JPH0319422A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPH0319422A
JPH0319422A JP1153366A JP15336689A JPH0319422A JP H0319422 A JPH0319422 A JP H0319422A JP 1153366 A JP1153366 A JP 1153366A JP 15336689 A JP15336689 A JP 15336689A JP H0319422 A JPH0319422 A JP H0319422A
Authority
JP
Japan
Prior art keywords
power supply
circuit
voltage
power
dcfl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1153366A
Other languages
Japanese (ja)
Inventor
Akitoshi Tetsuka
手束 明稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1153366A priority Critical patent/JPH0319422A/en
Publication of JPH0319422A publication Critical patent/JPH0319422A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Logic Circuits (AREA)

Abstract

PURPOSE:To reduce the power consumption by installing a virtual power supply to a DCFL part, and stacking a logic circuit composed of a DCFL on and under the power supply. CONSTITUTION:A 1st power supply 11 and a 2nd power supply 12 are supplied externally to form a virtual 3rd power supply 13. A 1st logic circuit 14 comprising an SCFL is formed between the 1st and 2nd power supplies, and a 2nd logic circuit is and a 3rd logic circuit 16 comprising a DCFL respectively are formed respectively between the 1st and 3rd power supplies and between the 3rd and 2nd power supplies. The 1st power supply 11 is a ground power supply and since a standard power supply voltage of ECL IC is supplied to the 2nd power supply 12, the 3rd power supply voltage 13 is nearly equal to the power voltage optimum to the DCFL. Thus, in the 2nd and 3rd logic circuits 15, 16 comprising the DCFL, the power consumption is halved in comparison with a conventional technology and considerable low power consumption is attained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明{上 化合物半導体基板上に形成された型電界効
果トランジスター(以下、FETと略す)により構戊さ
れる半導体集積回路に用いられも特l,−.DCFLあ
るいはSCFLと呼ばれる回路形式により構成される半
導体集積回路に使用される。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention is particularly applicable to semiconductor integrated circuits constituted by field effect transistors (hereinafter abbreviated as FETs) formed on compound semiconductor substrates. −. It is used in semiconductor integrated circuits configured in a circuit format called DCFL or SCFL.

従来の技術 近承 化合物半導体基板を用いた集積回路(以FICと
略す)(友  製造技術の向上により各種ICが開発さ
れていも 特に ロジックICで(よSRAM,  マ
イクロプロセッサー等のLSIが開発されていも さて、これらロジックLSIに使用される回路形式にG
iDCFLとSCFLが広く用いられていも D C F L i.t,  負荷FETとスイッチン
グFETを直列に接続した回路であり、第3図にDCF
Lで構成されたインバータの回路図を示す。DCFLの
特徴は構成素子数がその他の回路形式に比べて少なく、
消費電力も少ないことであも そのたへ DCFLはA
LU,RAMなど組合せ回路に広く用いられていも S C F L (;L  定電流源上に差動FET対
を直列に積み重ねた作動スイッチ回路とソースホロアに
より構成されも 第4図にSCFLで構成されたインバ
ータの回路図を示す。SCFLの特徴は高速・低消費電
力のフリップ・フロツブを容易に構成できることであも
 そのた△ S C F L It  分周器 ラッチ
回路などフリツプ・フロツブを中心とする順序回路に広
く使用されていも さらにSCFLは時間差の少ない正
・補信号を簡単に発生できるたべ 大カバツファにも広
く用いられていも 従来のICI;LICの特性に応じてDCFLあるいは
SCFLのいずれか一方により構成されていtも  し
かし 最近で(よ 両者の特徴を生かしたDCFLとS
CFLが混在した回路が提案されていも それ1友 ラ
ッチ回跋 分周器などフリツプ・フロップを使用する部
分あるいは入出力バツファなどをSCFLで構成L,,
ALU,  RAMその他内部回路をDCFLで構成す
るものであも 第5図にその回路ブロック図を示す。I
Cの外部より第1の電源 lと第1の電源より低電位の
第2の電源 2が供給されていも 第1の電源と第2の
電源の間にSCFLにより構成された第1の論理回w!
&3とDCFLにより構成された第2の論理回路 4が
混在して形戊されていも この回路構成を用いることに
より、SCFLとDCFLの両者の特徴を活かして、動
作速度の向上と構成素子数の低減を図ることができも 発明が解決しようとする課題 一般に化合物半導体を用いたICはその動作速度が速い
た△ SiのECL−ICと共に使用されも そのた△
 化合物半導体を用いたICの電源電圧にiよ−5. 
 2V,  −4.  5Vア6イl;t−3. 3V
などのSiのECL−ICの標準電源電圧を用いる必要
があも なぜな転 特殊な電源電圧を使用すると、新た
に電源を準備するとともに余分な電源配線を設ける必要
があり、実用的でないからであも さて、周知のようにD C F Lは上記の電源電圧よ
りはるかに低い電源電圧において充分動作可能であa 
第6図はDCFLインバータの伝播遅延時間の電源電圧
依存性の一例であん 電源電圧が0. 8v以上におい
てDCFLインバータは動作しており、 1.5V以上
ではその伝播遅延時間はほぼ一定とな&  DCFLに
おいて(友 電源電圧は1.5〜2.OVの範囲が最適
であり、それ以上の電圧を印加しても単に消費電力が増
加するだけで、動作速度は向上しな賎 第7図はSCFLインバータの伝播遅延時間の電源電圧
依存性の一例であも 電源電圧が2.0V以上ならばS
CFLインバータは動作しており、3. 0V以上では
その伝播遅延時間はほぼ一定とな,L  SCFLにお
いて(上 電源電圧は3.0〜5. Ovの範囲が最適
であも この電圧は前記SiのECL・ICの電源電圧
にほぼ等しいた数SCFL回路はSiのECL−ICの
電源電圧で動作させても消費電力の増加は少な(℃とこ
ろで、従来の技術ではSCFLとDCFLを単に混在さ
せただけであり、両者の電源電圧は前記SiのECL・
ICの電源電圧を使用していt4  そのた△ DCF
L部分において(上 最適な電源電圧よりもはるかに高
い電圧が印加されていt4 その結抵 従来の技術によるSCFLとDCFLの混在
したICにLt,DCFLにおいて無駄な電力の浪費が
あり、低消費電力化できないという課題があった 本発明はかかる従来の技術の欠点を改善し 低消費電力
化を可能としたSCFLとDCFLが混在したICを提
供することを目的とすん課題を解決するための手段 l.本発明による半導体集積回路は化合物半導体基板上
に形成された電界効果型トランジスタを用いて構成され
 、第1の電源と該第1の電源より低電位の第2の電源
が半導体集積回路の外部より供給され 前記第1の電源
の電圧と第2の電源の電圧の間の電圧を有し外部に接続
されていない仮想的な第3の電源が形成され 前記第1
の電源と第2の電源の間に第1の回路形式からなる第1
の論理回路が形成され 第1の電源と第3の電源の間お
よび第3の電源と第2の電源の間に第2の回路形式から
なる第2および第3の論理回路がそれぞれ形成されてい
ることを特徴とすも2.本発明による半導体集積回路(
友 前記第1の回路形式がSCFLであり、第2の論理
形式がDCFLであることを特徴とすも 3,本発明による半導体集積回路(よ 化合物半導体基
板上に形成された電界効果型トランジスタを用いて構成
され 第1の電源と該第1の電源より低電位の第2の電
源が半導体集積回路の外部より供給され 前記第1の電
源の電圧と第2の電源の電圧の間の電圧を有し外部に接
続されていない仮想的な第3の電源が形成され 第1の
電源と第3の電源の間および第3の電源と第2の電源の
間にそれぞれ論理回路が構成されるとともに 前記第1
の電源と第3の電源の間に第1の電流バイパス回路形成
され 第3の電源と第2の電源の間に第2の電流バイパ
ス回路形成され 第1の電源と第2の電源の間に第3の
電源に対する基準電圧発生回路が形成され 第3の電源
の電圧が基準電圧よりも高い場合には第2の電流バイパ
ス回路の電流が増加し 逆に第3の電源の電圧が基準電
圧よりも低い場合には、第1の電流バイパス回路の電流
が増加する制御回路が設けられていることを特徴とすも 作用 半導体集積回路の外部より供給される第1と第2の電源
の他に 仮想的な第3の電源が設けられており、この第
3の電源の電圧は、第1と第2の電源の電圧の間の電圧
であ瓜 そして、第1と第3の電源の間および第3と第
2の電源の間にDCFLにより構成された論理回路がそ
れぞれ形成されていも 第2および第3の論理回路1よ
 従来の技術では1つの論理回路として構成されていた
ものが2等分されたものであ4  DCFLにより構成
されたそれぞれの論理回路にを流れる電流は従来の技術
の半分となん その結1.DCFLにより構成された論
理回路部分では電力の無駄が無くなり、低消費電力化が
図れる訳であも さらに 第1の電源と第3の電源の間および第3の電源
と第2の電源の間に第1と第2の電流バイパス回路を形
成されていも さらに 基準電圧と第3の電源電圧を比
較し その大小関係か転電流バイパス回路を流れる電流
を制御する回路が設けられていも その結久 第3の電
源の電圧は精度良くかつ安定に制御さ11,  ICの
特性は一層向上すも 実施例 第1図に本発明の第1の実施例であるICの回路ブロッ
ク図を示も 、第1の$1,IIと第2の電源 l2が
外部より供給され 仮想的な第3の電# l3が形成さ
れていも 第1の電源と第2の電源の間にSCFLによ
り構成された第1の論理回路 l4が形成され 第1と
第3の電源の間および第3と第2の電源の間にDCFL
により構成される第2の論理回路 l5および第3の論
理回路 l6が形成されていも 第2の論理回路と第3
の論理回路(戴 従来の技術では1つの論理回路として
構戊されていたものが2等分されたものであも 第2の
論理回路と第3の論理回路の電流は等しく、第3の電源
の電圧は第1の電源の電圧と第2の電源の電圧の中間と
なも 通焦 第1の電源は接地電源であり、第2の電源
には−5.2V,  −4.  5Vあるいは−3. 
3vというECL・ICの標準電源電圧が供給されるた
△ 第3の電源電圧は−2.  6V,−2.  25
Vおよび−■.65VとなりDCFL最適の電源電圧に
ほぼ等しくなも 前述のように この電源電圧において
もDCFLは正常に動作するとともに 動作速度の低下
はなL1  その結%  DCFLにより構成された第
2および第3の論理回路において、消費電流を従来の技
術の半分とすることかで東 電力を有効に使用できるこ
とになり大幅な低消費電力化が図られも 第2図{上 本発明の別の実施例であるICの回路ブロ
ック図であん 本実施例で{よ 第3の電源電圧を安定
にかつ精度良く制御する回路を提供するものであも 第
1の電源 l1と第2の電源l2が外部より供給され 
仮想的な第3の電源13が形成されていも 第1と第3
の電源の間および第3と第2の電源の間に第4の論理回
路 2lおよび第5の論理回路 22が形成されていも
第4の論理回路と第5の論理回路は 従来の技術では1
つの論理回路として構成されていたものが分割されたも
のであも 、第1と第2の電源の間に抵抗 Rlおよ1
.R2からなる基準電圧発生回路が設けられ 第3の電
源の電圧に対する基準電圧を発生していも この基準電
圧と第3の電源電圧との差を差動増幅器 23により比
較増幅していも さらに 第1と第3の電源の間に第1
の電流バイパス回路24、第3と第2の電源の間に第2
の電流バイパス回W& 25が設けられていも第1と第
2の電流バイパス回路は差動増幅器の正・補出力により
制御されていも 動作を説明すると、第3の電源の電圧が基準電圧よりも
高い場合に(よ 第4の論理回路の等価的な抵抗が第5
の論理回路の等価的な抵抗に比べて小さい場合であり、
第2の電流バイパス回路の電流を増加させ、第1の電流
バイパス回路の電流を減少させも 逆に 第3の電源の
電圧が基準電圧よりも低い場合にC友  第4の論理回
路の等価的な抵抗が第5の論理回路の等価的な抵抗に比
べて大きい場合であり、第1の電流バイパス回路の電流
を増加させ、第2の電流バイパス回路の電流を減少させ
も 以上の動作により、第3の電源の電圧を基準電圧と
等しい電圧に保つことができも第4と第5の論理回路に
印加される電源電圧を、外部から供給される電源電圧の
半分程度の電圧に制御L,  ICの特性を安定化する
ことができもそして、第4と第5の論理回路を流れる電
流を従来の技術に比べて大幅に減少でき、 ICを低消
費電力化することができも 発明の効果 本発明を用いることにより、従来の技術によるSCFL
とDCFLの混在したICの課題を解決することができ
tラ  つまり、DCFL部分に仮想的な電源を設置t
A DCFLにより構成される論理回路を上下に積み重
ねるという新しい技術により、それぞれの論理回路に流
れる電源電流を減少させた その結R  DCFL部分
の消費電力を低減できた さら(′.仮想的な電源の電圧を安定にしかも精度良く
制御する回路を提供t,,  ICの特性を向上させる
ことができた な耘 本明細書ではSCFLとDCFLの混在した回路
について説明した力曳 他の回路構成においても有効で
あることは自明であも
Conventional Technology Integrated Circuits (hereinafter abbreviated as FIC) using compound semiconductor substrates Although various ICs have been developed due to improvements in manufacturing technology, especially logic ICs (LSIs such as SRAMs and microprocessors have not been developed). By the way, the circuit format used for these logic LSIs is
Although iDCFL and SCFL are widely used, DCFL i. t, is a circuit in which a load FET and a switching FET are connected in series, and the DCF is shown in Figure 3.
A circuit diagram of an inverter configured with L is shown. The feature of DCFL is that the number of constituent elements is small compared to other circuit types.
Besides that, DCFL is A because of its low power consumption.
SCFL is widely used in combinational circuits such as LU and RAM. A circuit diagram of an inverter is shown below.The feature of SCFL is that it is easy to construct flip-flops with high speed and low power consumption. Although widely used in sequential circuits, SCFL can easily generate correction and complementary signals with small time differences.Although widely used in large buffers, conventional ICI; depending on the characteristics of LIC, either DCFL or SCFL can be used. However, recently, DCFL and S
Even if a circuit with a mixture of CFLs has been proposed, it is only possible to use SCFLs in parts that use flip-flops, such as frequency dividers, or input/output buffers.
Even if the ALU, RAM, and other internal circuits are composed of DCFLs, the circuit block diagram is shown in FIG. I
Even if the first power supply 1 and the second power supply 2 having a lower potential than the first power supply are supplied from the outside of C, the first logic circuit configured by the SCFL between the first power supply and the second power supply Lol!
Even if the second logic circuit composed of Problems to be Solved by the Invention Although ICs using compound semiconductors generally have high operating speeds, they can also be used with Si ECL-ICs.
The power supply voltage of an IC using a compound semiconductor is -5.
2V, -4. 5V eye6l; t-3. 3V
Why is it necessary to use the standard power supply voltage for Si ECL-ICs such as? If a special power supply voltage is used, it is necessary to prepare a new power supply and install extra power supply wiring, which is not practical. By the way, as is well known, DC F L can operate satisfactorily at a power supply voltage much lower than the above power supply voltage.
Figure 6 shows an example of the power supply voltage dependence of the propagation delay time of a DCFL inverter. The DCFL inverter operates above 8V, and the propagation delay time is almost constant above 1.5V. Even if a voltage is applied, the power consumption only increases and the operating speed does not improve.Figure 7 is an example of the dependence of the propagation delay time of an SCFL inverter on the power supply voltage.If the power supply voltage is 2.0V or more, BaS
The CFL inverter is operating; 3. Above 0V, the propagation delay time is almost constant, and in LSCFL (upper), even though the optimal power supply voltage is in the range of 3.0 to 5.0V, this voltage is almost equal to the power supply voltage of the Si ECL/IC. However, even if the SCFL circuit is operated with the power supply voltage of a Si ECL-IC, the increase in power consumption is small (℃By the way, in the conventional technology, SCFL and DCFL are simply mixed, and the power supply voltage of both is Si ECL・
IC power supply voltage is used t4 and △ DCF
In the L part (above), a voltage much higher than the optimum power supply voltage is applied (t4), and its resistance.In ICs with a mixture of SCFL and DCFL, there is waste of power in Lt and DCFL, resulting in low power consumption. The present invention aims to improve the drawbacks of the conventional technology and provide an IC with a mixture of SCFL and DCFL that enables lower power consumption. .The semiconductor integrated circuit according to the present invention is configured using field effect transistors formed on a compound semiconductor substrate, and a first power source and a second power source having a lower potential than the first power source are connected to the outside of the semiconductor integrated circuit. A virtual third power source is formed which is supplied from the first power source and has a voltage between the voltage of the first power source and the voltage of the second power source and is not connected to the outside.
A first circuit of a first circuit type is connected between a power source and a second power source.
A logic circuit of a second circuit type is formed between the first power source and the third power source and between the third power source and the second power source, respectively. 2. Semiconductor integrated circuit according to the present invention (
3. A semiconductor integrated circuit according to the present invention, characterized in that the first circuit format is an SCFL and the second logic format is a DCFL. A first power supply and a second power supply having a lower potential than the first power supply are supplied from outside the semiconductor integrated circuit, and a voltage between the first power supply voltage and the second power supply voltage is supplied. A virtual third power source is formed that is not connected to the outside, and logic circuits are configured between the first power source and the third power source and between the third power source and the second power source, respectively. Said first
A first current bypass circuit is formed between the power supply and the third power supply, and a second current bypass circuit is formed between the third power supply and the second power supply, and between the first power supply and the second power supply. A reference voltage generation circuit for the third power supply is formed, and when the voltage of the third power supply is higher than the reference voltage, the current of the second current bypass circuit increases, and conversely, the voltage of the third power supply is higher than the reference voltage. In addition to the first and second power supplies supplied from outside the semiconductor integrated circuit, a control circuit is provided that increases the current of the first current bypass circuit when the current is low. A virtual third power source is provided, and the voltage of this third power source is a voltage between the voltages of the first and second power sources, and the voltage between the first and third power sources and Even if logic circuits constituted by DCFLs are formed between the third and second power supplies, the second and third logic circuits 1 and 2 are configured as one logic circuit in the conventional technology. The current flowing through each logic circuit composed of 4 DCFLs is half that of the conventional technology.Consequences 1. In the logic circuit section configured with DCFL, there is no wasted power, and lower power consumption can be achieved. Even if the first and second current bypass circuits are formed, there is also a circuit that compares the reference voltage and the third power supply voltage and controls the current flowing through the current bypass circuit based on the magnitude relationship between them. The voltage of the power supply of No. 3 is controlled accurately and stably11, and the characteristics of the IC are further improved. Even if $1, II and the second power supply l2 are supplied from the outside and a virtual third power supply l3 is formed, the first power supply configured by the SCFL between the first power supply and the second power supply A logic circuit l4 is formed with a DCFL between the first and third power supplies and between the third and second power supplies.
Even if a second logic circuit l5 and a third logic circuit l6 are formed, the second logic circuit and the third logic circuit l6 are formed.
Logic circuit (Dai) Even if what was configured as one logic circuit in the conventional technology is divided into two, the current in the second logic circuit and the third logic circuit is equal, and the current in the third logic circuit is equal. The voltage of the first power supply is between the voltage of the first power supply and the voltage of the second power supply. 3.
The standard power supply voltage for ECL/IC of 3V is supplied.The third power supply voltage is -2. 6V, -2. 25
V and -■. 65V, which is almost equal to the optimum power supply voltage for the DCFL.As mentioned above, the DCFL operates normally even at this power supply voltage, and there is no decrease in operating speed.As a result, the second and third logics configured by the DCFL In the circuit, by reducing the current consumption to half that of the conventional technology, electric power can be used effectively, resulting in a significant reduction in power consumption. In this embodiment, a circuit is provided which stably and accurately controls the third power supply voltage.The first power supply l1 and the second power supply l2 are supplied from the outside.
Even if a virtual third power source 13 is formed, the first and third
Even though a fourth logic circuit 2l and a fifth logic circuit 22 are formed between the power supplies of , and between the third and second power supplies, the fourth logic circuit and the fifth logic circuit are
Even if the circuit is divided into two logic circuits, there are resistors Rl and 1 between the first and second power supplies.
.. Even if a reference voltage generation circuit consisting of R2 is provided and generates a reference voltage for the voltage of the third power supply, the difference between this reference voltage and the third power supply voltage is compared and amplified by the differential amplifier 23. and the third power supply
a current bypass circuit 24, a second current bypass circuit 24 between the third and second power supplies;
Even though the current bypass circuit W & 25 is provided, the first and second current bypass circuits are controlled by the correction and compensation outputs of the differential amplifier. If the equivalent resistance of the fourth logic circuit is
is smaller than the equivalent resistance of the logic circuit,
Even if the current in the second current bypass circuit is increased and the current in the first current bypass circuit is decreased, conversely, when the voltage of the third power supply is lower than the reference voltage, the equivalent of the fourth logic circuit This is a case where the resistance is larger than the equivalent resistance of the fifth logic circuit, and the current in the first current bypass circuit can be increased and the current in the second current bypass circuit can be decreased. Although the voltage of the third power supply can be kept equal to the reference voltage, the power supply voltage applied to the fourth and fifth logic circuits is controlled to be about half of the power supply voltage supplied from the outside. The effects of the invention include not only being able to stabilize the characteristics of the IC, but also being able to significantly reduce the current flowing through the fourth and fifth logic circuits compared to conventional technology, thereby reducing the power consumption of the IC. By using the present invention, SCFL by conventional technology
In other words, a virtual power supply can be installed in the DCFL part.
A: By stacking logic circuits composed of DCFLs one above the other, the power supply current flowing through each logic circuit has been reduced.As a result, the power consumption of the DCFL section has been reduced ('. We have provided a circuit that stabilizes the voltage and controls it with high precision.We have been able to improve the characteristics of the IC.In this specification, we have explained a circuit with a mixture of SCFL and DCFL, but it is also effective in other circuit configurations. It is obvious that

【図面の簡単な説明】[Brief explanation of the drawing]

、第1図は本発明の第1の実施例である半導体集積回路
の回路ブロックは 第2図は本発明の別の実施例である
半導体集積回路の回路ブロックは第3図はDCFLによ
り構戊されたインバータの回路は 第4図はSCFLに
より構成されたインバータの回路& 第5図は従来の技
所によるSCFLとDCFLの混在した半導体集積回路
の回路ブロックは 第6図はDC−FLインバータにお
ける伝播遅延時間と電源電圧の関係は 第7図はSCF
Lインバータにおける伝播遅延時間と電源電圧の関係図
であム 1l・・・第1の電旅 l2・・・第2の電担13・・
・仮想的な第3の電鳳 14・・・SCFLにより構成
される論理回取 21・・・第1の電流バイパス回息 
22・・・第2の電流バイパス回廠 23・・・差動増
幅迄
, FIG. 1 shows a circuit block of a semiconductor integrated circuit according to a first embodiment of the present invention, FIG. 2 shows a circuit block of a semiconductor integrated circuit according to another embodiment of the present invention, and FIG. 3 shows a circuit block constructed by DCFL. Figure 4 shows the circuit of an inverter constructed using SCFL, and Figure 5 shows the circuit block of a semiconductor integrated circuit with a mixture of SCFL and DCFL created by a conventional technique. Figure 6 shows the circuit of a DC-FL inverter. The relationship between propagation delay time and power supply voltage is shown in Figure 7.
This is a diagram showing the relationship between the propagation delay time and the power supply voltage in the L inverter.
・Virtual third electric current 14... Logical circulation configured by SCFL 21... First current bypass circulation
22...Second current bypass circuit 23...Up to differential amplification

Claims (3)

【特許請求の範囲】[Claims] (1)化合物半導体基板上に形成された電界効果型トラ
ンジスタを用いて構成される半導体集積回路において、
第1の電源と該第1の電源より低電位の第2の電源が半
導体集積回路の外部より供給され前記第1の電源の電圧
と第2の電源の電圧の間の電圧を有し外部に接続されて
いない仮想的な第3の電源が形成され、前記第1の電源
と第2の電源の間に第1の回路形式からなる第1の論理
回路が形成され第1の電源と第3の電源の間および第3
の電源と第2の電源の間に第2の回路形式からなる第2
および第3の論理回路がそれぞれ形成されていることを
特徴とする半導体集積回路。
(1) In a semiconductor integrated circuit configured using field effect transistors formed on a compound semiconductor substrate,
A first power supply and a second power supply having a lower potential than the first power supply are supplied from outside the semiconductor integrated circuit, and have a voltage between the voltage of the first power supply and the voltage of the second power supply. A virtual third power source that is not connected is formed, a first logic circuit having a first circuit type is formed between the first power source and the second power source, and a first logic circuit having a first circuit type is formed between the first power source and the third power source. between the power supplies and the third
A second circuit of a second circuit type is connected between the power supply of
and a third logic circuit are respectively formed.
(2)第1の論理形式がSCFLであり、第2の回路形
式がDCFLであることを特徴とする特許請求の範囲第
1項記載の半導体集積回路。
(2) The semiconductor integrated circuit according to claim 1, wherein the first logic format is SCFL and the second circuit format is DCFL.
(3)化合物半導体基板上に形成された電界効果型トラ
ンジスタを用いて構成される半導体集積回路において、
第1の電源と該第1の電源より低電位の第2の電源が半
導体集積回路の外部より供給され、前記第1の電源の電
圧と第2の電源の電圧の間の電圧を有し外部に接続され
ていない仮想的な第3の電源が形成され、第1の電源と
第3の電源の間および第3の電源と第2の電源の間にそ
れぞれ論理回路が構成されるとともに前記第1の電源と
第3の電源の間に第1の電流バイパス回路形成され、第
3の電源と第2の電源の間に第2の電流バイパス回路形
成され第1の電源と第2の電源の間に第3の電源に対す
る基準電位発生回路が形成され、第3の電源の電圧が基
準電圧よりも高い場合には第2の電流バイパス回路の電
流が増加し、逆に第3の電源の電圧が基準電圧よりも低
い場合には第1の電流バイパス回路の電流が増加する制
御回路が設けられていることを特徴とする半導体集積回
路。
(3) In a semiconductor integrated circuit configured using field effect transistors formed on a compound semiconductor substrate,
A first power supply and a second power supply having a lower potential than the first power supply are supplied from outside the semiconductor integrated circuit, and have a voltage between the voltage of the first power supply and the voltage of the second power supply. A virtual third power source not connected to the first power source is formed, and logic circuits are configured between the first power source and the third power source and between the third power source and the second power source, respectively. A first current bypass circuit is formed between the first power supply and the third power supply, a second current bypass circuit is formed between the third power supply and the second power supply, and the second current bypass circuit is formed between the first power supply and the second power supply. A reference potential generation circuit for a third power supply is formed in between, and when the voltage of the third power supply is higher than the reference voltage, the current of the second current bypass circuit increases, and conversely, the voltage of the third power supply increases. 1. A semiconductor integrated circuit comprising: a control circuit that increases the current of the first current bypass circuit when the voltage is lower than a reference voltage.
JP1153366A 1989-06-15 1989-06-15 Semiconductor integrated circuit Pending JPH0319422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1153366A JPH0319422A (en) 1989-06-15 1989-06-15 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1153366A JPH0319422A (en) 1989-06-15 1989-06-15 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH0319422A true JPH0319422A (en) 1991-01-28

Family

ID=15560883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1153366A Pending JPH0319422A (en) 1989-06-15 1989-06-15 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH0319422A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04315313A (en) * 1991-04-15 1992-11-06 Nec Corp Semiconductor integrated circuit
US5909128A (en) * 1996-03-22 1999-06-01 Nec Corporation FETs logic circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59117327A (en) * 1982-12-23 1984-07-06 Toshiba Corp Logical circuit
JPS59135520A (en) * 1983-01-25 1984-08-03 Seiko Epson Corp Constant voltage circuit
JPH01120123A (en) * 1987-11-02 1989-05-12 Toshiba Corp Input circuit for semiconductor integrated circuit
JPH01157121A (en) * 1987-09-29 1989-06-20 Toshiba Corp Logic circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59117327A (en) * 1982-12-23 1984-07-06 Toshiba Corp Logical circuit
JPS59135520A (en) * 1983-01-25 1984-08-03 Seiko Epson Corp Constant voltage circuit
JPH01157121A (en) * 1987-09-29 1989-06-20 Toshiba Corp Logic circuit
JPH01120123A (en) * 1987-11-02 1989-05-12 Toshiba Corp Input circuit for semiconductor integrated circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04315313A (en) * 1991-04-15 1992-11-06 Nec Corp Semiconductor integrated circuit
US5909128A (en) * 1996-03-22 1999-06-01 Nec Corporation FETs logic circuit

Similar Documents

Publication Publication Date Title
US6597220B2 (en) Semiconductor integrated circuit device and microcomputer
US4042839A (en) Low power dissipation combined enhancement depletion switching driver circuit
JP2000134067A (en) Low voltage and low jitter voltage controlled oscillator
US6806692B2 (en) Voltage down converter
JP2003504911A (en) Method and circuit for high speed buffering of clock signals
EP0055341B1 (en) Current controlled gate
JPH0319422A (en) Semiconductor integrated circuit
US6181182B1 (en) Circuit and method for a high gain, low input capacitance clock buffer
US4357547A (en) EFL Toggle flip-flop
JP3120492B2 (en) Semiconductor integrated circuit
US5726591A (en) MESFET logic device with clamped output drive capacity and low power
JPH0437217A (en) Logic level conversion circuit
US5745000A (en) CMOS low voltage current reference
US6437603B2 (en) Semiconductor integrated circuit having logical operation function
JPS60236322A (en) Mos transistor circuit
JPS62276921A (en) Driver circuit
JPH11150449A (en) Hysteresis input circuit
JPS61125223A (en) Logical circuit
JPS63132527A (en) Cmos logic circuit
JPS6356016A (en) Logic circuit
JPS587853A (en) Semiconductor integrated circuit
JPH0774620A (en) Buffer circuit
JPS6262061B2 (en)
JPS59208941A (en) Mos integrated circuit device
JPH01175319A (en) Logic circuit