JPH03191569A - Manufacture of semiconductor memory - Google Patents

Manufacture of semiconductor memory

Info

Publication number
JPH03191569A
JPH03191569A JP1331548A JP33154889A JPH03191569A JP H03191569 A JPH03191569 A JP H03191569A JP 1331548 A JP1331548 A JP 1331548A JP 33154889 A JP33154889 A JP 33154889A JP H03191569 A JPH03191569 A JP H03191569A
Authority
JP
Japan
Prior art keywords
film
memory cell
peripheral circuit
insulating film
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1331548A
Other languages
Japanese (ja)
Other versions
JP2932549B2 (en
Inventor
Hideaki Kuroda
英明 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP1331548A priority Critical patent/JP2932549B2/en
Publication of JPH03191569A publication Critical patent/JPH03191569A/en
Application granted granted Critical
Publication of JP2932549B2 publication Critical patent/JP2932549B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/09Manufacture or treatment with simultaneous manufacture of the peripheral circuit region and memory cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/50Peripheral circuit region structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To obtain a semiconductor memory whose junction leak is small and whose data retention characteristic is excellent by a method wherein, when an insulating film is left on a sidewall of a gate electrode of a MOS transistor in a peripheral circuit part, the insulating film in a memory cell part is not etched. CONSTITUTION:A gate electrode 16 of a MOS transistor is formed on a memory cell part 14 and a peripheral circuit part 15; after that, the memory cell part 14 and the peripheral circuit part 15 are covered with an insulating film 18; the insulating film 18 on the peripheral circuit part 15 is etched selectively; and the insulating film 18 is left on sidewalls of the gate electrode 16 in the peripheral circuit part 15. Since the insulating film 18 on the memory cell part 14 is not etched in this case, a semiconductor substrate 11 in the memory cell part 14 is not damaged. Since ions of impurities 23 are not implanted, a crystal defect is hard to produce in the semiconductor substrate 11 in the memory cell part 14. Thereby, it is possible to obtain a semiconductor memory whose junction leak is small and whose data retention characteristic is excellent.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本願の発明は、メモリセル部と周辺回路部とを有してお
り、これらのメモリセル部と周辺回路部とがMOSトラ
ンジスタを有している半導体メモリの製造方法に関する
ものである。
[Detailed Description of the Invention] [Industrial Application Field] The invention of the present application has a memory cell section and a peripheral circuit section, and the memory cell section and the peripheral circuit section have MOS transistors. The present invention relates to a method for manufacturing a semiconductor memory.

〔発明の概要〕[Summary of the invention]

請求項1の発明は、上記の様な半導体メモリの製造方法
において、周辺回路部のMOSトランジスタのゲート電
極の側壁に絶縁膜を残す際にメモリセル部の絶縁膜はエ
ツチングしない様にすることによって、接合リークが少
なくデータ保持特性の優れた半導体メモリを製造するこ
とができる様にしたものである。
The invention according to claim 1 is a method for manufacturing a semiconductor memory as described above, in which the insulating film in the memory cell part is not etched when leaving the insulating film on the side wall of the gate electrode of the MOS transistor in the peripheral circuit part. This makes it possible to manufacture a semiconductor memory with less junction leakage and excellent data retention characteristics.

請求項2の発明は、上記の様な半導体メモリの製造方法
において、MOSトランジスタのゲート電極の側壁に残
すための絶縁膜をメモリセル部では21Iに形成するこ
とによって、接合リークが少なくデータ保持特性の優れ
た半導体メモリを製造することができる様にしたもので
ある。
The invention as claimed in claim 2 provides a semiconductor memory manufacturing method as described above, in which an insulating film to be left on the side wall of the gate electrode of the MOS transistor is formed at 21I in the memory cell portion, thereby reducing junction leakage and improving data retention characteristics. This makes it possible to manufacture an excellent semiconductor memory.

〔従来の技術〕[Conventional technology]

MOSトランジスタの微細化に伴うホットキャリア対策
の一つとして、LDD構造が採用されている。
As one measure against hot carriers associated with miniaturization of MOS transistors, an LDD structure has been adopted.

LDD構造のMOSトランジスタを形成する場合、従来
は、ゲート電極をパターニングした後、不純物を低濃度
にイオン注入し、更にCVD法によって5i(h膜を堆
積させ、全面RIEを行ってゲート電極の側壁に5iO
1膜のスペーサを形成していた。
When forming a MOS transistor with an LDD structure, conventionally, after patterning the gate electrode, impurity ions are implanted at a low concentration, a 5i (h film) is deposited by CVD, and RIE is performed on the entire surface to form the sidewalls of the gate electrode. 5 iO
One film of spacers was formed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、SiOっ膜の異方性エツチングはSi基板に
損傷を与え易い。特に半導体メモリでは、周辺回路部よ
りもメモリセル部でゲート電極の密度が高いので、堆積
させたSin、膜がメモリセル部で薄くなり易い。この
ため、Sin、膜の全面RIEにメモリセル部のSi基
板がオーバエツチングされ、Si基板の損傷量も多くな
る。
However, anisotropic etching of a SiO film tends to damage the Si substrate. Particularly in semiconductor memories, the density of gate electrodes is higher in the memory cell part than in the peripheral circuit part, so the deposited Si film tends to become thinner in the memory cell part. For this reason, the Si substrate in the memory cell portion is overetched by RIE of the entire surface of the Si film, and the amount of damage to the Si substrate increases.

従って、接合リークの原因になる結晶欠陥が特にメモリ
セル部で誘起され易く、データ保持特性の優れた半導体
メモリを製造することができなかった。
Therefore, crystal defects that cause junction leakage are particularly likely to be induced in the memory cell portion, making it impossible to manufacture a semiconductor memory with excellent data retention characteristics.

一方、メモリセル部でのオーバエツチング量を減らすと
、ゲート電極の密度が低いためにSin、膜が厚く堆積
した周辺回路部でこのSin、膜が残ってしまう。この
結果、その後に不純物を高濃度にイオン注入しても、こ
の不純物は周辺回路部のSi基板中へ注入されないとい
う問題が生じる。
On the other hand, if the amount of overetching in the memory cell area is reduced, the Sin film will remain in the peripheral circuit area where the Si film is thickly deposited due to the low density of the gate electrode. As a result, a problem arises in that even if impurities are subsequently ion-implanted at a high concentration, the impurities are not implanted into the Si substrate in the peripheral circuit section.

〔問題点を解決するための手段〕[Means for solving problems]

請求項1の半導体メモリの製造方法は、メモリセル部1
4と周辺回路部15とにMOSトランジスタのゲート電
極16を形成する工程と、前記ゲート電極16を形成し
た後に前記メモリセル部14と前記周辺回路部15とを
絶縁膜18で覆う工程と、前記周辺回路部15の前記絶
縁膜18を選択的にエツチングしてこの周辺回路部15
の前記ゲート電極16の側壁に前記絶縁[18を残す工
程とを夫々具備している。
The method for manufacturing a semiconductor memory according to claim 1 includes a memory cell portion 1.
4 and the peripheral circuit section 15; a step of covering the memory cell section 14 and the peripheral circuit section 15 with an insulating film 18 after forming the gate electrode 16; The insulating film 18 of the peripheral circuit section 15 is selectively etched to form the peripheral circuit section 15.
and a step of leaving the insulation [18] on the sidewalls of the gate electrodes 16, respectively.

請求項2の半導体メモリの製造方法は、メモリセル部1
4と周辺回路部15とにMOSトランジスタのゲート電
極16を形成する工程と、前記ゲート電極I6を形成し
た後に前記メモリセル部I4と前記周辺回路部15とを
第1の絶縁膜18で覆う工程と、前記メモリセル部14
の前記第1の絶縁膜I8を第2の絶縁膜26で覆う工程
と、前記第1及び第2の絶縁膜18.26をエツチング
して前記ゲート電極16の側壁に少なくとも前記第1の
絶縁膜18を残す工程とを夫々具備している。
A method for manufacturing a semiconductor memory according to a second aspect of the present invention provides a method for manufacturing a semiconductor memory in which a memory cell portion 1
4 and the peripheral circuit section 15, and a step of covering the memory cell section I4 and the peripheral circuit section 15 with a first insulating film 18 after forming the gate electrode I6. and the memory cell section 14
a step of covering the first insulating film I8 with a second insulating film 26, and etching the first and second insulating films 18, 26 to form at least the first insulating film on the sidewalls of the gate electrode 16. 18 remaining steps.

〔作用〕[Effect]

請求項1の半導体メモリの製造方法では、周辺回路部1
5のMOSトランジスタのゲート電極16の側壁に絶縁
膜18を残す際にメモリセル部14の絶縁膜18はエツ
チングしないので、この時にメモリセル部14の半導体
基板11が損傷を受けない。
In the method for manufacturing a semiconductor memory according to claim 1, the peripheral circuit section 1
Since the insulating film 18 of the memory cell section 14 is not etched when leaving the insulating film 18 on the side wall of the gate electrode 16 of the MOS transistor No. 5, the semiconductor substrate 11 of the memory cell section 14 is not damaged at this time.

また、メモリセル部14には絶縁膜18が残るので、周
辺回路部15のゲート電極16の側壁に残した絶縁膜1
8等をマスクにして半導体基板ll中へ不純物23を高
濃度にイオン注入する際にも、メモリセル部14では不
純物23はイオン注入されない。従って、このイオン注
入を行っても、メモリセル部14の半導体基板11に結
晶欠陥が生じにくい。
Furthermore, since the insulating film 18 remains in the memory cell section 14, the insulating film 18 left on the side wall of the gate electrode 16 in the peripheral circuit section 15
Even when the impurity 23 is ion-implanted into the semiconductor substrate 11 at a high concentration using the mask 8 and the like, the impurity 23 is not ion-implanted into the memory cell portion 14. Therefore, even if this ion implantation is performed, crystal defects are unlikely to occur in the semiconductor substrate 11 of the memory cell portion 14.

請求項2の半導体メモリの製造方法では、メモリセル部
14において第1の絶縁膜18を更に第2の絶縁膜2G
で覆っているので、MO5I−ランジスタのゲート電極
16の側壁に少なくとも第1の絶縁膜18を残す際にこ
の第1の絶縁膜18をメモリセル部14の全面に残すこ
とが可能であり、請求項1の半導体メモリの製造方法と
同様の作用を奏することが可能である。
In the semiconductor memory manufacturing method according to the second aspect, in the memory cell portion 14, the first insulating film 18 is further replaced with a second insulating film 2G.
Since it is covered with It is possible to achieve the same effect as in the semiconductor memory manufacturing method of item 1.

また、ゲート電極16の側壁に少なくとも第1の絶縁膜
18を残す際にメモリセル部14の半導体基板11のオ
ーバエツチングを防止して、メモリセル部14の半導体
基板11が受ける損傷を軽減することもできる。
Further, when leaving at least the first insulating film 18 on the sidewalls of the gate electrode 16, over-etching of the semiconductor substrate 11 of the memory cell section 14 is prevented, thereby reducing damage to the semiconductor substrate 11 of the memory cell section 14. You can also do it.

〔実施例〕〔Example〕

以下、本願の発明の第1〜第4実施例を、第1図〜第6
図を参照しながら説明する。
Hereinafter, the first to fourth embodiments of the invention of the present application will be explained in Figs. 1 to 6.
This will be explained with reference to the figures.

第1図は、MOS−DRAMの製造に適用した第1実施
例を示している。この第1実施例では、第1A図に示す
様に、St基板11にLOCO3法等で素子分離用の5
iOt膜12を形成した後、ゲート絶縁膜であるSin
g膜13膜形3する。
FIG. 1 shows a first embodiment applied to the manufacture of MOS-DRAM. In this first embodiment, as shown in FIG. 1A, the St substrate 11 has five
After forming the iOt film 12, a gate insulating film of Sin
G membrane 13 membrane type 3.

そして、メモリセル部14と周辺回路部15とにポリサ
イド構造のゲート電極16をパターニングした後、この
ゲート電極16とSing膜12とをマスクにしてN型
の不純物17をSi基板ll中へ低濃度にイオン注入す
る。
After patterning a gate electrode 16 having a polycide structure in the memory cell section 14 and the peripheral circuit section 15, an N-type impurity 17 is injected into the Si substrate 11 at a low concentration using the gate electrode 16 and the Sing film 12 as a mask. ion implantation.

次に、第1B図に示す様に、CVD法によって5iOz
膜18を堆積させる。この時、既述の様に、メモリセル
部14のSin、膜18は周辺回路部15のSing膜
18よりも薄い。
Next, as shown in Figure 1B, 5iOz
A film 18 is deposited. At this time, as described above, the Sing film 18 of the memory cell section 14 is thinner than the Sing film 18 of the peripheral circuit section 15.

なお、SiO□膜18よりも、PSG膜や5iOt/P
SG/SiO□の三層膜の方が、低応力である点で好ま
しい。三層膜の上下のSin、膜はPhosの拡散防止
膜である。その後、メモリセル部14をレジスト21で
覆う。
Note that, rather than the SiO□ film 18, the PSG film or 5iOt/P
A three-layer film of SG/SiO□ is preferable in terms of low stress. The Sin and upper films above and below the three-layer film are Phos diffusion prevention films. Thereafter, the memory cell portion 14 is covered with a resist 21.

次に、レジスト21をマスクにしてsto、WAl 8
に対するRIEを行うことによって、第1C図に示す様
に、周辺回路部15では、ゲート電極16の側壁スペー
サとしてs;o、JIl! I 8を残す。なお、メモ
リセル部14に残したS+0□膜18は層間絶縁膜にす
る。その後、レジスト21を除去する。
Next, using the resist 21 as a mask, sto, WAl 8
As shown in FIG. 1C, as shown in FIG. 1C, in the peripheral circuit section 15, s;o, JIl! I leave 8. Note that the S+0□ film 18 left in the memory cell portion 14 is made into an interlayer insulating film. After that, the resist 21 is removed.

そして、CVD法かまたは熱酸化によって、周辺回路部
15のSt基板11の表面に薄いSin!膜22全22
する。その後、この状態でN型の不純物23であるA 
Sl イオンをNチャネル領域のSi基板ll中へ高濃
度にイオン注入する。
Then, by CVD method or thermal oxidation, a thin Sin! Membrane 22 total 22
do. Then, in this state, A, which is the N-type impurity 23,
Sl ions are implanted at a high concentration into the Si substrate 11 in the N channel region.

すると、周辺回路部15では、ゲート電極16とその側
壁スペーサであるSiO□膜18とがマスクになって不
純物23がSi基Fill中へイオン注入される。しか
し、メモリセル部14では、5t02膜工8が眉間絶縁
膜として全面に存在しているので、不純物23はSi基
板ll中へイオン注入されない。
Then, in the peripheral circuit section 15, the impurity 23 is ion-implanted into the Si-based fill using the gate electrode 16 and the SiO□ film 18 as its sidewall spacer as a mask. However, in the memory cell section 14, since the 5t02 film 8 is present on the entire surface as an insulating film between the eyebrows, the impurity 23 is not ion-implanted into the Si substrate 11.

次に、第1D図に示す様に、メモリセル部14のSin
、膜18にコンタクト孔24を開孔し、記憶ノード25
、誘電体膜(図示せず)、プレート電8i(図示せず)
、ビン!−1(図示せず)を順次に形成して、MOS−
DRAMを完成させる。
Next, as shown in FIG. 1D, the sin of the memory cell section 14 is
, a contact hole 24 is opened in the membrane 18, and a storage node 25 is formed.
, dielectric film (not shown), plate electrode 8i (not shown)
,bottle! -1 (not shown) are sequentially formed to form MOS-1 (not shown).
Complete DRAM.

以上の様な第1実施例では、メモリセル部14にN″領
域形成されないが、転送用のMOSトランジスタの能力
には大きな影響はない。
In the first embodiment as described above, although the N'' region is not formed in the memory cell portion 14, it does not have a large effect on the performance of the transfer MOS transistor.

第2図は、MOS−DRAMの製造に適用した第2実施
例を示している。この第2実施例でも、第2A図に示す
様に、SiOア膜18の堆積までは上述の第1実施例と
同様に行う。
FIG. 2 shows a second embodiment applied to the manufacture of MOS-DRAM. In this second embodiment as well, as shown in FIG. 2A, the steps up to the deposition of the SiO film 18 are carried out in the same manner as in the above-described first embodiment.

次に、第2B図に示す様に、減圧CVD法かまたはプラ
ズマCVD法によって、数百人の厚さのSiN膜26を
Sing膜18上に堆積させる。
Next, as shown in FIG. 2B, a SiN film 26 with a thickness of several hundred layers is deposited on the Sing film 18 by low pressure CVD or plasma CVD.

そして、メモリセル部14をレジスト21で覆い、この
レジスト21をマスクにして周辺回路部15の5tNj
1%26をエツチングする。このときのエツチングガス
としては、Sing膜18とSiN膜26とに対しであ
る程度の選択性を得ることができるSF、系のガスが好
ましい。
Then, the memory cell section 14 is covered with a resist 21, and using this resist 21 as a mask, the peripheral circuit section 15 is
Etch 1%26. As the etching gas at this time, it is preferable to use SF gas, which can provide a certain degree of selectivity between the Sing film 18 and the SiN film 26.

次に、第2C図に示す様に、レジスト21を除去し、S
iN膜26及び5tyx膜18に対する全面RIEを行
うことによって、周辺回路部15ではゲ−ト電極16の
側壁スペーサとしてSin、膜18を残し、メモリセル
部14ではゲート電極16の側壁スペーサとしてのみな
らずメモリセル部14の全面に5in2膜18を残す。
Next, as shown in FIG. 2C, the resist 21 is removed and the S
By performing RIE on the entire surface of the iN film 26 and the 5tyx film 18, the Sin film 18 is left as a sidewall spacer for the gate electrode 16 in the peripheral circuit section 15, and the Sin film 18 is left as a sidewall spacer for the gate electrode 16 in the memory cell section 14. First, a 5in2 film 18 is left on the entire surface of the memory cell section 14.

なお、SiN膜26の膜厚とSiN膜26及びSin。Note that the thickness of the SiN film 26 and the SiN film 26 and Sin.

膜18に対するRIE条件とを適当に選択することによ
って、メモリセル部14と周辺回路部15とで5in2
膜18のエツチングを同時に終了させ、メモリセル部1
4も周辺回路部15もオーバエツチングされ過ぎない様
にすることもできる。
By appropriately selecting the RIE conditions for the film 18, the memory cell section 14 and the peripheral circuit section 15 can be
At the same time, the etching of the film 18 is completed, and the memory cell portion 1 is etched.
4 and the peripheral circuit section 15 can also be prevented from being overetched too much.

その後は、上述の第1実施例における第1c図以降の工
程を行う。
Thereafter, the steps from FIG. 1c onward in the first embodiment described above are performed.

以上の様な第2実施例では、5i02膜18をメモリセ
ル部14の全面に残せば第1実施例と同様の作用効果を
奏することができ、またSi基板11のオーバエツチン
グを防止するだけでも少なくともSi基板11の受ける
損傷を軽減することができる。
In the second embodiment as described above, if the 5i02 film 18 is left on the entire surface of the memory cell section 14, the same effect as in the first embodiment can be achieved, and the over-etching of the Si substrate 11 can also be prevented. At least damage to the Si substrate 11 can be reduced.

ところで、第1図及び第2図に示したゲート電極16の
様なポリサイド配線とAl配線とのコンタクトは、従来
は、第3図に示す様に行われてぃた。
Incidentally, contact between a polycide wiring such as the gate electrode 16 shown in FIGS. 1 and 2 and an Al wiring has conventionally been made as shown in FIG. 3.

即ち、第3A図に示す様に、層間絶縁膜27上等でパタ
ーニングされており不純物を添加された多結晶Si膜2
8と−Six膜31等とから成っているポリサイド配線
32上に、眉間絶縁膜であるSin。
That is, as shown in FIG. 3A, a polycrystalline Si film 2 is patterned and doped with impurities on an interlayer insulating film 27, etc.
On the polycide wiring 32 consisting of the 8 and -Six films 31 and the like, there is a sin insulating film between the eyebrows.

膜33と不純物拡散防止膜であるSiN膜34とを堆積
させ、更に、As5G膜やBPSGII!の様な低融点
ガラス膜35を堆積させる。
A film 33 and a SiN film 34 which is an impurity diffusion prevention film are deposited, and then an As5G film or a BPSGII! film is deposited. A low melting point glass film 35 such as the following is deposited.

次に、第3B図に示す様に、ポリサイド配線32に達す
るコンタクト孔36を開孔し、低融点ガラス膜35をフ
ローさせた後に、Al配線(第4図の37)をパターニ
ングする。
Next, as shown in FIG. 3B, a contact hole 36 reaching the polycide wiring 32 is opened, and after the low melting point glass film 35 is allowed to flow, the Al wiring (37 in FIG. 4) is patterned.

しかし現実には、低温CVDで形成したーSix膜31
は、低融点ガラス膜35のフロー時に、第4図に示す様
に、コンタクト孔36部で多結晶Si膜28から剥離す
る。このため、AP配線37とポリサイド配線32とが
良好にコンタクトされないという不良が発生する。
However, in reality, the -Six film 31 was formed by low-temperature CVD.
When the low melting point glass film 35 flows, it is peeled off from the polycrystalline Si film 28 at the contact hole 36 portion, as shown in FIG. Therefore, a defect occurs in that the AP wiring 37 and the polycide wiring 32 are not in good contact with each other.

第5図は、Al配線とポリサイド配線とのコンタクトを
行う第3実施例を示している。この第3実施例では、多
結晶Si膜28と同ix膜31と導電性の多結晶膜38
との三層膜でポリサイド配線32を形成する。
FIG. 5 shows a third embodiment in which contact is made between an Al wiring and a polycide wiring. In this third embodiment, a polycrystalline Si film 28, an ix film 31, and a conductive polycrystalline film 38 are used.
A polycide wiring 32 is formed with a three-layer film.

多結晶膜38の材料としては、CVD法で形成した多結
晶Stや、スパッタリング法で形成した多結晶Siや、
TiN 、 WN、 Ti5iz 、 WSiz、MO
S i z等の高融点金属またはそのシリサイド等を用
いることができる。
As the material of the polycrystalline film 38, polycrystalline St formed by CVD method, polycrystalline Si formed by sputtering method,
TiN, WN, Ti5iz, WSiz, MO
A high melting point metal such as S i z or a silicide thereof can be used.

その後、第5B図に示す様に、コンタクト孔36の開孔
までは第3図及び第4図の場合と略同様に行う。この第
3実施例では、SiN膜34を用いていないが、このS
iN膜34を用いてもよい。
Thereafter, as shown in FIG. 5B, the process up to the opening of the contact hole 36 is performed in substantially the same manner as in FIGS. 3 and 4. In this third embodiment, the SiN film 34 is not used, but the S
An iN film 34 may also be used.

次に、0□雰囲気中で900℃程度の熱処理を行って低
融点ガラス膜35をフローさせた後、AZ配線(第4図
の37)をパターニングする。
Next, heat treatment is performed at about 900° C. in a 0□ atmosphere to cause the low melting point glass film 35 to flow, and then the AZ wiring (37 in FIG. 4) is patterned.

以上の様な第3実施例では、低融点ガラス膜35をフロ
ーさせるための熱処理時に、WSix膜31上に多結晶
M38が存在しているので、WSix膜31が多結晶S
i膜28から剥離するのが防止される。
In the third embodiment as described above, since the polycrystalline M38 is present on the WSix film 31 during the heat treatment for causing the low melting point glass film 35 to flow, the WSix film 31 is made of polycrystalline S.
Peeling off from the i-film 28 is prevented.

従って、へl配線とポリサイド配線32とが良好にコン
タクトされる。
Therefore, the contact between the F1 wiring and the polycide wiring 32 is good.

しかも、低融点ガラス膜35のフローを0!雰囲気中で
行っているので、Al配線とコンタクトされるべき領域
の表面が酸化され、低融点ガラス膜35からのPhos
等のオートドーピングが防止される。
Moreover, the flow of the low melting point glass film 35 is 0! Since the process is carried out in an atmosphere, the surface of the area to be contacted with the Al wiring is oxidized, and Phos from the low melting point glass film 35 is oxidized.
Autodoping such as the following is prevented.

このため、A1配線とコンタクトされるべき領域がP゛
拡散層であっても、このP゛拡散層の不純物濃度が低下
しない。従って、Al配線とP゛拡散層とのコンタクト
不良も防止される。
Therefore, even if the region to be contacted with the A1 wiring is a P' diffusion layer, the impurity concentration of this P' diffusion layer does not decrease. Therefore, poor contact between the Al wiring and the P diffusion layer is also prevented.

第6図は、Al配線と半導体基板中のP゛拡散層とのコ
ンタクトを行う第4実施例を示している。
FIG. 6 shows a fourth embodiment in which contact is made between the Al wiring and the P diffusion layer in the semiconductor substrate.

この第4実施例では、第6A図に示す様に、Si基板1
1に素子分離用のSin、膜12等を形成した後、ポロ
ンをイオン注入してP゛拡散層41を形成する。
In this fourth embodiment, as shown in FIG. 6A, a Si substrate 1
After forming a Si film 12 and the like for element isolation on the substrate 1, poron ions are implanted to form a P diffusion layer 41.

P1拡散1i41以外の領域ではAI!配線37の下層
に何層かの配線を形成するので、第6B図に示す様に、
それらの層間絶縁膜42はP゛拡散層41上にも形成さ
れる。
AI in areas other than P1 diffusion 1i41! Since several layers of wiring are formed below the wiring 37, as shown in FIG. 6B,
These interlayer insulating films 42 are also formed on the P' diffusion layer 41.

その後、眉間絶縁膜42上に薄い多結晶Si膜43を堆
積させ、Al配線37用のコンタクト孔36を開孔すべ
き部分に残す様に多結晶Si膜43をパターニングする
After that, a thin polycrystalline Si film 43 is deposited on the glabellar insulating film 42, and the polycrystalline Si film 43 is patterned so as to leave the contact hole 36 for the Al wiring 37 where it is to be formed.

但し、Al配線37用の総てのコンタクト孔36の部分
に多結晶Si膜43を残す必要はなく、P°拡散層4I
上のみでもよい。なお、多結晶Si膜43のパターニン
グは集積度を低下させることはない。
However, it is not necessary to leave the polycrystalline Si film 43 in all the contact holes 36 for the Al wiring 37, and the P° diffusion layer 4I
You can also use only the top. Note that patterning of the polycrystalline Si film 43 does not reduce the degree of integration.

その後、SiO□膜44膜化4させ、更にBPSG膜4
5全4500Å以上の厚さに堆積させる。なお、SiO
□膜44膜化4にSiN膜を用いてもよい。
After that, a SiO□ film 44 is formed, and then a BPSG film 4 is formed.
5. Deposit to a total thickness of 4500 Å or more. In addition, SiO
□SiN film may be used for film formation 4.

そして、レジスト(図示せず)をマスクにしてBPSG
膜45全45n2膜44とをコンタクト孔36のパター
ンにエツチングする。このエツチングは、第6B図に示
す様に、多結晶Si膜43で停止させることができる。
Then, using a resist (not shown) as a mask, BPSG
The entire film 45 and the 45n2 film 44 are etched into a pattern of contact holes 36. This etching can be stopped at the polycrystalline Si film 43, as shown in FIG. 6B.

その後、上記のレジストをそのままマスクにして多結晶
Si膜43をエツチングし、レジストを剥離してからB
PSG膜45全45−させる。
Thereafter, the polycrystalline Si film 43 is etched using the above resist as a mask, the resist is peeled off, and then B
The entire PSG film 45 is made 45-.

従って、5i(bとのエンチング選択比が所定の値以上
で且つBPSG膜45全45−温度である900℃程度
の高温熱処理に耐える材料であれば、この材料で形成し
た膜を多結晶Si膜43の代りに用いることができる。
Therefore, if the material has an etching selectivity with 5i(b) of a predetermined value or more and can withstand high-temperature heat treatment of approximately 900°C, which is the total 45-temperature of the BPSG film 45, a film formed using this material can be used as a polycrystalline Si film. It can be used instead of 43.

なお、[’5Gll 45のフローを行う前に、眉間絶
縁膜42をエツチングしてこの層間絶縁膜42をなるべ
く薄クシておいてもよい。
Incidentally, before carrying out the flow of ['5Gll 45], the glabellar insulating film 42 may be etched to make the interlayer insulating film 42 as thin as possible.

次に、全面エッチバンクを行って、第6C図に示す様に
コンタクト孔36を開孔し、更にAI配線37をパター
ニングする。
Next, the entire surface is etched to form a contact hole 36 as shown in FIG. 6C, and an AI wiring 37 is further patterned.

以上の様な第4実施例では、BPSG膜45全45−時
にはP゛拡散層41上に眉間絶縁1!!42が存在して
いるので、BPSG膜45中のPhosがP゛拡散層4
1中ヘオートドーピングされない。
In the fourth embodiment as described above, the entire BPSG film 45 is insulated between the eyebrows on the P diffusion layer 41. ! 42, Phos in the BPSG film 45 becomes P' diffusion layer 4.
No autodoping during 1.

また、図外の領域でパターニングされているポリサイド
配線上にも眉間絶縁膜42が存在しているので、このポ
リサイド配線に対するコンタクト孔36内でのシリサイ
ド膜の剥離が生じない。
Further, since the glabellar insulating film 42 is also present on the polycide wiring patterned in a region not shown, the silicide film does not peel off within the contact hole 36 for the polycide wiring.

〔発明の効果〕〔Effect of the invention〕

請求項1の半導体メモリの製造方法では、メモリセル部
の半導体基板が損傷を受けず結晶欠陥も生じにくいので
、接合リークが少なくデータ保持特性の優れた半導体メ
モリを製造することができる。
In the method for manufacturing a semiconductor memory according to the first aspect, since the semiconductor substrate in the memory cell portion is not damaged and crystal defects are less likely to occur, it is possible to manufacture a semiconductor memory with less junction leakage and excellent data retention characteristics.

請求項2の半導体メモリの製造方法では、メモリセル部
の半導体基板が損傷を受けないかまたは受ける損傷を軽
減することが可能であり結晶欠陥も生じにくいので、接
合リークが少な(データ保持特性の優れた半導体メモリ
を製造することができる。
In the method for manufacturing a semiconductor memory according to claim 2, the semiconductor substrate in the memory cell portion is not damaged or can reduce damage, and crystal defects are less likely to occur, so that junction leakage is reduced (data retention characteristics are improved). Excellent semiconductor memory can be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本願の発明の夫々第1及び第2実施
例を順次に示す側断面図、第3図は望ましいコンタクト
形成工程を順次に示す側断面図、第4図は従来の方法で
現実に形成されたコンタクトの側断面図、第5図及び第
6図は本願の発明の夫々第3及び第4実施例を順次に示
す側断面図である。 なお図面に用いられている符号において、メモリセル部 周辺回路部 ゲート電極 SiO□膜 6 tN 膜 である。 代 理 人 土 屋 勝 第3A図 第3B図 コンタクト 第4図 コンタクト形成工程 第5A図 第5B図
1 and 2 are side sectional views sequentially showing first and second embodiments of the invention of the present application, FIG. 3 is a side sectional view sequentially showing a desirable contact forming process, and FIG. 4 is a conventional FIGS. 5 and 6 are side sectional views of contacts actually formed by this method, respectively, showing third and fourth embodiments of the present invention in sequence. Note that the reference numerals used in the drawings indicate the memory cell portion peripheral circuit portion gate electrode SiO□ film 6 tN film. Agent Masaru Tsuchiya Figure 3A Figure 3B Contact Figure 4 Contact formation process Figure 5A Figure 5B

Claims (1)

【特許請求の範囲】 1、メモリセル部と周辺回路部とを有しており、これら
のメモリセル部と周辺回路部とがMOSトランジスタを
有している半導体メモリの製造方法において、 前記メモリセル部と前記周辺回路部とに前記MOSトラ
ンジスタのゲート電極を形成する工程と、前記ゲート電
極を形成した後に前記メモリセル部と前記周辺回路部と
を絶縁膜で覆う工程と、前記周辺回路部の前記絶縁膜を
選択的にエッチングしてこの周辺回路部の前記ゲート電
極の側壁に前記絶縁膜を残す工程とを夫々具備する半導
体メモリの製造方法。 2、メモリセル部と周辺回路部とを有しており、これら
のメモリセル部と周辺回路部とがMOSトランジスタを
有している半導体メモリの製造方法において、 前記メモリセル部と前記周辺回路部とに前記MOSトラ
ンジスタのゲート電極を形成する工程と、前記ゲート電
極を形成した後に前記メモリセル部と前記周辺回路部と
を第1の絶縁膜で覆う工程と、 前記メモリセル部の前記第1の絶縁膜を第2の絶縁膜で
覆う工程と、 前記第1及び第2の絶縁膜をエッチングして前記ゲート
電極の側壁に少なくとも前記第1の絶縁膜を残す工程と
を夫々具備する半導体メモリの製造方法。
[Scope of Claims] 1. A method for manufacturing a semiconductor memory having a memory cell portion and a peripheral circuit portion, the memory cell portion and the peripheral circuit portion each having a MOS transistor, comprising: forming a gate electrode of the MOS transistor in the peripheral circuit section and the peripheral circuit section; a step of covering the memory cell section and the peripheral circuit section with an insulating film after forming the gate electrode; and selectively etching the insulating film to leave the insulating film on a sidewall of the gate electrode in the peripheral circuit section. 2. A method for manufacturing a semiconductor memory having a memory cell section and a peripheral circuit section, the memory cell section and the peripheral circuit section each having a MOS transistor, wherein the memory cell section and the peripheral circuit section a step of forming a gate electrode of the MOS transistor in the MOS transistor; a step of covering the memory cell portion and the peripheral circuit portion with a first insulating film after forming the gate electrode; A semiconductor memory comprising the steps of: covering an insulating film with a second insulating film; and etching the first and second insulating films to leave at least the first insulating film on the sidewalls of the gate electrode. manufacturing method.
JP1331548A 1989-12-21 1989-12-21 Method for manufacturing semiconductor memory Expired - Fee Related JP2932549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1331548A JP2932549B2 (en) 1989-12-21 1989-12-21 Method for manufacturing semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1331548A JP2932549B2 (en) 1989-12-21 1989-12-21 Method for manufacturing semiconductor memory

Publications (2)

Publication Number Publication Date
JPH03191569A true JPH03191569A (en) 1991-08-21
JP2932549B2 JP2932549B2 (en) 1999-08-09

Family

ID=18244901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1331548A Expired - Fee Related JP2932549B2 (en) 1989-12-21 1989-12-21 Method for manufacturing semiconductor memory

Country Status (1)

Country Link
JP (1) JP2932549B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04134859A (en) * 1990-09-27 1992-05-08 Nec Corp Semiconductor memory device and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04134859A (en) * 1990-09-27 1992-05-08 Nec Corp Semiconductor memory device and its manufacture

Also Published As

Publication number Publication date
JP2932549B2 (en) 1999-08-09

Similar Documents

Publication Publication Date Title
US8580666B2 (en) Methods of forming conductive contacts
TW451460B (en) Semiconductor integrated circuit device and method for making the same
JPH04211134A (en) Self-aligned contact and interconnection constitution body
JP3102405B2 (en) Method for manufacturing semiconductor device
JPS607389B2 (en) Manufacturing method of semiconductor device
US6352891B1 (en) Method of manufacturing semiconductor device in which hot carrier resistance can be improved and silicide layer can be formed with high reliability
KR970077674A (en) Manufacturing method of semiconductor integrated circuit device
JPH04317358A (en) Manufacture of semiconductor device
JPH10242419A (en) Manufacture of semiconductor and semiconductor device
JPS60113460A (en) Dynamic memory element
KR100223736B1 (en) Method of manufacturing semiconductor device
JPH0855852A (en) Semiconductor device and its manufacture
JPH08321591A (en) Semiconductor device and fabrication thereof
JPH03191569A (en) Manufacture of semiconductor memory
JP2550590B2 (en) Method for manufacturing semiconductor device
JPH0817826A (en) Semiconductor device with internal wiring and its manufacturing method
JPH1197529A (en) Manufacture of semiconductor device
KR20020042309A (en) Method for manufacturing semiconductor semiconductor memory device
JP4820978B2 (en) Manufacturing method of semiconductor integrated circuit device
JPH0669445A (en) Manufacture of semiconductor memory
JPH06236972A (en) Formation of layer insulating film
US5888895A (en) Method for making titanium poly-silicide CMOS circuit contacts
JP3317736B2 (en) Semiconductor device and manufacturing method thereof
JPH07273197A (en) Semiconductor device and its fabrication
JP2003037185A (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees