JPH06236972A - Formation of layer insulating film - Google Patents

Formation of layer insulating film

Info

Publication number
JPH06236972A
JPH06236972A JP5044666A JP4466693A JPH06236972A JP H06236972 A JPH06236972 A JP H06236972A JP 5044666 A JP5044666 A JP 5044666A JP 4466693 A JP4466693 A JP 4466693A JP H06236972 A JPH06236972 A JP H06236972A
Authority
JP
Japan
Prior art keywords
film
insulating film
forming
wiring
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5044666A
Other languages
Japanese (ja)
Other versions
JP3196399B2 (en
Inventor
Hideaki Kuroda
英明 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP04466693A priority Critical patent/JP3196399B2/en
Publication of JPH06236972A publication Critical patent/JPH06236972A/en
Application granted granted Critical
Publication of JP3196399B2 publication Critical patent/JP3196399B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To increase an yield by forming a flat layer insulating film and by preventing the breaking of voids in the following high-temperature treatment. CONSTITUTION:After a bit line is formed with a tungsten polycide film 51, an SiO2 film 52 is deposited and then a polycrystalline silicon film 75 is deposited by vacuum CVD. After that, the polycrystalline silicon film 75 is isotropically etched back to fill a recessed section 55 with the polycrystalline silicon film 75. Under this condition, a BPSG film 56 is deposited. Since the polycrystalline silicon film 75 formed by vacuum CVD has an excellent step coverage, the generation of voids can be prevented. Furthermore, when the polycrystalline silicon film 75 is etched back, the SiO2 film 52 serves as a stopper.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本願の発明は、配線上にアスペク
ト比の高い凹部がある場合の配線上の層間絶縁膜の形成
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an interlayer insulating film on a wiring when there is a recess having a high aspect ratio on the wiring.

【0002】[0002]

【従来の技術】図4は、本願の発明の一従来例を用いて
製造したスタックトキャパシタDRAMを示している。
このスタックトキャパシタDRAMを製造するために
は、図5に示す様に、通常のLOCOS法と同じ手法で
Si基板11のうちでメモリセル部12のみの表面に厚
いSiO2 膜(図示せず)をまず形成し、このSiO2
膜をエッチングで除去することによって、メモリセル部
12と周辺回路部13との境界部におけるSi基板11
の表面に段差14を設ける。
2. Description of the Related Art FIG. 4 shows a stacked capacitor DRAM manufactured by using a conventional example of the present invention.
In order to manufacture this stacked capacitor DRAM, as shown in FIG. 5, a thick SiO 2 film (not shown) is formed on the surface of only the memory cell portion 12 of the Si substrate 11 by the same method as the normal LOCOS method. Is formed first, and this SiO 2
By removing the film by etching, the Si substrate 11 at the boundary between the memory cell section 12 and the peripheral circuit section 13 is removed.
A step 14 is provided on the surface of the.

【0003】段差14を設けるのは、Si基板11の表
面が平坦なままでは後の工程でメモリセル部12が周辺
回路部13よりも高くなってリソグラフィの露光に際し
てフォーカスマージンが減少するのを防止するためであ
る。その後、Si基板11にPウェル15等を形成し、
再びLOCOS法を実行してSi基板11の素子分離領
域の表面にSiO2 膜16を形成し、更に素子活性領域
の表面にゲート絶縁膜としてのSiO2 膜17を形成す
る。
Providing the step 14 prevents the memory cell portion 12 from becoming higher than the peripheral circuit portion 13 in a later step if the surface of the Si substrate 11 remains flat, and the focus margin is reduced during lithography exposure. This is because After that, the P well 15 and the like are formed on the Si substrate 11,
The LOCOS method is performed again to form the SiO 2 film 16 on the surface of the element isolation region of the Si substrate 11, and further form the SiO 2 film 17 as a gate insulating film on the surface of the element active region.

【0004】その後、タングステンポリサイド膜21等
から成るゲート電極をSiO2 膜17、16上に形成
し、タングステンポリサイド膜21とSiO2 膜16と
をマスクにしてSi基板11にN- 型の拡散層22を形
成する。そして、SiO2 膜23から成る側壁をタング
ステンポリサイド膜21の側面に形成し、タングステン
ポリサイド膜21とSiO2 膜16、23とをマスクに
して周辺回路部13のみのSi基板11にN+ 型の拡散
層24を形成する。
[0004] Then, a gate electrode made of tungsten polycide film 21 or the like is formed on the SiO 2 film 17 and 16, the Si substrate 11 by a tungsten polycide film 21 and the SiO 2 film 16 as a mask N - type of The diffusion layer 22 is formed. Then, sidewalls made of the SiO 2 film 23 are formed on the side surfaces of the tungsten polycide film 21, and the tungsten polycide film 21 and the SiO 2 films 16 and 23 are used as masks to form N + on the Si substrate 11 of only the peripheral circuit section 13. A mold diffusion layer 24 is formed.

【0005】ここまでの工程で、メモリセルを構成する
アクセス用のトランジスタ25がメモリセル部12で完
成し、LDD構造のトランジスタ26が周辺回路部13
で完成する。その後、SiO2 膜とPSG膜と減圧CV
D法で堆積させたSiN膜との複合膜で層間絶縁膜27
を形成する。そして、多結晶Si膜31を全面に堆積さ
せ、この多結晶Si膜31のうちでトランジスタ25の
一方の拡散層22上の部分に開口32を形成する。
Through the steps so far, the access transistor 25 constituting the memory cell is completed in the memory cell section 12, and the LDD structure transistor 26 is formed in the peripheral circuit section 13.
Is completed. After that, the SiO 2 film, the PSG film, and the reduced pressure CV
The inter-layer insulation film 27 is a composite film with the SiN film deposited by the D method.
To form. Then, a polycrystalline Si film 31 is deposited on the entire surface, and an opening 32 is formed in a portion of the polycrystalline Si film 31 on one diffusion layer 22 of the transistor 25.

【0006】その後、SiO2 膜33を全面に堆積さ
せ、このSiO2 膜33の全面と層間絶縁膜27等とを
エッチバックして、SiO2 膜33から成る側壁を開口
32の内周面に形成すると共に、この側壁に囲まれた状
態で拡散層22に達しているコンタクト孔34を層間絶
縁膜27等に開孔する。従って、開口32の寸法をリソ
グラフィの限界程度にすれば、コンタクト孔34の寸法
をリソグラフィの限界よりも小さくすることができる。
After that, a SiO 2 film 33 is deposited on the entire surface, the entire surface of the SiO 2 film 33 and the interlayer insulating film 27, etc. are etched back, and the side wall made of the SiO 2 film 33 is formed on the inner peripheral surface of the opening 32. While being formed, the contact hole 34 reaching the diffusion layer 22 while being surrounded by the side wall is opened in the interlayer insulating film 27 and the like. Therefore, if the size of the opening 32 is set to the limit of lithography, the size of the contact hole 34 can be made smaller than the limit of lithography.

【0007】その後、コンタクト孔34を介して拡散層
22にコンタクトする様に多結晶Si膜35を全面に堆
積させ、イオン注入やPOCl3 を用いたプレデポジシ
ョン法で多結晶Si膜31、35にN型の不純物を導入
する。そして、これらの多結晶Si膜31、35を、キ
ャパシタの下部電極である記憶ノード電極のパターンに
加工する。
After that, a polycrystalline Si film 35 is deposited on the entire surface so as to contact the diffusion layer 22 through the contact hole 34, and the polycrystalline Si films 31 and 35 are formed on the polycrystalline Si films 31 and 35 by ion implantation or a predeposition method using POCl 3. Introduce N-type impurities. Then, these polycrystalline Si films 31 and 35 are processed into a pattern of the storage node electrode which is the lower electrode of the capacitor.

【0008】その後、誘電体膜36を全面に形成し、こ
の誘電体膜36上に多結晶Si膜37を堆積させる。そ
して、POCl3 を用いたプレデポジション法等で多結
晶Si膜37にN型の不純物を導入し、これらの多結晶
Si膜37と誘電体膜36とのうちでメモリセル部12
におけるビット線と拡散層22とのコンタクト部及びそ
の近傍部分を除去する。
After that, a dielectric film 36 is formed on the entire surface, and a polycrystalline Si film 37 is deposited on the dielectric film 36. Then, an N-type impurity is introduced into the polycrystalline Si film 37 by a predeposition method using POCl 3 or the like, and the memory cell portion 12 is removed from the polycrystalline Si film 37 and the dielectric film 36.
The contact portion between the bit line and the diffusion layer 22 and its vicinity are removed.

【0009】その後、TEOSを原料とする減圧CVD
法等で、SiO2 膜41等を数十〜100nm程度の膜
厚に堆積させ、更に、BPSG膜42等の低融点ガラス
膜を、CVD法で数百nmの膜厚に堆積させる。そし
て、レジスト(図示せず)を塗布し、このレジストとB
PSG膜42とをエッチバックする。このとき、BPS
G膜42はSiO2 膜41に比べてエッチング速度が約
2倍であるので、BPSG膜42のエッチバックに際し
てSiO2 膜41がストッパになる。
Thereafter, low pressure CVD using TEOS as a raw material
A SiO 2 film 41 or the like is deposited to a film thickness of about several tens to 100 nm by a method or the like, and a low melting point glass film such as a BPSG film 42 is further deposited to a film thickness of a few hundred nm by the CVD method. Then, a resist (not shown) is applied, and this resist and B
The PSG film 42 is etched back. At this time, BPS
Since G film 42 is about twice the etch rate as compared to the SiO 2 film 41, SiO 2 film 41 is a stopper when etching back the BPSG film 42.

【0010】その後、800℃以上のN2 雰囲気中でB
PSG膜42をフローさせることによって、このBPS
G膜42で段差部を埋め込んで平滑化を行う。そして、
膜厚が数百nmであるSiO2 膜またはPSG膜で、層
間絶縁膜43を形成する。
Then, in an N 2 atmosphere at 800 ° C. or higher, B
By flowing the PSG film 42, the BPS
The G film 42 is embedded in the step portion to perform smoothing. And
The interlayer insulating film 43 is formed of a SiO 2 film or a PSG film having a film thickness of several hundreds nm.

【0011】その後、メモリセル部12のみをレジスト
(図示せず)で覆い、このレジストをマスクにすると共
に周辺回路部13に残しておいた多結晶Si膜37をス
トッパにして、弗酸を含む液で、周辺回路部13の層間
絶縁膜43とBPSG膜42とSiO2 膜41とをウエ
ットエッチングして除去する。そして、上述のレジスト
かまたはBPSG膜42等をマスクにして、多結晶Si
膜37もエッチングする。ここまでの工程で、メモリセ
ルを構成するキャパシタ44が完成する。
Thereafter, only the memory cell portion 12 is covered with a resist (not shown), the resist is used as a mask, and the polycrystalline Si film 37 left in the peripheral circuit portion 13 is used as a stopper to contain hydrofluoric acid. The interlayer insulating film 43, the BPSG film 42, and the SiO 2 film 41 of the peripheral circuit portion 13 are removed by wet etching with a liquid. Then, using the above-mentioned resist or the BPSG film 42 as a mask, polycrystalline Si
The film 37 is also etched. Through the steps up to this point, the capacitor 44 forming the memory cell is completed.

【0012】その後、PSG膜、SiO2 膜、減圧CV
D法で堆積させたSiN膜またはこれらの組み合わせ
で、膜厚が数十〜数百nmである層間絶縁膜45を形成
する。そして、トランジスタ25の他方の拡散層22に
達するコンタクト孔46やトランジスタ26の一方の拡
散層24に達するコンタクト孔47等を、層間絶縁膜4
5等に開孔する。そして更に、膜厚が200nm程度で
あるタングステンポリサイド膜51等でビット線を形成
する。
After that, a PSG film, a SiO 2 film, and a reduced pressure CV
The SiN film deposited by the D method or a combination thereof is used to form the interlayer insulating film 45 having a film thickness of several tens to several hundreds nm. Then, the contact hole 46 reaching the other diffusion layer 22 of the transistor 25, the contact hole 47 reaching the one diffusion layer 24 of the transistor 26, and the like are formed in the interlayer insulating film 4.
Open a hole in 5th grade. Further, a bit line is formed with the tungsten polycide film 51 having a film thickness of about 200 nm.

【0013】次に、図6に示す様に、TEOSを原料と
する減圧CVD法や高温CVD法等で、段差被覆性の良
いSiO2 膜52を数十nmの膜厚に堆積させる。そし
て、CVD法でBPSG膜53を300nm程度の膜厚
に堆積させ、メモリセル部12のみを覆うパターンにレ
ジスト54を加工する。
Next, as shown in FIG. 6, a low pressure CVD method or a high temperature CVD method using TEOS as a raw material is used to deposit a SiO 2 film 52 having a good step coverage with a thickness of several tens nm. Then, the BPSG film 53 is deposited to a thickness of about 300 nm by the CVD method, and the resist 54 is processed into a pattern that covers only the memory cell portion 12.

【0014】次に、O2 プラズマ雰囲気でレジスト54
のみを異方的にエッチバックする。そして、レジスト5
4からBPSG膜53が露出した時点で、レジスト54
とBPSG膜53とのエッチング速度が等しくなる条件
に切り換え、これらのレジスト54とBPSG膜53と
をエッチバックして、図7に示す様に、タングステンポ
リサイド膜51上の凹部55等の様にアスペクト比の高
い凹部にのみBPSG膜53を残す。
Next, the resist 54 is placed in an O 2 plasma atmosphere.
Anisotropically etch back only. And the resist 5
4 when the BPSG film 53 is exposed, the resist 54
And the BPSG film 53 are switched to the same etching rate, and the resist 54 and the BPSG film 53 are etched back to form a recess 55 on the tungsten polycide film 51 as shown in FIG. The BPSG film 53 is left only in the recess having a high aspect ratio.

【0015】次に、残存しているレジスト54を剥離し
てから、図8に示す様に、BPSG膜56等の低融点ガ
ラス膜をCVD法で数百nmの膜厚に堆積させ、トラン
ジスタ26の他方の拡散層24に達するコンタクト孔5
7等をBPSG膜56等に開孔する。そして、850〜
950℃程度のN2 雰囲気中でBPSG膜56をフロー
させることによって平滑化を行う。
Next, after removing the remaining resist 54, as shown in FIG. 8, a low melting point glass film such as a BPSG film 56 is deposited by CVD to a film thickness of several hundred nm, and the transistor 26 is formed. Contact hole 5 reaching the other diffusion layer 24 of
7 etc. are opened in the BPSG film 56 etc. And 850
Smoothing is performed by causing the BPSG film 56 to flow in an N 2 atmosphere at about 950 ° C.

【0016】次に、図4に示した様に、TiやTiON
等から成るバリアメタル膜61とSiやSi、Cu等を
含むAl膜62との複合膜で第1層目のAl配線を形成
し、TEOSを原料とするプラズマCVD法でSiO2
膜63を堆積させる。そして、SOG膜64の塗布及び
エッチバックを行い、更にTEOSを原料とするプラズ
マCVD法でSiO2 膜65を堆積させて、Al膜62
上の平滑化を行う。
Next, as shown in FIG. 4, Ti and TiON
The barrier metal film 61 and the Si and Si, the first layer Al wiring composite film of Al film 62 containing Cu or the like is formed consisting of the like, SiO 2 by a plasma CVD method using TEOS as a raw material
The film 63 is deposited. Then, the SOG film 64 is applied and etched back, and the SiO 2 film 65 is further deposited by the plasma CVD method using TEOS as a raw material.
Perform the above smoothing.

【0017】その後、層間絶縁膜としてのPSG膜66
をCVD法で堆積させ、Al膜62等に達するコンタク
ト孔67等をPSG膜66等に開孔する。そして、Ti
やTiON等から成るバリアメタル膜71とSiやS
i、Cu等を含むAl膜72との複合膜で第2層目のA
l配線を形成し、表面保護膜としてのSiN膜73をプ
ラズマCVD法で750nm程度の膜厚に堆積させて、
このスタックトキャパシタDRAMを完成させていた。
After that, the PSG film 66 as an interlayer insulating film is formed.
Are deposited by the CVD method, and contact holes 67 and the like reaching the Al film 62 and the like are opened in the PSG film 66 and the like. And Ti
Barrier metal film 71 made of Si, TiON or the like and Si or S
The composite film with the Al film 72 containing i, Cu, etc.
l wiring is formed, and a SiN film 73 as a surface protection film is deposited by a plasma CVD method to a film thickness of about 750 nm,
This stacked capacitor DRAM was completed.

【0018】[0018]

【発明が解決しようとする課題】ところで、上述の一従
来例では、ビット線であるタングステンポリサイド膜5
1上の凹部55等をBPSG膜53、56で埋めて平滑
化しているが、現在のところ、BPSG膜は、SiH4
系のガスを原料とする常圧CVD法で形成している。
By the way, in the above-mentioned conventional example, the tungsten polycide film 5 which is a bit line is used.
The recess 55 on 1 is filled with BPSG films 53 and 56 for smoothing. At present, the BPSG film is made of SiH 4
It is formed by an atmospheric pressure CVD method using a system gas as a raw material.

【0019】しかし、この様にして形成したBPSG膜
は段差被覆性が良くなく、図9に拡大して示す様に、凹
部55内のBPSG膜53、56にボイド74が発生す
ることがある。このボイド74は、その後の高温熱処理
時に破裂して、Al膜62等の上層配線の加工に支障を
きたし、スタックトキャパシタDRAMの歩留りを低下
させていた。
However, the BPSG film thus formed does not have good step coverage, and voids 74 may occur in the BPSG films 53 and 56 in the recess 55, as shown in an enlarged view in FIG. The void 74 ruptured during the subsequent high temperature heat treatment, hindering the processing of the upper wiring of the Al film 62 and the like, and reduced the yield of the stacked capacitor DRAM.

【0020】[0020]

【課題を解決するための手段】請求項1の層間絶縁膜の
形成方法は、半導体基板11上に配線51を形成する工
程と、前記配線51を形成した後に、第1の絶縁膜52
を全面に形成する工程と、前記第1の絶縁膜52とはエ
ッチング特性が異なる半導体膜75を減圧CVD法で前
記第1の絶縁膜52上に形成する工程と、前記半導体膜
75を等方的にエッチバックして、前記配線51上の凹
部55をこの半導体膜75で埋める工程と、前記エッチ
バックの後に、第2の絶縁膜56を全面に形成する工程
とを含んでいる。
According to a first aspect of the present invention, there is provided a method of forming an interlayer insulating film, which comprises a step of forming a wiring 51 on a semiconductor substrate 11, and a step of forming the wiring 51 and then a first insulating film 52.
On the entire surface, a step of forming a semiconductor film 75 having a different etching characteristic from that of the first insulating film 52 on the first insulating film 52 by a low pressure CVD method, and the semiconductor film 75 being isotropic. The process further includes a step of physically etching back to fill the recess 55 on the wiring 51 with the semiconductor film 75, and a step of forming the second insulating film 56 on the entire surface after the etch back.

【0021】請求項2の層間絶縁膜の形成方法は、半導
体基板11上に配線51を形成する工程と、前記配線5
1を形成した後に、第1の絶縁膜52を全面に形成する
工程と、前記第1の絶縁膜52とはエッチング特性が異
なる半導体膜75を減圧CVD法で前記第1の絶縁膜5
2上に形成する工程と、前記半導体膜75上にマスク層
54を平坦に形成する工程と、前記マスク層54と前記
半導体膜75とのエッチング速度が等しい条件でこれら
のマスク層54と半導体膜75とを等方的にエッチバッ
クして、前記配線51上の凹部55をこの半導体膜75
で埋める工程と、前記エッチバックの後に、第2の絶縁
膜56を全面に形成する工程とを含んでいる。
According to a second aspect of the present invention, in the method of forming an interlayer insulating film, the step of forming the wiring 51 on the semiconductor substrate 11 and the wiring 5 are performed.
1 is formed and then the first insulating film 52 is formed on the entire surface, and a semiconductor film 75 having etching characteristics different from that of the first insulating film 52 is formed on the first insulating film 5 by a low pressure CVD method.
2 and the step of forming the mask layer 54 flat on the semiconductor film 75, and the mask layer 54 and the semiconductor film 75 under the condition that the etching rates of the mask layer 54 and the semiconductor film 75 are equal. 75 isotropically etched back to form the recess 55 on the wiring 51 in the semiconductor film 75.
And a step of forming the second insulating film 56 on the entire surface after the etching back.

【0022】請求項3の層間絶縁膜の形成方法は、請求
項1または2の層間絶縁膜の形成方法において、前記第
1の絶縁膜52がSiO2 膜であり、前記半導体膜75
が多結晶Si膜または非晶質Si膜であることを特徴と
している。
The method of forming an interlayer insulating film according to claim 3 is the same as the method of forming an interlayer insulating film according to claim 1 or 2, wherein the first insulating film 52 is a SiO 2 film, and the semiconductor film 75.
Is a polycrystalline Si film or an amorphous Si film.

【0023】[0023]

【作用】請求項1の層間絶縁膜の形成方法では、減圧C
VD法で形成した半導体膜75で配線51上の凹部55
を埋めており、減圧CVD法で形成した半導体膜75は
段差被覆性が良いので、この半導体膜75で配線51上
の凹部55を確実に埋めてボイド74の発生を防止する
ことができる。また、半導体膜75のエッチバックに際
して、第1の絶縁膜52がエッチングのストッパになる
ので、既に形成されている配線51が同時にエッチング
されるのを防止することができる。
According to the method of forming an interlayer insulating film of claim 1, the reduced pressure C
The semiconductor film 75 formed by the VD method is used to form the recess 55 on the wiring 51.
Since the semiconductor film 75 formed by the low pressure CVD method has good step coverage, it is possible to reliably fill the recess 55 on the wiring 51 with this semiconductor film 75 and prevent the occurrence of the void 74. Further, since the first insulating film 52 serves as an etching stopper when the semiconductor film 75 is etched back, it is possible to prevent the already formed wiring 51 from being simultaneously etched.

【0024】請求項2の層間絶縁膜の形成方法では、マ
スク層54で半導体膜75上を平坦にしてからマスク層
54と半導体膜75とを同時にエッチバックしているの
で、工程数は多いが、半導体膜75で配線51上の凹部
55を更に確実に埋めてボイド74の発生を防止するこ
とができる。
In the method for forming an interlayer insulating film according to claim 2, since the mask layer 54 is flattened on the semiconductor film 75 and then the mask layer 54 and the semiconductor film 75 are simultaneously etched back, the number of steps is large. The semiconductor film 75 can more surely fill the recess 55 on the wiring 51 to prevent the generation of the void 74.

【0025】請求項3の層間絶縁膜の形成方法では、多
結晶Si膜または非晶質Si膜を半導体膜75として用
いており、減圧CVD法で形成した多結晶Si膜または
非晶質Si膜は段差被覆性が良い。また、SiO2 膜を
第1の絶縁膜52として用いており、SiO2 膜と多結
晶Si膜または非晶質Si膜とはエッチング選択比が大
きい。
In the method for forming an interlayer insulating film according to claim 3, a polycrystalline Si film or an amorphous Si film is used as the semiconductor film 75, and the polycrystalline Si film or the amorphous Si film formed by the low pressure CVD method is used. Has good step coverage. Further, the SiO 2 film is used as the first insulating film 52, and the etching selection ratio between the SiO 2 film and the polycrystalline Si film or the amorphous Si film is large.

【0026】[0026]

【実施例】以下、スタックトキャパシタDRAMの製造
に適用した本願の発明の一実施例を、図1〜3を参照し
ながら説明する。なお、図4〜9に示した一従来例と対
応する構成部分には、同一の符号を付してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention applied to manufacture of a stacked capacitor DRAM will be described below with reference to FIGS. The components corresponding to those of the conventional example shown in FIGS.

【0027】図1が、本実施例で製造したスタックトキ
ャパシタDRAMを示している。本実施例でも、SiO
2 膜52を堆積させるまでは、図4〜9に示した一従来
例と実質的に同様の工程を実行する。しかし、本実施例
では、図2に示す様に、その後、膜厚が数百nmの多結
晶Si膜75を減圧CVD法で全面に堆積させる。な
お、この多結晶Si膜75には、不純物を添加する必要
はない。また、減圧CVD法を実行する時の温度を60
0℃程度以下にして、多結晶Si膜75の代わりに非晶
質Si膜を堆積させてもよい。
FIG. 1 shows a stacked capacitor DRAM manufactured in this embodiment. Also in this embodiment, SiO
Until the 2nd film 52 is deposited, the substantially same process as one prior art example shown in FIGS. However, in this embodiment, as shown in FIG. 2, thereafter, a polycrystalline Si film 75 having a film thickness of several hundreds nm is deposited on the entire surface by a low pressure CVD method. It is not necessary to add impurities to this polycrystalline Si film 75. Further, the temperature at which the low pressure CVD method is performed is set to 60
An amorphous Si film may be deposited instead of the polycrystalline Si film 75 at about 0 ° C. or lower.

【0028】次に、SF6 及びO2 等のガスを用い、多
結晶Si膜75の全面を等方的にエッチバックして、図
3に示す様に、タングステンポリサイド膜51上の凹部
55等の様にアスペクト比の高い凹部にのみ多結晶Si
膜75を残す。この時、SiO2 膜52がエッチングの
ストッパになるので、ビット線であるタングステンポリ
サイド膜51がエッチングされることはない。その後
は、再び、図4〜9に示した一従来例と同様の工程を実
行して、図1に示したスタックトキャパシタDRAMを
完成させる。
Next, the entire surface of the polycrystalline Si film 75 is isotropically etched back by using a gas such as SF 6 and O 2 to form a recess 55 on the tungsten polycide film 51 as shown in FIG. Polycrystalline Si only in recesses with a high aspect ratio such as
Leave the membrane 75. At this time, since the SiO 2 film 52 serves as an etching stopper, the tungsten polycide film 51 which is the bit line is not etched. After that, the steps similar to those of the conventional example shown in FIGS. 4 to 9 are executed again to complete the stacked capacitor DRAM shown in FIG.

【0029】以上の様な実施例と図4〜9に示した一従
来例とを比較すると、この一従来例におけるBPSG膜
53のCVD、レジスト54をパターニングするための
リソグラフィ、レジスト54のみのエッチバック、レジ
スト54とBPSG膜53とのエッチバック及び残存し
ているレジスト54の剥離という5工程に対応する工程
としては、本実施例では多結晶Si膜75のCVD及び
この多結晶Si膜75のエッチバックという2工程のみ
でよく、3工程も少なくなっている。また、リソグラフ
ィのみを考えても、1工程少なくなっている。
Comparing the above-described embodiment with the conventional example shown in FIGS. 4 to 9, CVD of the BPSG film 53 in this conventional example, lithography for patterning the resist 54, and etching of only the resist 54 are performed. In this embodiment, as a process corresponding to the five processes of backing, etching back of the resist 54 and the BPSG film 53, and peeling off the remaining resist 54, CVD of the polycrystalline Si film 75 and this polycrystalline Si film 75 are performed. Only two steps of etch back are required, and three steps are reduced. Further, even if only lithography is considered, the number of processes is reduced by one.

【0030】なお、上述の実施例においても、多結晶S
i膜75のエッチバックに際して、図4〜9に示した一
従来例と同様にレジスト54を用いてもよい。この様に
すると、工程数は多くなるが、多結晶Si膜75で凹部
55を更に確実に埋めることができる。
In the above-mentioned embodiment, the polycrystalline S
At the time of etching back the i film 75, the resist 54 may be used as in the conventional example shown in FIGS. By doing so, although the number of steps increases, the recess 55 can be more surely filled with the polycrystalline Si film 75.

【0031】[0031]

【発明の効果】請求項1の層間絶縁膜の形成方法では、
半導体膜で配線上の凹部を確実に埋めてボイドの発生を
防止することができるので、第2の絶縁膜で平滑な層間
絶縁膜を形成することができると共に、その後の高温熱
処理によるボイドの破裂を防止して歩留りを高めること
ができる。
According to the method of forming an interlayer insulating film of claim 1,
Since the recesses on the wiring can be surely filled with the semiconductor film to prevent the generation of voids, a smooth interlayer insulating film can be formed with the second insulating film, and the voids are ruptured by the subsequent high temperature heat treatment. Can be prevented and the yield can be increased.

【0032】請求項2の層間絶縁膜の形成方法では、半
導体膜で配線上の凹部を更に確実に埋めてボイドの発生
を防止することができるので、第2の絶縁膜で更に平滑
な層間絶縁膜を形成することができると共に、その後の
高温熱処理によるボイドの破裂を更に確実に防止して歩
留りを高めることができる。
In the method of forming the interlayer insulating film according to the second aspect, since the recesses on the wiring can be more surely filled with the semiconductor film to prevent the generation of voids, the second insulating film can provide a smoother interlayer insulating film. It is possible to form a film, and it is possible to more reliably prevent the rupture of voids due to the subsequent high-temperature heat treatment and improve the yield.

【0033】請求項3の層間絶縁膜の形成方法では、減
圧CVD法で形成した多結晶Si膜または非晶質Si膜
は段差被覆性が良く、また、SiO2 膜と多結晶Si膜
または非晶質Si膜とはエッチング選択比が大きいの
で、請求項1または2の層間絶縁膜の形成方法を確実に
実施することができる。
In the method of forming an interlayer insulating film according to claim 3, the polycrystalline Si film or the amorphous Si film formed by the low pressure CVD method has good step coverage, and the SiO 2 film and the polycrystalline Si film or Since the etching selection ratio with respect to the crystalline Si film is large, the method for forming an interlayer insulating film according to claim 1 or 2 can be reliably implemented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願の発明の一実施例を用いて製造したスタッ
クトキャパシタDRAMの側断面図である。
FIG. 1 is a side sectional view of a stacked capacitor DRAM manufactured by using an embodiment of the present invention.

【図2】一実施例の前半の工程を示す側断面図である。FIG. 2 is a side sectional view showing a first half process of one embodiment.

【図3】図2に続く工程を示す側断面図である。FIG. 3 is a side sectional view showing a step that follows FIG.

【図4】本願の発明の一従来例を用いて製造したスタッ
クトキャパシタDRAMの側断面図である。
FIG. 4 is a side sectional view of a stacked capacitor DRAM manufactured by using a conventional example of the present invention.

【図5】図4に示したスタックトキャパシタDRAMを
製造するための初期の工程を示す側断面図である。
FIG. 5 is a side sectional view showing an initial process for manufacturing the stacked capacitor DRAM shown in FIG.

【図6】図5に続く工程を示す側断面図である。FIG. 6 is a side sectional view showing a step that follows FIG.

【図7】図6に続く工程を示す側断面図である。7 is a side sectional view showing a step that follows FIG.

【図8】図7に続く工程を示す側断面図である。8 is a side sectional view showing a step that follows FIG. 7. FIG.

【図9】一従来例における課題を示す側断面図である。FIG. 9 is a side sectional view showing a problem in a conventional example.

【符号の説明】[Explanation of symbols]

11 Si基板 51 タングステンポリサイド膜 52 SiO2 膜 54 レジスト 55 凹部 56 BPSG膜 74 ボイド 75 多結晶Si膜11 Si substrate 51 Tungsten polycide film 52 SiO 2 film 54 Resist 55 Recessed portion 56 BPSG film 74 Void 75 Polycrystalline Si film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に配線を形成する工程と、 前記配線を形成した後に、第1の絶縁膜を全面に形成す
る工程と、 前記第1の絶縁膜とはエッチング特性が異なる半導体膜
を減圧CVD法で前記第1の絶縁膜上に形成する工程
と、 前記半導体膜を等方的にエッチバックして、前記配線上
の凹部をこの半導体膜で埋める工程と、 前記エッチバックの後に、第2の絶縁膜を全面に形成す
る工程とを含むことを特徴とする層間絶縁膜の形成方
法。
1. A step of forming a wiring on a semiconductor substrate, a step of forming a first insulating film on the entire surface after forming the wiring, and a semiconductor film having etching characteristics different from those of the first insulating film. On the first insulating film by a low pressure CVD method, isotropically etching back the semiconductor film to fill the recesses on the wiring with the semiconductor film, and after the etching back. And a step of forming a second insulating film on the entire surface, the method of forming an interlayer insulating film.
【請求項2】 半導体基板上に配線を形成する工程と、 前記配線を形成した後に、第1の絶縁膜を全面に形成す
る工程と、 前記第1の絶縁膜とはエッチング特性が異なる半導体膜
を減圧CVD法で前記第1の絶縁膜上に形成する工程
と、 前記半導体膜上にマスク層を平坦に形成する工程と、 前記マスク層と前記半導体膜とのエッチング速度が等し
い条件でこれらのマスク層と半導体膜とを等方的にエッ
チバックして、前記配線上の凹部をこの半導体膜で埋め
る工程と、 前記エッチバックの後に、第2の絶縁膜を全面に形成す
る工程とを含むことを特徴とする層間絶縁膜の形成方
法。
2. A step of forming a wiring on a semiconductor substrate, a step of forming a first insulating film on the entire surface after forming the wiring, and a semiconductor film having etching characteristics different from those of the first insulating film. Are formed on the first insulating film by a low pressure CVD method, a step of forming a mask layer flat on the semiconductor film, and a step of forming the mask layer and the semiconductor film under the same etching rate. And a step of isotropically etching back the mask layer and the semiconductor film to fill the recesses on the wiring with the semiconductor film, and a step of forming a second insulating film over the entire surface after the etching back. A method for forming an interlayer insulating film, comprising:
【請求項3】 前記第1の絶縁膜がSiO2 膜であり、
前記半導体膜が多結晶Si膜または非晶質Si膜である
ことを特徴とする請求項1または2記載の層間絶縁膜の
形成方法。
3. The first insulating film is a SiO 2 film,
3. The method for forming an interlayer insulating film according to claim 1, wherein the semiconductor film is a polycrystalline Si film or an amorphous Si film.
JP04466693A 1993-02-09 1993-02-09 Method of forming interlayer insulating film Expired - Fee Related JP3196399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04466693A JP3196399B2 (en) 1993-02-09 1993-02-09 Method of forming interlayer insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04466693A JP3196399B2 (en) 1993-02-09 1993-02-09 Method of forming interlayer insulating film

Publications (2)

Publication Number Publication Date
JPH06236972A true JPH06236972A (en) 1994-08-23
JP3196399B2 JP3196399B2 (en) 2001-08-06

Family

ID=12697775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04466693A Expired - Fee Related JP3196399B2 (en) 1993-02-09 1993-02-09 Method of forming interlayer insulating film

Country Status (1)

Country Link
JP (1) JP3196399B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5945739A (en) * 1996-07-16 1999-08-31 Nec Corporation Semiconductor device having a conductor through an inter-level layer and a spin-on-glass in the inter-level layer with substantially planar upper surfaces of the conductor, the inter-level layer, and the spin-on-glass
KR100337587B1 (en) * 1996-07-10 2002-05-23 아끼구사 나오유끼 Semiconductor device
KR100699335B1 (en) * 1998-01-26 2007-03-26 가부시키가이샤 히타치세이사쿠쇼 Semiconductor integrated circuit device, and method of manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101765978B1 (en) 2013-08-14 2017-08-07 엘지이노텍 주식회사 Lighting apparatus and lighting system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100337587B1 (en) * 1996-07-10 2002-05-23 아끼구사 나오유끼 Semiconductor device
US6620674B1 (en) 1996-07-10 2003-09-16 Fujitsu Limited Semiconductor device with self-aligned contact and its manufacture
US6936510B2 (en) 1996-07-10 2005-08-30 Fujitsu Limited Semiconductor device with self-aligned contact and its manufacture
US7151025B2 (en) 1996-07-10 2006-12-19 Fujitsu Limited Method of manufacturing a semiconductor device with self-aligned contacts
US5945739A (en) * 1996-07-16 1999-08-31 Nec Corporation Semiconductor device having a conductor through an inter-level layer and a spin-on-glass in the inter-level layer with substantially planar upper surfaces of the conductor, the inter-level layer, and the spin-on-glass
KR100699335B1 (en) * 1998-01-26 2007-03-26 가부시키가이샤 히타치세이사쿠쇼 Semiconductor integrated circuit device, and method of manufacturing the same

Also Published As

Publication number Publication date
JP3196399B2 (en) 2001-08-06

Similar Documents

Publication Publication Date Title
US6177338B1 (en) Two step barrier process
US5614765A (en) Self aligned via dual damascene
US5747379A (en) Method of fabricating seamless tungsten plug employing tungsten redeposition and etch back
US6271084B1 (en) Method of fabricating a metal-insulator-metal (MIM), capacitor structure using a damascene process
US6168984B1 (en) Reduction of the aspect ratio of deep contact holes for embedded DRAM devices
US6268252B1 (en) Method of forming self-aligned contact pads on electrically conductive lines
US6100137A (en) Etch stop layer used for the fabrication of an overlying crown shaped storage node structure
US6884736B2 (en) Method of forming contact plug on silicide structure
JP3102405B2 (en) Method for manufacturing semiconductor device
US5998249A (en) Static random access memory design and fabrication process featuring dual self-aligned contact structures
US7148102B2 (en) Methods of forming buried bit line DRAM circuitry
JPH04317358A (en) Manufacture of semiconductor device
US5700726A (en) Multi-layered tungsten depositions for contact hole filling
US6548348B1 (en) Method of forming a storage node contact hole in a porous insulator layer
US6812113B1 (en) Process for achieving intermetallic and/or intrametallic air isolation in an integrated circuit, and integrated circuit obtained
JPH10233445A (en) Semiconductor device and its manufacturing method
JPH10270380A (en) Semiconductor device
JP3196399B2 (en) Method of forming interlayer insulating film
US6180530B1 (en) Self-aligned contact structure
JPH09232251A (en) Manufacture of semiconductor device
JP2702007B2 (en) Method for manufacturing semiconductor device
US6171926B1 (en) Methods for fabricating integrated circuit capacitor electrodes using first and second insulating layers and a buffer layer
JPH05275644A (en) Semiconductor memory element and manufacture thereof
JPH10256187A (en) Semiconductor device and fabrication thereof
JP3065395B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees