JPH03191016A - Method for refining molten pig iron - Google Patents

Method for refining molten pig iron

Info

Publication number
JPH03191016A
JPH03191016A JP33062089A JP33062089A JPH03191016A JP H03191016 A JPH03191016 A JP H03191016A JP 33062089 A JP33062089 A JP 33062089A JP 33062089 A JP33062089 A JP 33062089A JP H03191016 A JPH03191016 A JP H03191016A
Authority
JP
Japan
Prior art keywords
desulfurization
pig iron
slag
molten pig
dephosphorization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33062089A
Other languages
Japanese (ja)
Inventor
Susumu Mukawa
進 務川
Yoshimasa Mizukami
水上 義正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP33062089A priority Critical patent/JPH03191016A/en
Publication of JPH03191016A publication Critical patent/JPH03191016A/en
Pending legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PURPOSE:To efficiently and inexpensively subject a molten pig iron to dephosphorization and desulfurization refining by treating a molten pig iron with oxygen and a dephosphorizing agent composed essentially of CaO, adding a material composed essentially of MgO or CaO, and carrying out desulfurizing treatment by blowing a desulfurizing agent into the above molten pig iron. CONSTITUTION:A molten pig iron is dephosphorized with oxygen and a dephosphorizing agent composed essentially of CaO, and successively, desulfurizing treatment is carried out by blowing a desulfurizing agent into the above molten pig iron. In the above-mentioned refining method for the molten pig iron, prior to the above desulfurizing treatment, a material composed essentially of MgO or/and CaO is added by a small quantity to slag after the above dephosphorizing treatment. By this method, rephosphorizing and resulfurizing reactions from the slag can be prevented and dephosphorization and desulfurization can be carried out easily and efficiently in a single refining vessel while obviating the necessity of slag removing state and preliminary desiliconizing treatment, by which the molten pig iron reduced in phosphorus and sulfur concentrations can stably be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、低りん濃度、低硫黄濃度の溶銑を得る方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for obtaining hot metal having a low phosphorus concentration and a low sulfur concentration.

(従来の技術) 近年、鋼材使用環境の厳格化に伴い、鋼材特性の向上が
望まれている。一方、鋼材特性向上のためには、特に、
りん、硫黄等の不純物低減が特に効果的である。
(Prior Art) In recent years, as the environment in which steel materials are used has become stricter, improvements in the properties of steel materials have been desired. On the other hand, in order to improve the properties of steel,
Reduction of impurities such as phosphorus and sulfur is particularly effective.

このため、従来、高炉−転炉法においては、転炉におけ
るCaO系脱りん、また、溶銑段階で事前に脱りん、脱
硫を行う溶銑予備処理法が採用されてきた。これらの技
術においては、りんは酸化反応によりスラグ中へ除去さ
れる。一方、還元反応である脱硫を進行せしめるために
、■事前に溶銑を脱珪処理し、脱りん時の同時脱硫反応
を生じさせる方法、■脱りんと脱硫処理を分離し、その
間に排滓を行う方法、また、特開昭58−16007号
公報に見られるように■脱珪・脱りん・脱硫処理を排滓
無しに行うために脱りん処理後のスラグの塩基度(Ca
b)/(Sing) ((Cab)、(SiOz)は各
々スラグ中のそれらの重量パーセントを示す)を2以上
として、引き続き脱硫剤を吹き込んで脱硫処理を行う方
法、あるいは脱硫時にNa2CO1系フラツクスを使用
してより脱りん・脱硫能力の高いスラグとする方法が採
られてきた。
For this reason, conventionally, in the blast furnace-converter method, a hot metal pretreatment method has been adopted in which CaO-based dephosphorization in the converter and dephosphorization and desulfurization are performed in advance at the hot metal stage. In these techniques, phosphorus is removed into the slag by an oxidation reaction. On the other hand, in order to proceed with desulfurization, which is a reduction reaction, there are two methods: ■ A method in which hot metal is desiliconized in advance and a simultaneous desulfurization reaction occurs during dephosphorization; In addition, as seen in JP-A No. 58-16007, the basicity (Ca
b) / (Sing) ((Cab) and (SiOz) each indicate their weight percentage in the slag) is set to 2 or more, and a desulfurization agent is subsequently blown into the desulfurization treatment, or a Na2CO1-based flux is used during desulfurization. A method has been adopted that uses slag to produce slag with higher dephosphorization and desulfurization ability.

しかし、■の方法ではスラグの塩基度を高めるために事
前に溶銑の珪素濃度を下げ、更に脱珪時に発生するSi
O□主体のスラグを排滓する必要がある。そのため、排
滓設備を設け、脱珪、脱りん処理設備を別々に設けなけ
ればならず、大きな設備費用が必要となり、また、処理
時間が長いために、生産性を阻害する、溶銑温度の低下
が大きい、溶銑保持容器の耐火物使用量が増える、とい
う問題があった。また、■の方法では脱りん後スラグを
排滓して新たに脱硫を行う必要があるため、■同様、排
滓設備、別々の処理設備が必要となり、処理時間増加に
より、生産性の阻害、溶銑温度の低下、耐火物使用量の
増加の問題があった。更に、■の方法では、■の方法に
比べ、移し換え、または、排滓工程が無いために、処理
時間が短く、温度低下、耐火物使用量も少ないという利
点を有する。しかし、この場合にはCaOまたはNa2
CO,、が大量に必要となり、フランクスコストの増加
を招くという問題があった。またNazCO:+を使用
する場合には、発煙のため環境汚染の問題が発生すると
いう欠点を有する。
However, in method (2), the silicon concentration of the hot metal is lowered in advance to increase the basicity of the slag, and the silicon concentration generated during desiliconization is further reduced.
It is necessary to remove the slag mainly composed of O□. Therefore, it is necessary to install slag removal equipment and separate desiliconization and dephosphorization treatment equipment, which requires large equipment costs.In addition, because the treatment time is long, productivity is hindered and the temperature of hot metal decreases. There was a problem that the amount of refractory used in the hot metal holding container increased. In addition, in method (2), it is necessary to slag the slag after dephosphorization and perform new desulfurization, so similar to (2), slag removal equipment and separate processing equipment are required, which increases processing time, hinders productivity, and There were problems with a drop in hot metal temperature and an increase in the amount of refractories used. Furthermore, compared to method (2), method (2) does not require a transfer or slag step, so it has the advantages of shorter processing time, lower temperature, and less amount of refractory used. However, in this case CaO or Na2
There was a problem in that a large amount of CO was required, leading to an increase in franking cost. Furthermore, when NazCO:+ is used, it has the disadvantage of causing environmental pollution due to smoke generation.

(発明が解決しようとする課題) 本発明は、上記のような従来法の問題点に鑑みてなされ
たものである。即ち、大きな設備費を要することなく、
処理時間が長時間に及ぶことなく、耐火物使用量を最少
限に抑制し、かつスラグの塩基度を高めることなく即ち
、大量のCaO、NazCO3を必要とすることなく効
率的で安価な溶銑の脱りん・脱硫法を提供するものであ
る。
(Problems to be Solved by the Invention) The present invention has been made in view of the problems of the conventional methods as described above. In other words, without requiring large equipment costs,
Efficient and inexpensive production of hot metal without requiring long processing times, minimizing the amount of refractories used, and increasing the basicity of slag, that is, without requiring large amounts of CaO and NazCO3. It provides a dephosphorization/desulfurization method.

(課題を、解決するための手段) 本発明は、生産性の確保、熱ロス、耐火物使用量の抑制
の立場から、一つの精錬容器内で同時脱珪・脱りん処理
→排滓無し→後吹き脱硫処理を行い、かつ脱硫時の脱硫
剤効率を低下させないために、脱りん後スラグに酸化マ
グネシウムを主成分とする物質、または酸化カルシウム
を主成分とする物質またはその両方を主成分とする物質
を添加し、溶銑上のスラグ(以下トップスラグと称する
)の性状を反応に寄与しないものとして微粉吹き込み脱
硫を実施することにより、脱りん・脱硫剤の使用量を増
すことなく効率的に溶銑の脱りん、脱硫処理を行う方法
である。
(Means for Solving the Problems) The present invention provides simultaneous desiliconization and dephosphorization treatment in one refining vessel → No slag → In order to perform post-blowing desulfurization treatment and not reduce the desulfurization agent efficiency during desulfurization, the slag after dephosphorization is treated with a substance containing magnesium oxide as a main component, a substance containing calcium oxide as a main component, or both as a main component. By adding a substance that dephosphorizes the hot metal and changing the properties of the slag on top of the hot metal (hereinafter referred to as top slag) so that it does not contribute to the reaction, desulfurization can be carried out efficiently without increasing the amount of dephosphorization/desulfurization agent used. This is a method of dephosphorizing and desulfurizing hot metal.

(作 用) 一般に、溶銑の脱りん反応は酸化反応を利用して行われ
ているが、脱硫反応は還元反応を利用して行われている
。しかし、溶銑における反応ではある特定範囲にスラグ
の塩基度、酸素ポテンシャルを保つことにより、同時に
脱りん反応と脱硫反応を生じせしめることが明らかにさ
れている。しかし、例えばCaO系フランクスにより同
時脱りん・脱硫反応を生じさせるためには、最終的なス
ラグの塩基度(Cab)/ (SiOz) ((Cab
)、(SiOz)は各々スラグ中のそれらの重量パーセ
ントを示す)をおおよそ3.5以上に保つ必要があるた
め、CaONを減らすためには、事前に脱珪処理を必要
としていた。このようなプロセスでは脱りんに必要なC
aO量を減らすために酸素量を増やせば脱硫効率は低下
し、また逆に酸素量を減らしてCaOilを増やせばC
a0O脱りん効率が低下する。そのため、低りんかつ、
低硫黄の溶銑を得るためには、酸素、CaOともに増加
しなければならず、精錬フシックス削減の上では限界が
あった。一方、脱珪、脱りんと脱硫を分離し、その間に
排滓を行うプロセスは精錬剤使用量は減らせる可能性は
あるが、全処理時間が長くなるため、自然放熱、スラグ
顕熱の放出によるエネルギーロスが増え、また、処理設
備も膨大なものになるという問題があった。
(Function) Generally, the dephosphorization reaction of hot metal is carried out using an oxidation reaction, while the desulfurization reaction is carried out using a reduction reaction. However, in the reaction in hot metal, it has been revealed that by keeping the basicity and oxygen potential of the slag within a certain range, dephosphorization and desulfurization reactions can occur simultaneously. However, for example, in order to cause simultaneous dephosphorization and desulfurization reactions using CaO-based Franks, the final slag basicity (Cab)/(SiOz) ((Cab
) and (SiOz), each representing their weight percentage in the slag, must be maintained at approximately 3.5 or higher, so in order to reduce CaON, desiliconization treatment was required in advance. In such a process, the C required for dephosphorization is
If you increase the amount of oxygen to reduce the amount of aO, the desulfurization efficiency will decrease, and conversely, if you decrease the amount of oxygen and increase the amount of CaOil, the desulfurization efficiency will decrease.
The a0O dephosphorization efficiency decreases. Therefore, low-linked cutlet,
In order to obtain hot metal with low sulfur, both oxygen and CaO must be increased, and there is a limit to the reduction of refining fusics. On the other hand, a process in which desiliconization, dephosphorization, and desulfurization are separated, and the slag is removed in between, may reduce the amount of refining agent used, but the total processing time will be longer, resulting in the release of natural heat and sensible heat from the slag. There were problems in that energy loss increased and the processing equipment became enormous.

そこで、本発明者らは、生産性を確保しながら短時間の
内にフランクス使用量の増加を招くこと無く溶銑を効率
的に脱りん、脱硫処理するため、一つの精錬容器内で効
率的に脱りん・脱硫処理を行う方法として事前脱珪無し
同時脱珪・脱りん処理→排滓無し→後吹き脱硫処理の工
程において、脱りん処理後のトップスラグに酸化マグネ
シウムを主成分とする物質、または酸化カルシウムを主
成分とする物質またはその両方を主成分とする物質を少
量添加することにより、微粉吹き込みによる脱硫処理時
の脱硫剤の効率を高め、トータルの精錬剤使用量の少な
い、熱ロスの少ない、処理時間の短い溶銑の脱りん・脱
硫方法を発明した。
In order to efficiently dephosphorize and desulfurize hot metal without increasing the amount of franks used in a short period of time while ensuring productivity, the present inventors devised As a method for performing dephosphorization and desulfurization treatment, in the process of simultaneous desiliconization and dephosphorization treatment without prior desiliconization → no slag → post-blowing desulfurization treatment, a substance mainly composed of magnesium oxide, Alternatively, by adding a small amount of a substance whose main component is calcium oxide or both, the efficiency of the desulfurization agent during desulfurization treatment by fine powder injection can be increased, reducing the total amount of refining agent used and reducing heat loss. We have invented a method for dephosphorizing and desulfurizing hot metal that requires less waste and a shorter processing time.

微粉吹き込み脱硫時には、吹き込まれた微粉が浮上する
間の反応(以下トランジトリ−反応と称する)および浮
上後の微粉により生成する、または、初めから溶銑上に
存在するトップスラグとの反応(以下パーマネント反応
と称する)が起こる。事前脱珪無し同時脱珪・脱りん処
理→排滓無し→後吹き脱硫処理においては、脱りん後に
生成するトップスラグの塩基度(CaO)/(SiO□
)が小さく、かつ酸化力が大きいことから、トップスラ
グに新たに脱硫剤を添加しても容易には脱硫反応が起こ
らず、脱硫剤の効率が悪いという欠点があった。また、
脱硫処理中に溶銑中の炭素によるスラグの還元が進み、
酸化力が低下して復りんが生じるという問題があった。
During fine powder blowing desulfurization, there is a reaction between the injected fine powder while it floats (hereinafter referred to as transitory reaction) and a reaction with the top slag that is generated by the fine powder after floating or is already present on the hot metal (hereinafter referred to as permanent reaction). ) occurs. In simultaneous desiliconization and dephosphorization treatment without pre-desiliconization → no slag → post-blowing desulfurization treatment, the basicity of the top slag produced after dephosphorization (CaO) / (SiO□
) is small and the oxidizing power is large, so even if a new desulfurization agent is added to the top slag, the desulfurization reaction does not occur easily, resulting in a disadvantage that the efficiency of the desulfurization agent is low. Also,
During the desulfurization process, the reduction of slag by carbon in the hot metal progresses,
There was a problem in that the oxidizing power decreased and rephosphorization occurred.

そこで、本発明者らは、脱りん後スラグの性状を引き続
き行う脱硫処理時の反応に寄与しないようにするため、
脱りん後スラグに酸化マグネシウムを主成分とする物質
、または酸化カルシウムを主成分とする物質またはその
両方を主成分とする物質を添加し、脱りん後のスラグを
高融点の化合物である2CaO・5iOz (融点: 
2130°C)または、MgO(融点2800°C)を
晶出させ、個体化してりんを安定化するとともに、これ
ら生成物を脱硫処理時の反応に寄与させないことにより
トランジトリ−反応を主体に反応を進行させ、あるいは
、トップスラグからの復りんおよび、脱硫処理中に並行
してパーマネント反応で生じる復硫反応を防止すること
により、効率的に溶銑の脱りん脱硫処理を行い得ること
を見出した。
Therefore, in order to prevent the properties of the slag after dephosphorization from contributing to the reaction during the subsequent desulfurization treatment, the present inventors
After dephosphorization, a substance mainly composed of magnesium oxide, a substance mainly composed of calcium oxide, or a substance mainly composed of both is added to the slag after dephosphorization, and the slag after dephosphorization is converted into 2CaO, a compound with a high melting point. 5iOz (melting point:
2130°C) or MgO (melting point 2800°C) is crystallized and solidified to stabilize phosphorus, and by not allowing these products to contribute to the reaction during desulfurization treatment, the reaction can be carried out mainly through transition reactions. It has been found that dephosphorization and desulfurization of hot metal can be efficiently carried out by allowing the dephosphorization to proceed or by preventing the resulfurization from the top slag and the resulfurization reaction occurring in a permanent reaction in parallel during the desulfurization.

(実施例) 表1に本発明による実施例を比較例とともに示す。(Example) Table 1 shows examples according to the present invention together with comparative examples.

実施例1は、第1図に示す精錬装置を用い、羽口lより
ガスを吹き込みつつ初期に生石灰、鉄鉱石、Mn鉱石、
螢石よりなる脱りん剤を上方添加し、ランス2より酸素
ガスを上吹きしつつ脱珪・脱りん処理を施した後、上吹
き酸素ガスを止め、軽焼ドロマイトを単位溶銑重量当た
り2.3kg/lを添加した後、引き続きソーダ灰と生
石灰の重量混合比l:2の微粉を羽口1より吹き込んだ
場合である。本例では初期珪素、りん、硫黄濃度が各h
O931重量%、0.102重量%、0.030重量%
の溶銑を、全生石灰添加!11.2kg/l、ソーダ灰
添加量1.1kg/lにてりん、硫黄濃度が各々0.0
15重量%、0.006重量%の低りん、低硫黄溶銑が
得られた。
In Example 1, quicklime, iron ore, Mn ore,
A dephosphorizing agent made of fluorite is added upward, and after desilicification and dephosphorization are performed while blowing oxygen gas upward from lance 2, the top blowing oxygen gas is stopped, and 2. This is the case where, after adding 3 kg/l, fine powder of soda ash and quicklime at a weight mixing ratio of 1:2 was subsequently blown into the tuyere 1. In this example, the initial silicon, phosphorus, and sulfur concentrations are
O931% by weight, 0.102% by weight, 0.030% by weight
Add all quicklime to hot metal! 11.2kg/l, soda ash addition amount 1.1kg/l, phosphorus and sulfur concentration each 0.0
Low phosphorus and low sulfur hot metal of 15% by weight and 0.006% by weight was obtained.

(1)式で定義する脱硫効率に値は0,52であった。The desulfurization efficiency defined by equation (1) had a value of 0.52.

4s ここに、(S)t:脱硫処理後硫黄濃度(重量%)[s
)r:脱硫処理後硫黄濃度(重量%)−s   :脱硫
剤原単位(kg/l)実施例2は、第2図に示す精錬容
器を用い、微粉生石灰、ミルスケール、螢石粉からなる
脱りん剤を吹き込みランス11より吹き込みつつ上吹き
ランス12より酸素ガスを上吹きしつつ脱珪・脱りん処
理した後、酸素ガスを止め、単位溶銑重量当たり1.6
kg/lの生石灰を上方より添加した後、引き続きソー
ダ灰と生石灰の重量混合比1:2の微粉を吹き込みラン
ス11より吹き込んだ場合である。
4s Here, (S)t: Sulfur concentration after desulfurization treatment (wt%) [s
)r: Sulfur concentration after desulfurization treatment (wt%) -s: Desulfurization agent consumption (kg/l) After performing desiliconization and dephosphorization treatment while blowing in phosphorus agent from lance 11 and blowing oxygen gas upward from top blowing lance 12, the oxygen gas is stopped and 1.6 per unit weight of hot metal is removed.
This is a case where after adding kg/l of quicklime from above, fine powder of soda ash and quicklime with a weight mixing ratio of 1:2 was blown in from the lance 11.

本例では、初期珪素、りん、硫黄濃度、が各々0.25
重量%、0.09重量%、0.029重量%の溶銑を、
全生石灰添加3112.3kg/l、ソーダ灰添加量1
.2kg/lにてりん、硫黄濃度が各々0.016重量
%、0.010重量%の低りん、低硫黄溶銑が得られた
。脱硫効率に値は、0.30であった。
In this example, the initial silicon, phosphorus, and sulfur concentrations are each 0.25.
Weight%, 0.09% by weight, 0.029% by weight of hot metal,
Total quicklime addition 3112.3kg/l, soda ash addition 1
.. At 2 kg/l, low phosphorus and low sulfur hot metal with phosphorus and sulfur concentrations of 0.016% by weight and 0.010% by weight, respectively, was obtained. The desulfurization efficiency value was 0.30.

比較例1は、実施例1と同一の精錬容器を用い、他の操
業条件はほぼ実施例1と同一で脱りん後、MgOの上方
添加を行わなかった場合であるが、初期珪素、りん、硫
黄濃度が各々0.28重量%、0、080重景重量0.
026重量%の溶銑が生石灰原単位14.5 kg/ 
t、ソーダ灰原単位1.9 kg/ tにて、りん濃度
0.023重量%、硫黄濃度0.015重量%に低下し
たに留まった。
In Comparative Example 1, the same refining vessel as in Example 1 was used, other operating conditions were almost the same as in Example 1, and no upward addition of MgO was performed after dephosphorization. The sulfur concentration is 0.28% by weight, 0.080% by weight, and 0.080% by weight, respectively.
026% by weight of hot metal has a quicklime consumption of 14.5 kg/
t, soda ash consumption rate was 1.9 kg/t, and the phosphorus concentration was only reduced to 0.023% by weight and the sulfur concentration was reduced to 0.015% by weight.

比較例2は第2図に示す精錬容器を用い、吹き込みラン
ス11より微粉生石灰、ミルスケール、螢石粉からなる
脱りん剤を吹き込みつつ、更に、上吹きランス12より
酸素ガスを上吹きしつつ、同時脱珪脱りん、同時脱硫処
理を行った例である。初期珪素、りん硫黄濃度が各々0
.25重量%、0.090重量%、0.031重量%の
溶銑を処理した結果、りん、硫黄濃度は各々0.02%
、0.014%まで低下したが、生石灰原単位21kg
/l、ソーダ灰原単位3kg/lと大量の精錬剤を要し
た。また、処理時間が長く、温度低下も大きくなった。
Comparative Example 2 used the refining vessel shown in FIG. 2, and while blowing in a dephosphorizing agent consisting of finely divided quicklime, mill scale, and fluorite powder from the blowing lance 11, and blowing oxygen gas upward from the top blowing lance 12, This is an example of simultaneous desiliconization, dephosphorization, and simultaneous desulfurization treatment. Initial silicon and phosphorus sulfur concentrations are each 0.
.. As a result of processing hot metal of 25% by weight, 0.090% by weight, and 0.031% by weight, the phosphorus and sulfur concentrations were each 0.02%.
, the consumption of quicklime decreased to 0.014%, but the basic unit of quicklime was 21kg.
/l, soda ash basic unit was 3kg/l, and a large amount of refining agent was required. Furthermore, the processing time was long and the temperature drop was also large.

第3図は以上の実施例と比較例の実験時のりん、硫黄濃
度、溶銑温度の推移を示す。比較例1では脱硫時に復り
ん反応を生じ、結果的に目的とするりん濃度(0,02
重量%以下)まで脱りん出来なかった。比較例2は、長
時間処理となり、溶銑温度の低下が大であった。
FIG. 3 shows the changes in phosphorus, sulfur concentration, and hot metal temperature during the experiments of the above examples and comparative examples. In Comparative Example 1, a rephosphorus reaction occurs during desulfurization, resulting in the target phosphorus concentration (0.02
% by weight or less). In Comparative Example 2, the treatment was carried out for a long time, and the temperature of the hot metal decreased significantly.

(発明の効果) 本発明によれば、従来の溶銑膜りん・脱硫方法に比べ、
精錬容器は一つで良く、かつ排滓工程、事前脱珪処理を
必要とせず、上方より若干の精錬剤を添加する設備の増
設のみでかつ、従来法に比べ、熱のロス、過剰な人員を
配することなく、安定して低りん、低硫黄濃度の溶銑を
得ることが出来るようになった。
(Effect of the invention) According to the present invention, compared to the conventional hot metal membrane phosphorus/desulfurization method,
Only one refining vessel is required, no slag removal process or preliminary desiliconization treatment is required, only the addition of equipment for adding a small amount of refining agent from above, and compared to conventional methods, there is less heat loss and excessive personnel. It is now possible to stably obtain hot metal with low phosphorus and low sulfur concentrations without the need for chlorine.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1および比較例1を行うに用い
た精錬装置を示す側断面図、第2図は本発明の実施例2
および比較例2を行うに用いた精錬装置を示す側断面図
、第3図は本発明の実施例と比較例の実験時のりん、硫
黄濃度、溶銑温度の推移を示す図である。 第1図 1・・・底吹き羽目、2・・・酸素上吹きランス、3・
・・炉上ホンパー 4・・・精錬容器、5・・・ブロー
タンク、6・・・吹き込みガス、7・・・酸素ガス、8
・・・トップスラグ、9・・・溶銑。 第2図 11・・・吹き込みランス、12・・・酸素上吹きラン
ス、13・・・精錬容器、14・・・ホッパー、15・
・・吹き込みガス、16・・・精錬剤、17・・・酸素
ガス。 第 3 図 時間(分ン
Figure 1 is a side sectional view showing the refining equipment used in Example 1 of the present invention and Comparative Example 1, and Figure 2 is Example 2 of the present invention.
FIG. 3 is a side cross-sectional view showing the refining equipment used in Comparative Example 2, and FIG. 3 is a diagram showing changes in phosphorus, sulfur concentration, and hot metal temperature during experiments of Examples of the present invention and Comparative Examples. Fig. 1 1...Bottom blowing slit, 2...Oxygen top blowing lance, 3...
...Furnace humper 4...Refining container, 5...Blow tank, 6...Blowing gas, 7...Oxygen gas, 8
...Top slag, 9...Hot metal. Fig. 2 11... Blowing lance, 12... Oxygen top blowing lance, 13... Refining vessel, 14... Hopper, 15...
... Blowing gas, 16... Refining agent, 17... Oxygen gas. Figure 3 Time (minutes)

Claims (1)

【特許請求の範囲】[Claims] 溶銑の脱りん・脱硫処理を行うに際し、溶銑を酸素及び
酸化カルシウムを主成分とする脱りん剤にて脱りんする
こと、及び、引き続き脱硫剤を吹き込み脱硫処理を行う
に先立ち、酸化マグネシウムを主成分とする物質または
酸化カルシウムを主成分とする物質またはこの両方を主
成分とする物質を添加することを特徴とする溶銑の精錬
方法。
When performing dephosphorization and desulfurization treatment of hot metal, it is necessary to dephosphorize the hot metal with a dephosphorization agent containing oxygen and calcium oxide as the main components, and to subsequently blow in the desulfurization agent and use magnesium oxide as the main component before performing the desulfurization treatment. A method for refining hot metal characterized by adding a substance having calcium oxide as a main component, a substance having calcium oxide as a main component, or a substance having both as main components.
JP33062089A 1989-12-20 1989-12-20 Method for refining molten pig iron Pending JPH03191016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33062089A JPH03191016A (en) 1989-12-20 1989-12-20 Method for refining molten pig iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33062089A JPH03191016A (en) 1989-12-20 1989-12-20 Method for refining molten pig iron

Publications (1)

Publication Number Publication Date
JPH03191016A true JPH03191016A (en) 1991-08-21

Family

ID=18234698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33062089A Pending JPH03191016A (en) 1989-12-20 1989-12-20 Method for refining molten pig iron

Country Status (1)

Country Link
JP (1) JPH03191016A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101321086B1 (en) * 2010-12-22 2013-10-23 주식회사 포스코 Method for refining molten iron

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101321086B1 (en) * 2010-12-22 2013-10-23 주식회사 포스코 Method for refining molten iron

Similar Documents

Publication Publication Date Title
JP3557910B2 (en) Hot metal dephosphorization method and low sulfur and low phosphorus steel smelting method
GB2072221A (en) Steelmaking process with separate refining steps
US4373949A (en) Method for increasing vessel lining life for basic oxygen furnaces
JP2000160233A (en) Method for desulfurize-refining stainless steel
EP0015396B1 (en) A method for increasing vessel lining life for basic oxygen furnaces
JPH0141681B2 (en)
JP3288208B2 (en) Hot metal dephosphorization method
JPH03191016A (en) Method for refining molten pig iron
KR100226901B1 (en) Desulphurization agent of molten metal
RU2181382C2 (en) Method of desulfurization of liquid cast iron
JPH05156338A (en) Method for reusing low phosphorus converter slag
JPS6362562B2 (en)
JP2002256325A (en) Method for pretreating molten iron having little amount of slag by using converter type vessel
JPS6225724B2 (en)
KR850001607B1 (en) Method for increasing vessel lining life for basic oxygen furnaces
JPH0364410A (en) Pretreatment of molten iron
JP3793390B2 (en) Hot metal desiliconization and desulfurization methods
JPH09176717A (en) Method for steelmaking molten iron of blast furnace
JPH11100608A (en) Method for desiliconizing and desulfurizing molten iron
JPH111714A (en) Steelmaking method
JPH02200715A (en) Method for dephosphorizing and desulfurizing molten iron
JP3704912B2 (en) Hot metal desiliconization and desulfurization methods
JP2005146359A (en) Method for preliminarily treating molten pig iron
SU956567A1 (en) Process for treating molten cast iron
JPS61104014A (en) Method for reducing mn ore with high efficiency in oxidation refining furnace