily matches the spring load can be obtained.

(実施例〕 この発明の第1の実施例を第1図ないし第3図に基づい
て説明する。すなわち、この単安定電磁石は、ヨーク■
と、コイル2と、アーマチュア3と、永久磁石4とを有
する。
(Embodiment) A first embodiment of the present invention will be explained based on FIGS. 1 to 3. That is, this monostable electromagnet has a yoke
, a coil 2 , an armature 3 , and a permanent magnet 4 .

ヨーク1は平板を略コ字形に折曲形成している。The yoke 1 is formed by bending a flat plate into a substantially U-shape.

コイル2はヨークlの一片に巻装されている。アーマチ
ュア3はヨークIの一端部6の板端面に磁気結合される
枢支部5を有するとともに、揺動によりヨークlの他端
部8の板端面に接離する接離部7を有する。そして、接
離部7はコイル2の励磁によりヨーク1に吸着される。
The coil 2 is wound around one piece of the yoke l. The armature 3 has a pivot portion 5 that is magnetically coupled to the plate end surface of one end portion 6 of the yoke I, and also has a contact/separation portion 7 that approaches and separates from the plate end surface of the other end portion 8 of the yoke I by swinging. The contact/separation portion 7 is attracted to the yoke 1 by the excitation of the coil 2.

無励磁時は復帰ばね(図示せず)などにより復帰位置に
戻る。なお一端部6と枢支部5の枢支手段は、公知のヒ
ンジ手段を適用する。
When not energized, it returns to the return position by a return spring (not shown) or the like. Note that a known hinge means is used as the pivot means for the one end portion 6 and the pivot portion 5.

永久磁石4はヨーク1の他端部8に固定されて接離部7
の近傍に配置され、アーマチュア3に永久磁石4に対面
する磁極板1工を設けている。すなわち、永久磁石4は
一対を実施例とし、補助ヨーク9の両端部に磁極Sが磁
気結合されて固定され、中央部に孔lOを形成してヨー
ク1の他端部8に嵌着している。また永久磁石4の磁化
方向は接離部7の移動方向とほぼ平行である。さらに磁
極板11はアーマチュア3に一体形成され、接離部7が
ヨーク1の他端部8に接触した状態で、磁極Nに接触ま
たは最も近づくように2字形に折曲されている。
The permanent magnet 4 is fixed to the other end 8 of the yoke 1 and
The armature 3 is provided with a magnetic pole plate facing the permanent magnet 4. That is, a pair of permanent magnets 4 are used as an example, and magnetic poles S are magnetically coupled and fixed to both ends of an auxiliary yoke 9, and a hole lO is formed in the center part, and the permanent magnets 4 are fitted to the other end 8 of the yoke 1. There is. Further, the magnetization direction of the permanent magnet 4 is approximately parallel to the moving direction of the contact/separation portion 7. Further, the magnetic pole plate 11 is integrally formed with the armature 3, and is bent into a double shape so that it comes into contact with or comes closest to the magnetic pole N, with the contact portion 7 in contact with the other end portion 8 of the yoke 1.

この実施例によれば、第3図(alに示すように、電磁
石の復帰状態において、永久磁石4の磁化力により磁束
Φ1は磁極板11、アーマチュア3、ヨーク1および補
助ヨーク9を経由して流れるが、磁気回路が粗なる結合
であるのでアーマチュア3を復帰方向に吸引する力はほ
とんど作用しない。
According to this embodiment, as shown in FIG. 3 (al), when the electromagnet is in the returned state, the magnetic flux Φ1 is transmitted by the magnetizing force of the permanent magnet 4 via the magnetic pole plate 11, the armature 3, the yoke 1, and the auxiliary yoke 9. However, since the magnetic circuit is loosely coupled, the force that attracts the armature 3 in the return direction hardly acts.

一方、一部の磁束Φ2は磁極板11、アーマチュア3、
補助ヨーク9を経由して流れるが、この磁束Φ2も磁気
回路が粗なる結合であるのでアーマチュア3を復帰方向
に吸引する力はほとんど作用せず、逆にアーマチュア3
を動作側に吸引する力が作用する。従ってアーマチュア
3を復帰方向に吸引する力はほとんど作用しないので、
従来のような動作ばねを必要とすることなく片寄ったば
ね負荷に適用できる。
On the other hand, a part of the magnetic flux Φ2 is transmitted to the magnetic pole plate 11, the armature 3,
The magnetic flux Φ2 flows through the auxiliary yoke 9, but since the magnetic circuit is loosely coupled, the force that attracts the armature 3 in the return direction hardly acts;
A force is applied that attracts the to the operating side. Therefore, the force that attracts the armature 3 in the return direction is hardly applied, so
It can be applied to biased spring loads without requiring a conventional operating spring.

ついで、コイル2を励磁すると、アーマチュア3の枢支
部5を中心に接離部7がヨーク1の他端部8に吸着され
るようにアーマチュア3が動作する。第3図fblに示
すようにコイル2の励磁により発生した磁束Φ3は前述
の磁束Φ、とは逆方向に流れるように構成されており、
永久磁石4を含まないでヨーク1およびアーマチュア3
による閉磁路を流れるとともに、永久磁石4により発生
する磁束Φ2をコイル2の励磁により発生する磁束Φ3
に重畳させることになる。したがってコイル2の起磁力
を増加するに従いヨークlとアーマチュア3の間に生し
る吸引力が増大する一方、永久磁石4の磁束Φ2により
アーマチュア3の動作側への吸引力を増大できるため、
コイル2の消費電力を低減できる。さらに磁極板11が
磁極Nに近づくにつれて磁極板11の吸引力が増大し、
アーマチュア3の吸引力に寄与する。
Next, when the coil 2 is energized, the armature 3 operates around the pivot portion 5 of the armature 3 so that the contact/separation portion 7 is attracted to the other end portion 8 of the yoke 1. As shown in FIG. 3 fbl, the magnetic flux Φ3 generated by the excitation of the coil 2 is configured to flow in the opposite direction to the aforementioned magnetic flux Φ.
Yoke 1 and armature 3 without permanent magnet 4
The magnetic flux Φ2 generated by the permanent magnet 4 and the magnetic flux Φ3 generated by excitation of the coil 2 flow through a closed magnetic path due to the magnetic flux Φ2 generated by the permanent magnet 4.
It will be superimposed on Therefore, as the magnetomotive force of the coil 2 increases, the attractive force generated between the yoke l and the armature 3 increases, and the magnetic flux Φ2 of the permanent magnet 4 can increase the attractive force toward the operating side of the armature 3.
Power consumption of the coil 2 can be reduced. Furthermore, as the magnetic pole plate 11 approaches the magnetic pole N, the attractive force of the magnetic pole plate 11 increases,
Contributes to the suction force of armature 3.

しかも、永久磁石4をヨークlの他端部8に取り付ける
ことにより、永久磁石4より得られる磁束の増大により
吸引力を増大できるので消費電力をより一層低減するこ
とができる。
Furthermore, by attaching the permanent magnet 4 to the other end 8 of the yoke l, the magnetic flux obtained from the permanent magnet 4 increases, thereby increasing the attractive force, thereby further reducing power consumption.

次に、コイル2に流れるt流を切ると復帰ばね(図示せ
ず)などにより、アーマチュア3は第3図Fa+に示す
状態に復帰する。
Next, when the current t flowing through the coil 2 is cut off, the armature 3 returns to the state shown in FIG. 3 Fa+ by a return spring (not shown) or the like.

なお、ヨークlは部品1個を略コ字形に折曲により形成
したが、L字形ヨークと棒状または板状ヨークにより、
かしめなどによって略コ字折曲形に構成してもよい。ま
た永久磁石4の一極と接触する補助ヨーク9は別部材で
なくヨークlと一体形成された構造であってもよい。ま
た前記実施例は永久磁石4が一対であったが、1個でも
よい。
The yoke l was formed by bending one component into a substantially U-shape, but it can be formed by an L-shaped yoke and a rod-shaped or plate-shaped yoke
It may be formed into a substantially U-shaped bent shape by caulking or the like. Further, the auxiliary yoke 9 that contacts one pole of the permanent magnet 4 may be formed integrally with the yoke l instead of being a separate member. Furthermore, although the permanent magnet 4 is a pair in the above embodiment, it may be one.

さらに永久磁石4の磁極Sをヨーク1の他端部8に磁気
結合させたが、反対の磁極Nを磁気結合させてもよい。
Further, although the magnetic pole S of the permanent magnet 4 is magnetically coupled to the other end portion 8 of the yoke 1, the opposite magnetic pole N may be magnetically coupled.

さらに永久磁石4をヨーク1に直接固定したが、ヨーク
1を保持するケース、コイル2を巻装するコイル枠など
(図示せず)を介して固定してもよい。また永久磁石4
はフェライト磁石、希土類磁石、さらにはプラスチック
磁石でもよい、また前記実施例では、永久磁石4の磁化
方向はアーマチュアの移動方向と完全な平行であったが
、約45度程度傾斜してもほぼ平行の範囲である。また
実施例では磁束Φ3は磁束Φ1と逆方向に流れる構成と
したが、磁束Φ1と同一方向に流れる構成でもよい。
Furthermore, although the permanent magnet 4 is directly fixed to the yoke 1, it may be fixed via a case that holds the yoke 1, a coil frame around which the coil 2 is wound, or the like (not shown). Also permanent magnet 4
may be a ferrite magnet, a rare earth magnet, or even a plastic magnet.Also, in the above embodiment, the magnetization direction of the permanent magnet 4 was completely parallel to the moving direction of the armature, but even if it is tilted by about 45 degrees, it is almost parallel. is within the range of Further, in the embodiment, the magnetic flux Φ3 flows in the opposite direction to the magnetic flux Φ1, but the magnetic flux Φ3 may flow in the same direction as the magnetic flux Φ1.

この発明の第2の実施例を第4図および第5図に示す、
すなわち、この単安定電磁石は、永久磁石4をアーマチ
ュア3側の接離部7に固定したものであり、アーマチュ
ア3に耳片12を一体に形成し、この耳片12に永久磁
石4を取付けている。
A second embodiment of the invention is shown in FIGS. 4 and 5.
That is, this monostable electromagnet is one in which a permanent magnet 4 is fixed to a contact/separation part 7 on the side of an armature 3, a lug 12 is integrally formed on the armature 3, and a permanent magnet 4 is attached to this lug 12. There is.

またヨーク1に磁極板11を取付けている。その他は第
1の実施例と同様である。
Further, a magnetic pole plate 11 is attached to the yoke 1. The rest is the same as the first embodiment.

永久磁石4をアーマチュア3側に固定することにより可
動部の重量は大きくなるが、アーマチュア3と同時成型
等により製造することにより、部品点数の削減および組
立性の向上が図れる。
By fixing the permanent magnet 4 to the armature 3 side, the weight of the movable part increases, but by manufacturing it by simultaneous molding with the armature 3, the number of parts can be reduced and assembly efficiency can be improved.

なお、耳片12は別部材を用いてもよい、また永久磁石
4をアーマチュア3に直接固定したが、アーマチュア3
と同時動作する別部材を介してもよい。
Note that a separate member may be used for the lug 12, and although the permanent magnet 4 is directly fixed to the armature 3,
It is also possible to use a separate member that operates at the same time.

なお、この発明において、コイル2および永久磁石4は
ヨークlおよびアーマチュア3の双方に設けられてもよ
い。
In addition, in this invention, the coil 2 and the permanent magnet 4 may be provided in both the yoke l and the armature 3.

〔発明の効果〕〔Effect of the invention〕

この発明の単安定電磁石は、アーマチュアの接離部の近
傍に磁化方向が接離部の移動方向とほぼ平行である永久
磁石を配置し、前記永久磁石の一方の磁極をヨークおよ
びアーマチュアの一方に固定し、他方の磁極に対面する
磁極板を前記ヨークおよび前記アーマチュアの他方に設
けているため、コイルの励磁による磁束は、永久磁石を
含まないで、ヨークおよびアーマチュアによる閉磁路を
形成することができる。さらに永久磁石により発生する
磁束を前記コイルによる磁束に重畳させることができる
とともに、永久磁石と磁極板との間に吸引力が働くので
アーマチュアの吸引力を増大でき、したがって消費電力
を低減できる。一方アーマチュアの復帰位置においては
、永久磁石の磁束が閉ループを作らない構成となり、ア
ーマチュアの復帰方向には永久磁石の磁束はほとんど作
用しないので、従来のような動作ばねを必要とすること
なく片寄ったばね負荷に適用でき、ばね負荷と整合しや
すい吸引力特性が得られるという効果がある。
In the monostable electromagnet of the present invention, a permanent magnet whose magnetization direction is approximately parallel to the moving direction of the contact/separate part is arranged near the contact/separate part of the armature, and one magnetic pole of the permanent magnet is attached to one of the yoke and the armature. Since the magnetic pole plate that is fixed and faces the other magnetic pole is provided on the other of the yoke and the armature, the magnetic flux due to excitation of the coil can form a closed magnetic path by the yoke and the armature without including a permanent magnet. can. Furthermore, the magnetic flux generated by the permanent magnet can be superimposed on the magnetic flux generated by the coil, and since an attractive force acts between the permanent magnet and the magnetic pole plate, the attractive force of the armature can be increased, and power consumption can therefore be reduced. On the other hand, at the return position of the armature, the magnetic flux of the permanent magnet does not form a closed loop, and almost no magnetic flux of the permanent magnet acts in the direction of return of the armature. This has the effect of providing suction force characteristics that can be applied to loads and easily match spring loads.

【図面の簡単な説明】[Brief explanation of drawings]

第】図はこの発明の第1の実施例の斜視図、第2図はそ
の分解斜視図、第3図は動作状態の説明図、第4図は第
2の実施例の斜視図、第5図はその動作状態の説明図で
ある。 1・・・ヨーク、2・・・コイル、3・・・アーマチュ
ア、4・・・永久磁石、7・・・接離部、11・・・磁
極板書 図 (b)
1 is a perspective view of the first embodiment of the present invention, FIG. 2 is an exploded perspective view thereof, FIG. 3 is an explanatory diagram of the operating state, FIG. 4 is a perspective view of the second embodiment, and FIG. The figure is an explanatory diagram of its operating state. DESCRIPTION OF SYMBOLS 1... Yoke, 2... Coil, 3... Armature, 4... Permanent magnet, 7... Contact/separation part, 11... Magnetic pole board diagram (b)

Claims (1)

【特許請求の範囲】[Claims]  ヨークと、このヨークに接離動作可能な接離部を有す
るアーマチュアと、前記ヨークおよび前記アーマチュア
の少なくともいずれか一方に巻装されて励磁により前記
アーマチュアを前記ヨークに吸引させるコイルと、前記
アーマチュアの接離部の近傍に配置されて磁化方向が前
記アーマチュアの移動方向とほぼ平行である永久磁石と
を備えた単安定電磁石において、前記永久磁石の一方の
磁極を前記ヨークおよび前記アーマチュアの一方に固定
し、他方の磁極に対面する磁極板を前記ヨークおよび前
記アーマチュアの他方に設けたことを特徴とする単安定
電磁石。
a yoke, an armature having a contact portion that can move toward and away from the yoke; a coil wound around at least one of the yoke and the armature to attract the armature to the yoke through excitation; In a monostable electromagnet comprising a permanent magnet disposed near a contact/separation part and having a magnetization direction substantially parallel to a moving direction of the armature, one magnetic pole of the permanent magnet is fixed to one of the yoke and the armature. A monostable electromagnet, characterized in that a magnetic pole plate facing the other magnetic pole is provided on the other of the yoke and the armature.
JP34000289A 1989-12-25 1989-12-25 Monostable electromagnet Expired - Lifetime JPH0642422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34000289A JPH0642422B2 (en) 1989-12-25 1989-12-25 Monostable electromagnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34000289A JPH0642422B2 (en) 1989-12-25 1989-12-25 Monostable electromagnet

Publications (2)

Publication Number Publication Date
JPH03196505A true JPH03196505A (en) 1991-08-28
JPH0642422B2 JPH0642422B2 (en) 1994-06-01

Family

ID=18332808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34000289A Expired - Lifetime JPH0642422B2 (en) 1989-12-25 1989-12-25 Monostable electromagnet

Country Status (1)

Country Link
JP (1) JPH0642422B2 (en)

Also Published As

Publication number Publication date
JPH0642422B2 (en) 1994-06-01

Similar Documents

Publication Publication Date Title
JPH08180785A (en) Electromagnetic relay
JPH03196505A (en) Monostable electromagnet
JP2613904B2 (en) Polarized electromagnet
JPH0372605A (en) Monostable electromagnet
JPS63133604A (en) Polarized electromagnet
JPH03196504A (en) Monostable electromagnet
JPH03196507A (en) Monostable electromagnetic
JPH10116551A (en) Polarized relay
JPH03196506A (en) Monostable electromagnet
JPH02312205A (en) Monostable electromagnet
JPS6230768Y2 (en)
JPH0719695B2 (en) Monostable electromagnet
JPH0117797Y2 (en)
JPH0226005A (en) Monostable electromagnet
JPH0481843B2 (en)
JPH02125406A (en) Monostable electromagnet
JPH0290503A (en) Polarized electromagnet
JPS61127105A (en) Electromagnet device
JPH0316192Y2 (en)
JPH0446357Y2 (en)
JPS62291006A (en) Electromagnet device
JPH039293Y2 (en)
JPH028353Y2 (en)
JPH0722048B2 (en) Electromagnetic device
JPH071731B2 (en) Polarized electromagnet