JPH0319109A - Magnetic head - Google Patents

Magnetic head

Info

Publication number
JPH0319109A
JPH0319109A JP15416989A JP15416989A JPH0319109A JP H0319109 A JPH0319109 A JP H0319109A JP 15416989 A JP15416989 A JP 15416989A JP 15416989 A JP15416989 A JP 15416989A JP H0319109 A JPH0319109 A JP H0319109A
Authority
JP
Japan
Prior art keywords
magnetic
thin film
head
angle
magnetic head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15416989A
Other languages
Japanese (ja)
Inventor
Michio Yanagi
道男 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electronics Inc
Original Assignee
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Electronics Inc filed Critical Canon Electronics Inc
Priority to JP15416989A priority Critical patent/JPH0319109A/en
Priority to US07/533,827 priority patent/US5222006A/en
Priority to DE4019210A priority patent/DE4019210C2/en
Publication of JPH0319109A publication Critical patent/JPH0319109A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To deteriorate the occurrence ratio of a defect owing to a crack by specifying an angle which a surface accumulating a magnetic thin film and the edge surface of a head make on a medium sliding surface. CONSTITUTION:A track groove is worked for a ferrite piece 2, and sendust films 3 and 3' are respectively formed, whereby both core half bodies are jointed by melting glass 4. The range of the angle theta1 which the thin film forming sur face and the both sides of a core chip make is set to be 50-80 deg.. In such a case, distortion owing to thermal stress which occurs in accordance with the differ ence of a linear expansion coefficient between an oxide magnetic block 2 and the magnetic thin film 3 moves in a direction almost parallel to a head side. Thus, the occurrence ratio of the defect owing to the crack is deteriorated.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高周波信号の記録再生に適した磁気ヘッドに係
り、特に高保磁力記録媒体に対して好適な複合型磁気ヘ
ッドに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic head suitable for recording and reproducing high frequency signals, and particularly to a composite magnetic head suitable for high coercive force recording media.

[従来の技術] 磁気記録の高密度化の要請のために、磁気記録媒体の保
磁力を大きくすることが有利であり、例えばメタルテー
ブ等の高保磁力の磁気記録媒体に信号を記録するために
は強さが大きく、鋭い分布を持つ磁場が必要となる,従
って磁気ヘッドの材料も高飽和磁束密度(Bs)を有す
ることが要求されている。例えば、フエライト材ではB
sは4500〜5000ガウスであり得られる記録磁界
の強さに限界があり、磁気記録媒体の保磁力が1,OO
00e (エルステッド)を超える場合には、記録が不
充分である。一方、金属磁性材料で総称されるFe−A
I−Si合金Ni−Fe合金等の結晶質合金、あるいは
Co−Nb−Zr,Co−Ta−Zr,Co−To−H
f等の非晶質合金を用いた磁気ヘッドは、一般にフエラ
イト材よりもBsが高くかつ摺動ノイズが低いという優
れた特性を有する.しかし、高周波(5MHz)での実
効透磁率は膜厚を10μm以上にすると、うず電流損失
のため、フエラ゜イトよりも低下し、再生効率が低くな
る欠点を有する。また、耐摩耗性に関してはフエライト
材よりも劣る。
[Prior Art] Due to the demand for higher density magnetic recording, it is advantageous to increase the coercive force of a magnetic recording medium. For example, in order to record signals on a high coercive force magnetic recording medium such as a metal tape, A magnetic field of high strength and sharp distribution is required, and therefore the material of the magnetic head is also required to have a high saturation magnetic flux density (Bs). For example, in ferrite material, B
s is 4,500 to 5,000 Gauss, and there is a limit to the strength of the recording magnetic field that can be obtained, and the coercive force of the magnetic recording medium is 1,000 Gauss.
If it exceeds 00e (Oersted), the recording is insufficient. On the other hand, Fe-A, which is a generic name for metal magnetic materials,
Crystalline alloys such as I-Si alloy Ni-Fe alloy, or Co-Nb-Zr, Co-Ta-Zr, Co-To-H
Magnetic heads using amorphous alloys such as F generally have superior properties such as higher Bs and lower sliding noise than ferrite materials. However, when the film thickness is 10 μm or more, the effective magnetic permeability at high frequencies (5 MHz) is lower than that of ferrite due to eddy current loss, which has the disadvantage of lowering the regeneration efficiency. In addition, it is inferior to ferrite material in terms of wear resistance.

そこで上記の様な欠点を解決するために、フエライト材
と磁性fi!膜を組み合わせ、主にフエライト材よりな
る磁気コアのギャップ近傍部に磁性薄膜を真空薄膜形成
技術で成膜したいわゆるメタル・イン・ギャップ(MI
G)ヘッドと呼ばれる複合型ヘッドが主流となっている
Therefore, in order to solve the above-mentioned drawbacks, ferrite material and magnetic fi! The so-called metal-in-gap (MI) is a combination of two films, and a magnetic thin film is formed using vacuum thin film formation technology in the vicinity of the gap of a magnetic core mainly made of ferrite material.
G) Composite heads called heads have become mainstream.

第8図は上述した従来のMIGヘッドの磁気媒体摺動面
の要部構造を示す図であり、図中2,2゜はフェライト
材よりなるブロック、3,3゜は該フェライトブロック
2,2゜上に堆積されたセンダスト薄膜、4は接合用ガ
ラス、gは磁気ギャップである.この種のヘッドは製造
工程において第8図の如き構造がギャップと平行な方向
に繰り返す磁気ブロックをスライス切断して多数のへッ
ドチップを得ることができる.[発明が解決しようとす
る問題点] しかしながら、上述の如き構戒のMIGヘッドでは上記
スライシング加工による切断時に、磁気ギャップを構成
する部分と、同一平面上に被着形成されるセンダスト薄
膜、フエライト、溶着ガラスを同時に直接切断すること
になるので、上記センダスト薄膜と、フエライトとの間
の熱膨張係数の差に起因する歪が開放され、上記センダ
スト薄膜とフエライトとの間に、第8図6,6゜で示す
如きヒビ割れが発生するという問題がある。
FIG. 8 is a diagram showing the structure of the main part of the magnetic medium sliding surface of the conventional MIG head mentioned above, in which 2 and 2 degrees are blocks made of ferrite material, and 3 and 3 degrees are the ferrite blocks 2 and 2.゜ is the sendust thin film deposited on top, 4 is the bonding glass, and g is the magnetic gap. In the manufacturing process of this type of head, a large number of head chips can be obtained by slicing a magnetic block in which the structure shown in FIG. 8 repeats in a direction parallel to the gap. [Problems to be Solved by the Invention] However, in the MIG head constructed as described above, when cutting by the slicing process, the sendust thin film, ferrite, Since the welded glass is directly cut at the same time, the strain caused by the difference in thermal expansion coefficient between the sendust thin film and the ferrite is released, and there is a gap between the sendust thin film and the ferrite as shown in FIG. There is a problem in that cracks as shown at 6° occur.

本発明は斯かる背景に鑑み、夫々酸化物磁性ブロックの
端面に高飽和磁束密度の磁性薄膜が堆積されてなる一対
のコア半体よりなる磁気ヘッドであって、ヒビ割れによ
る不良発生率を著しく低下させ得る新規な磁気ヘッドの
構造を提示するものである。
In view of this background, the present invention is a magnetic head consisting of a pair of core halves each having a magnetic thin film of high saturation magnetic flux density deposited on the end face of an oxide magnetic block, which significantly reduces the failure rate due to cracks. This paper presents a novel magnetic head structure that can reduce the noise level.

【問題点を解決するための千段] 斯かる目的下に於いて本発明の磁気ヘッドによれば、媒
体摺動面に於いて磁性薄膜の堆積される面とヘッドの端
面とのなす角を50゜〜80” に設定したものである
[A Thousand Steps to Solve the Problems] For this purpose, according to the magnetic head of the present invention, the angle between the surface on which the magnetic thin film is deposited on the medium sliding surface and the end surface of the head is It is set at 50° to 80”.

[作用] 上述の構成の磁気ヘッドによれば、酸化物磁性ブロック
と磁性薄膜との線膨張係数の差に従い発生する熱応力に
よる歪がヘッド側面に対し平行に近い方向に動くのでヒ
ビ割れの発生率が著しく低下した。
[Function] According to the magnetic head configured as described above, cracks occur because the strain due to thermal stress generated due to the difference in linear expansion coefficient between the oxide magnetic block and the magnetic thin film moves in a direction nearly parallel to the side surface of the head. rate has decreased significantly.

[実施例] 以下、本発明の実施例について説明する。[Example] Examples of the present invention will be described below.

第1図は本発明の一実施例としての磁気ヘッドの磁気媒
体摺動面の要部構造を示す図で、第8図と同様の構成要
素については同一符号を付している。第8図の磁気ヘッ
ドとの差は磁性薄膜3,3゜の堆積面がヘッドの端面と
なす角θが第8図の磁気ヘッドの00に対して大きな角
θ1に設定されていることである。
FIG. 1 is a diagram showing the main structure of a magnetic medium sliding surface of a magnetic head as an embodiment of the present invention, and the same components as in FIG. 8 are given the same reference numerals. The difference from the magnetic head in FIG. 8 is that the angle θ between the deposition surface of the magnetic thin film 3,3° and the end face of the head is set to a larger angle θ1 than 00 in the magnetic head in FIG. .

この様な媒体摺動面の構造を有するFDD (フロッピ
ーディスクドライブ〉用磁気ヘッドを試作し評価した。
A prototype magnetic head for an FDD (floppy disk drive) having such a structure of the sliding surface of the medium was fabricated and evaluated.

以下、その製造工程を第2図〜第7図を用いて説明する
The manufacturing process will be explained below using FIGS. 2 to 7.

まず、第2図に示す様にフェライトピース2を鏡面ラッ
プにて仕上げ、トラック幅を規制するトラック溝1を回
転砥石にて加工する。
First, as shown in FIG. 2, the ferrite piece 2 is finished with mirror lapping, and the track grooves 1 that regulate the track width are processed using a rotary grindstone.

次に、第3図に示す様にコイルボビンの入る巻線溝5を
設ける.その後、第2図のブロック及び第3図のブロッ
クに対し夫々スパッタリング法により、センダスト膜3
.3゜夫々10μm成膜する。更に該膜3.3゜夫々同
じ厚さのS i O2(0.11μm)を成膜し、これ
を磁気ギャップ材として介して上記2つのブロックを突
き合わせ、溶着ガラス4により、両コア半体を接合して
第4図に示す如きブロックを得る。続いて、媒体摺勤面
を鏡面ラップし、第5図に示す様にバック溝6を加工し
、かかる後に、一点鎖線aに沿った線で切断し、第6図
に示す如きコアチップを得る。
Next, as shown in Fig. 3, a winding groove 5 into which the coil bobbin is inserted is provided. Thereafter, the sendust film 3 is applied to the block in FIG. 2 and the block in FIG. 3 by sputtering, respectively.
.. A film of 10 μm is formed at each angle of 3°. Furthermore, a film of S i O 2 (0.11 μm) having the same thickness of 3.3° was formed on each film, and the two blocks were butted against each other through this film as a magnetic gap material, and both core halves were bonded together using the welding glass 4. By joining, a block as shown in FIG. 4 is obtained. Subsequently, the medium sliding surface is lapped to a mirror finish, and a back groove 6 is formed as shown in FIG. 5. After this, the core chip is cut along the dashed line a to obtain a core chip as shown in FIG.

FDDヘッドでは、さらに、このコアチップの両側面(
本発明におけるヘッドの端面に対応)を鏡面ラップで仕
上げ第7図に示す如きスライダと呼ばれるセラミックス
5.5゜で挟んだ形となる。
In the FDD head, both sides of this core chip (
(corresponding to the end surface of the head in the present invention) is finished with a mirror wrap and is sandwiched between 5.5° ceramics called sliders as shown in FIG.

さて、・この様にしてヘッドは製造できるのであるが、
第1図.第8図bに示す様な薄膜形成面とコアチップの
両側面とのなす角度(θ)を様々な角となし、フエライ
トとセンダスト膜間の境界よりもフエライトに近い側に
発生するヒビ割れ6の発生の様子を調べた。なお、この
θはトラック幅を規制する回転砥石の形状で決まるため
、自由に成形は可能である。
Now, the head can be manufactured in this way,
Figure 1. The angle (θ) between the thin film forming surface and both side surfaces of the core chip as shown in FIG. We investigated the situation. Note that since this θ is determined by the shape of the rotary grindstone that regulates the track width, it is possible to freely shape the track width.

第1表 第1表に示す様にθが30”〜45°ではヒビ割れの発
生率が極めて高いのに対し70゜を越えると、急激に減
少する. この様なヒビ割れがどの工程で発生するか、チェックを
行なった。
Table 1 As shown in Table 1, the incidence of cracking is extremely high when θ is between 30” and 45°, but it rapidly decreases when the angle exceeds 70°. In what process does this type of cracking occur? I checked to see if it did.

結果は、コア単品にスライスする工程で大部分発生する
ことがわかった。原因としては、金属磁性薄膜であるセ
ンダスト膜と、フエライトの線膨張係数の差により発生
する熱応力が、ガラス溶着後に発生・し、その歪がスラ
イスにより、取り除かれるためと思われる。
It was found that most of the results occurred during the process of slicing the core into single pieces. The reason seems to be that thermal stress is generated after the glass is welded due to the difference in linear expansion coefficient between the sendust film, which is a metal magnetic thin film, and ferrite, and the stress is removed by slicing.

従って、第8図の如くこの成膜面と、両側面とのなす角
θを小さく角θ。とすると、熱応力による歪は側面に垂
直に近い方向(第8図X。に示す)に働くためヒビ割れ
し易い。
Therefore, as shown in FIG. 8, the angle θ formed between this film-forming surface and both side surfaces is made smaller. In this case, the strain due to thermal stress acts in a direction close to perpendicular to the side surface (as shown in FIG. 8, X), which tends to cause cracks.

一方、第1図の如く角θを大きな角θ1とすると、上記
歪はコア側面に対し、平行に近い方向(第1図x1に示
す)へ働くためヒビ割れしにくくなると考えられる。
On the other hand, if the angle θ is set to a large angle θ1 as shown in FIG. 1, the strain acts in a direction close to parallel to the side surface of the core (as shown by x1 in FIG. 1), making it difficult for cracks to occur.

ここで、このθ1の設定であるが、第1表から10%前
後のヒビ割れ発生率を許容して50”以上に設定する。
Here, the setting of θ1 is set to 50'' or more, allowing for a cracking occurrence rate of around 10% from Table 1.

また、フエライトとセンダスト膜の境界が擬似ギャップ
として作用したり、トラック幅より外側のセンダスト膜
3.3’間で電磁変換が行われたりしない様に80゜以
下に設定することが望ましい.従って理想的なθ1の範
囲は50°〜80°ということになる. 尚、上記実施例はFDD用ヘッドを例にとって説明した
が、本発明は勿論VTR用ヘッド等他の用途のヘッドに
通用して同様の効果が得られる。
Further, it is desirable to set the angle to 80 degrees or less so that the boundary between the ferrite and the sendust film does not act as a pseudo gap and electromagnetic conversion does not occur between the sendust films 3 and 3' outside the track width. Therefore, the ideal range of θ1 is 50° to 80°. Although the above embodiment has been explained by taking an FDD head as an example, the present invention can of course be applied to heads for other uses such as a VTR head and similar effects can be obtained.

[発明の効果] 以上説明した様に本発明の磁気ヘッドの構造によれば、
製造時の不良発生率を著しく低下させることができ、安
価で量産性の高い磁気ヘッドが得られる.
[Effects of the Invention] As explained above, according to the structure of the magnetic head of the present invention,
The defect rate during manufacturing can be significantly reduced, and a magnetic head that is inexpensive and highly mass-producible can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例としての磁気ヘッドの磁気媒
体摺動面の要部構造を示す図、第2図〜第7図は本発明
の一実施例としてのFDD用磁気ヘッドの製造工程を説
明するための図、 第8図は従来の磁気ヘッドの磁気媒体の摺動面の要部構
造を示す図である。 図中、lはトラック幅規制溝、2,2゛はフェライトブ
ロック、3,3゜はセンダスト膜、4は接合用ガラス、
5はスライダである。
FIG. 1 is a diagram showing the main structure of a magnetic medium sliding surface of a magnetic head as an embodiment of the present invention, and FIGS. 2 to 7 are manufacturing of a magnetic head for FDD as an embodiment of the present invention. FIG. 8 is a diagram showing the main structure of a sliding surface of a magnetic medium of a conventional magnetic head. In the figure, l is a track width regulating groove, 2, 2゛ is a ferrite block, 3, 3゜ is a sendust film, 4 is a bonding glass,
5 is a slider.

Claims (1)

【特許請求の範囲】[Claims] 夫々酸化物磁性ブロックの端面に高飽和磁束密度の磁性
薄膜が堆積されてなる一対のコア半体を、磁気ギャップ
材を介して突合せてなる磁気ヘッドであって、媒体摺動
面に於いて前記磁性薄膜の堆積される面とヘッドの端面
とのなす角を50゜〜80゜の範囲に設定したことを特
徴とする磁気ヘッド。
A magnetic head comprising a pair of core halves each having a magnetic thin film of high saturation magnetic flux density deposited on the end face of an oxide magnetic block, butted against each other with a magnetic gap material interposed therebetween. A magnetic head characterized in that the angle between the surface on which the magnetic thin film is deposited and the end surface of the head is set in the range of 50° to 80°.
JP15416989A 1989-06-16 1989-06-16 Magnetic head Pending JPH0319109A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP15416989A JPH0319109A (en) 1989-06-16 1989-06-16 Magnetic head
US07/533,827 US5222006A (en) 1989-06-16 1990-06-06 Magnetic head and core chip having a magnetic thin film
DE4019210A DE4019210C2 (en) 1989-06-16 1990-06-15 Core head disks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15416989A JPH0319109A (en) 1989-06-16 1989-06-16 Magnetic head

Publications (1)

Publication Number Publication Date
JPH0319109A true JPH0319109A (en) 1991-01-28

Family

ID=15578342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15416989A Pending JPH0319109A (en) 1989-06-16 1989-06-16 Magnetic head

Country Status (1)

Country Link
JP (1) JPH0319109A (en)

Similar Documents

Publication Publication Date Title
JPH0477370B2 (en)
JPS6134707A (en) Magnetic head
JPH0319109A (en) Magnetic head
JPS6214313A (en) Magnetic head
JPH08329409A (en) Magnetic head
JPH0580724B2 (en)
JPH01185811A (en) Magnetic head
JPS63275005A (en) Composite magnetic head
JPH03225607A (en) Magnetic head and its production
JPS63288407A (en) Production of magnetic head
JPH08255310A (en) Magnetic head and its production
JPH04356701A (en) Composite type magnetic head
JPH0370283B2 (en)
JPH0448416A (en) Magnetic head
JPH0411306A (en) Composite-type magnetic head and its production
JPH0795364B2 (en) Magnetic head
JPH0476168B2 (en)
JPS6371906A (en) Magnetic head
JPH04324106A (en) Production of composite head
JPS63164010A (en) Manufacture of magnetic head
JPH0319110A (en) Magnetic head
JPH0461404B2 (en)
JPS63229605A (en) Magnetic head
JPH08221704A (en) Magnetic head
JPH01260609A (en) Composite magnetic head and its manufacture