JPH03191567A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH03191567A
JPH03191567A JP1332062A JP33206289A JPH03191567A JP H03191567 A JPH03191567 A JP H03191567A JP 1332062 A JP1332062 A JP 1332062A JP 33206289 A JP33206289 A JP 33206289A JP H03191567 A JPH03191567 A JP H03191567A
Authority
JP
Japan
Prior art keywords
dielectric layer
conductor layer
layer
electrode
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1332062A
Other languages
Japanese (ja)
Inventor
Yutaka Tomita
豊 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1332062A priority Critical patent/JPH03191567A/en
Publication of JPH03191567A publication Critical patent/JPH03191567A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To reduce the plane area of a memory cell by a method wherein the surface on the inside of a groove formed in a semiconductor substrate is used as an isolation insulating film between memory cells and two capacity parts are formed on the inside of the groove. CONSTITUTION:A desired pattern is formed on a P-type silicon semiconductor substrate 1; after that, a perpendicular groove is formed; and an insulating film 2 to be used as an insulating isolation layer is formed on the inside of the groove and in one part of the substrate 1. A first conductor layer 3 to be used as an electrode of a capacity part is formed on the insulating film 2; a first dielectric layer 4 is formed on the first conductor layer 3; a second conductor layer 5 to be used as a capacity electrode of a definite potential is formed on the first dielectric layer 4; a second dielectric layer 6 is formed on the second conductor layer 5; and a third conductor layer 7 to be used as an electrode of a capacity part is formed on the second dielectric layer 6. Thereby, it is possible to reduce the area of a memory cell.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置に関し、 特にMOSダイ ナミックランダムアクセス型の半導体記憶装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to a MOS dynamic random access type semiconductor memory device.

〔従来の技術〕[Conventional technology]

第3図(a) 、 (b)は従来の半導体装置の一例の
平面図及び断面図である。
FIGS. 3(a) and 3(b) are a plan view and a sectional view of an example of a conventional semiconductor device.

P型シリコン基板lをフィルド酸化膜22で分離し、そ
の分離されたそれぞれの活性領域にメモリセルの基本的
構成要素となるMO8型トランジスタと容量電極となる
溝型の容量部を形成する。
A P-type silicon substrate 1 is separated by a filled oxide film 22, and an MO8 type transistor serving as a basic component of a memory cell and a trench-type capacitor portion serving as a capacitor electrode are formed in each of the separated active regions.

溝の内部基板表面には、容量電極となるN型導電体層2
3が形成されており、その上に誘電体層24が形成され
、さらに、その上に定電位の容量電極25が形成される
構造となっていた。
On the surface of the substrate inside the groove, there is an N-type conductor layer 2 that becomes a capacitor electrode.
3, a dielectric layer 24 is formed thereon, and a constant potential capacitor electrode 25 is further formed thereon.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の半導体装置は、絶縁分離領域となるフィ
ールド酸化膜22と容量となるm部とが分離独立してお
り、またその為に溝部にはメモリ素子の1ビット分の容
量部しか形成出来なく、メモリセル面積を縮小する際に
支障をきたす欠点がある。
In the conventional semiconductor device described above, the field oxide film 22, which serves as an insulating isolation region, and the m portion, which serves as a capacitor, are separated and independent, and for this reason, only a capacitor portion for one bit of the memory element can be formed in the trench portion. However, there is a drawback that it poses a problem when reducing the memory cell area.

さらに、溝間は、半導体基板内のPN接合分離でおり、
溝間の距離を短縮すると禾間耐圧が低下する欠点もある
Furthermore, the gap between the grooves is a PN junction separation in the semiconductor substrate,
Shortening the distance between the grooves also has the disadvantage that the withstand voltage between the grooves decreases.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置は、−導電型半導体基板上に設けら
れた溝と、前記溝の内表面に設けられ絶縁分離領域とな
る絶縁膜と、前記絶縁膜上に設けられ容量部の電極とな
る第1の導電体層と、前記第1導電体層上に設けられた
第1の誘電体層と、前記第1の誘電体層上に設けられ定
電位の容量電極となる第2の導電体層と、前記第2の導
電体層上に設けられた第2の誘電体層と、前記第2の誘
電体層上に設けられ容量部の電極となる第3の導電体層
とを有している。
The semiconductor device of the present invention includes: - a groove provided on a conductive type semiconductor substrate; an insulating film provided on the inner surface of the groove and serving as an insulation isolation region; and an electrode provided on the insulating film and serving as a capacitive part. a first conductor layer; a first dielectric layer provided on the first conductor layer; and a second conductor provided on the first dielectric layer and serving as a constant potential capacitor electrode. a second dielectric layer provided on the second conductor layer, and a third conductor layer provided on the second dielectric layer and serving as an electrode of a capacitor section. ing.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図(a)〜(2)は本発明の一実施例の製造方法を
説明するための工程順に示した半導体チップの断面図、
第2図は第1図悦)の平面図である。
FIGS. 1(a) to 1(2) are cross-sectional views of a semiconductor chip shown in order of steps for explaining a manufacturing method according to an embodiment of the present invention;
Figure 2 is a plan view of Figure 1.

まず、第1図(a)に示すように、不純物濃度10’″
〜lo 16原子/譚程度のP型シリコン半導体基板1
上に所望のパターンをホトレジスト技術を用いて形成し
た後、異方性ドライエ、チングを行うことにより縦型の
溝を形成する。
First, as shown in FIG. 1(a), the impurity concentration is 10'''
~lo P-type silicon semiconductor substrate 1 with about 16 atoms/tan
After forming a desired pattern thereon using photoresist technology, vertical grooves are formed by anisotropic drying and etching.

次に、第1図(b)に示すように、選択酸化技術を用い
、1000℃程度の高温酸化条件で溝内部と基板の一部
に厚さ400 nm程度の絶縁分離層となる絶縁膜2を
形成する。
Next, as shown in FIG. 1(b), using selective oxidation technology, an insulating film 2 that becomes an insulating isolation layer with a thickness of about 400 nm is formed inside the trench and a part of the substrate under high-temperature oxidation conditions of about 1000°C. form.

次に、第1図(e)に示すように、N+型にドープされ
た第1の導電体層を形成した後、ホトレジスト技術を用
いて所望のパターンを形成し、異方性ドライエッチを行
うことにより第1の導電体層3を形成する。以降同様に
、所望のパターンをホトレジスト技術とエツチングの組
み合せで、バター/形成する。
Next, as shown in FIG. 1(e), after forming a first N+-doped conductor layer, a desired pattern is formed using photoresist technology, and anisotropic dry etching is performed. The first conductor layer 3 is thereby formed. Thereafter, a desired pattern is similarly formed using a combination of photoresist technology and etching.

次に、第1図(d)に示すように、第1の導電体層3の
上に厚さ5nm程度の酸化膜を形成し、これを第1の誘
電体層4上に、第2の導電体層5を形成し、その後、第
2の導電体層5の上に第20誘電体層6を形成し、その
上に第3の導電体層7を形成し、その後に以上の第1〜
第3の導電体層表面を1000℃程度の酸化条件で酸化
して、200nm程度の酸化膜8を形成すると同時に、
第1゜第3の導電体層よシN型の不純物をシリコン基板
lに拡散することにより、N型第1領域lOを形成する
Next, as shown in FIG. 1(d), an oxide film with a thickness of about 5 nm is formed on the first conductive layer 3, and this is applied on the first dielectric layer 4 and the second A conductor layer 5 is formed, then a 20th dielectric layer 6 is formed on the second conductor layer 5, a third conductor layer 7 is formed thereon, and then the above first dielectric layer 6 is formed. ~
At the same time, the surface of the third conductive layer is oxidized at about 1000° C. to form an oxide film 8 of about 200 nm,
1. An N-type first region IO is formed by diffusing N-type impurities into the silicon substrate 1 through the third conductor layer.

次に、第1図(f)に示すように、ゲート電極9を形成
した後、砒素を加速エネルギー50key。
Next, as shown in FIG. 1(f), after forming the gate electrode 9, arsenic was accelerated at 50 keys.

ドーズ量5X10/cd程度で半導体基板表面に打ち込
み、その後、高温で熱処理を行ってN型第2領域1工を
形成する。
A dose of about 5×10/cd is implanted into the surface of the semiconductor substrate, and then heat treatment is performed at a high temperature to form an N-type second region.

次に、第1図(g)に示すように、層間絶縁膜12を気
相成長法で形成した後、N型第2領域11上にコンタク
ト窓を設ける。そして、スバ、りにより厚さ1μms度
のアルミニウム薄膜を堆積し、パターニングしてデータ
ライン13を形成し、その後、デバイスを保護する目的
で、CVD法によシ1μm穆度の保護膜14を形成する
Next, as shown in FIG. 1(g), after forming an interlayer insulating film 12 by vapor phase growth, a contact window is provided on the N-type second region 11. Then, a thin aluminum film with a thickness of 1 μm is deposited by sputtering and patterned to form a data line 13, and then a protective film 14 with a thickness of 1 μm is formed by CVD to protect the device. do.

以上により、第1図(g)に示す様な本発明の半導体装
置が得られる。
Through the above steps, a semiconductor device of the present invention as shown in FIG. 1(g) is obtained.

第2図と第3図(a)とは、はぼ同一の設計基準で設計
されたパターンであシ、2点鎖線に囲まれた部分35が
1セル単位(2ビット分)であるが、これによるとセル
面積が2(l縮小されていることが判る(28μm2→
224μmz)。
FIG. 2 and FIG. 3(a) are patterns designed using almost the same design criteria, and the portion 35 surrounded by the two-dot chain line is one cell unit (two bits). According to this, it can be seen that the cell area has been reduced by 2 (l) (28 μm2 →
224μmz).

尚、これは単に同上の設計基準を用いた場合であシ、各
部の寸法を縮小することにより、より小さいセル面積を
実現可能であり、その際も本発明を用いることにより従
来の構造より20%程度セル面積を縮小可能となる効果
がある。
Note that this is only a case of using the same design criteria as above; by reducing the dimensions of each part, it is possible to realize a smaller cell area. This has the effect of making it possible to reduce the cell area by about %.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、半導体基板上に設けら
れた溝内部表面が、メモリセル間の分離絶縁膜となって
おり、さらに、溝内部に2ビット分に対応する2個の容
量部があるのでメモリセル平面積を大幅に縮小すること
が可能となる効果がある。
As explained above, in the present invention, the inner surface of the groove provided on the semiconductor substrate serves as an isolation insulating film between memory cells, and furthermore, two capacitive parts corresponding to 2 bits are provided inside the groove. This has the effect of making it possible to significantly reduce the planar area of the memory cell.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(2)は本発明の一実施例の製造方法を
説明するための工程順に示した断面図、第2図は第1図
(2)の平面図、第3図(a) 、 (b)は従来の半
導体装置の一例の平面図及び断面図である。 l・・・・・・P型シリコン基板、2・・・・・・絶縁
膜、3・・・・・・第1の導電体層、4・・・・・・第
1の誘電体層、5・・・・・・第2の導電体層、6・・
・・・・第2の誘電体層、7・・・・・・第3の導電体
層、8・・・・・・酸化膜、9・・・・・・ゲート電極
、IO・・・・・・N型第1領域、11・・・・・・N
型第2領域、12・・・・・・層間絶縁膜、13・・・
・・・データライン、14・・・・・・保護膜、22・
・・・・・フィルド酸化膜、23・・・・・・N型導電
体層、24・・・・・・誘電体層、25・・・・・・容
量電極。
FIGS. 1(a) to (2) are cross-sectional views shown in the order of steps for explaining a manufacturing method according to an embodiment of the present invention, FIG. 2 is a plan view of FIG. 1(2), and FIG. a) and (b) are a plan view and a cross-sectional view of an example of a conventional semiconductor device. 1... P-type silicon substrate, 2... Insulating film, 3... First conductor layer, 4... First dielectric layer, 5... Second conductor layer, 6...
...Second dielectric layer, 7...Third conductor layer, 8...Oxide film, 9...Gate electrode, IO... ...N-type first region, 11...N
Mold second region, 12... Interlayer insulating film, 13...
...Data line, 14...Protective film, 22.
...Filled oxide film, 23...N-type conductor layer, 24...Dielectric layer, 25...Capacitor electrode.

Claims (1)

【特許請求の範囲】[Claims] 一導電型半導体基板に設けられた溝と、前記溝の内部表
面上に設けられ絶縁分離領域となる絶縁膜と、前記絶縁
膜上に設けられ容量部の電極となる第1の導電体層と、
前記第1の導電体層上に設けられた第1の誘電体層と、
前記第1の誘電体層上に設けられた定電位の容量電極と
なる第2の導電体層と、前記第2の導電層上に設けられ
た第2の誘電体層と、前記第2の誘電体層上に設けられ
容量部の電極となる第3の導電体層とを有することを特
徴とする半導体装置。
a groove provided in a semiconductor substrate of one conductivity type; an insulating film provided on the inner surface of the groove and serving as an insulation isolation region; and a first conductive layer provided on the insulating film and serving as an electrode of a capacitive part. ,
a first dielectric layer provided on the first conductor layer;
a second conductive layer serving as a constant potential capacitor electrode provided on the first dielectric layer; a second dielectric layer provided on the second conductive layer; A semiconductor device comprising: a third conductor layer provided on the dielectric layer and serving as an electrode of a capacitor section.
JP1332062A 1989-12-20 1989-12-20 Semiconductor device Pending JPH03191567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1332062A JPH03191567A (en) 1989-12-20 1989-12-20 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1332062A JPH03191567A (en) 1989-12-20 1989-12-20 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH03191567A true JPH03191567A (en) 1991-08-21

Family

ID=18250720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1332062A Pending JPH03191567A (en) 1989-12-20 1989-12-20 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH03191567A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0607547A1 (en) * 1993-01-19 1994-07-27 International Business Machines Corporation Two transistor one capacitor trench DRAM cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0607547A1 (en) * 1993-01-19 1994-07-27 International Business Machines Corporation Two transistor one capacitor trench DRAM cell
US5363327A (en) * 1993-01-19 1994-11-08 International Business Machines Corporation Buried-sidewall-strap two transistor one capacitor trench cell

Similar Documents

Publication Publication Date Title
US4742018A (en) Process for producing memory cell having stacked capacitor
JP3403231B2 (en) Semiconductor device and manufacturing method thereof
US5547893A (en) method for fabricating an embedded vertical bipolar transistor and a memory cell
JP2889137B2 (en) Method of fabricating a low leakage substrate plate trench DRAM cell and device formed thereby
US5023683A (en) Semiconductor memory device with pillar-shaped insulating film
JPH027465A (en) Semiconductor memory device
JPH0554699B2 (en)
JPH0648719B2 (en) Semiconductor memory device
JPS60213053A (en) Semiconductor memory element
KR20040104404A (en) Method of manufacturing semiconductor integrated circuit device, and semiconductor integrated circuit device made by its method
US4835589A (en) Ram cell having trench sidewall load
JPS62174968A (en) Semiconductor device
JPS63281457A (en) Semiconductor memory
JPH03191567A (en) Semiconductor device
JPS627153A (en) Semiconductor memory
JPS6340362A (en) Semiconductor storage device
JPS62213273A (en) Dynamic random access memory
JPS6156444A (en) Semiconductor device
JPS5972161A (en) Semiconductor device
JP2826239B2 (en) Capacitor
JPH1174475A (en) Semiconductor integrated circuit device and its manufacture
JPH0329186B2 (en)
JPS627152A (en) Semiconductor memory
JPH01187870A (en) Semiconductor device and its manufacture
JPH02267962A (en) Semiconductor memory cell and its manufacture