JPH03189524A - Light wavelength characteristic measuring device - Google Patents

Light wavelength characteristic measuring device

Info

Publication number
JPH03189524A
JPH03189524A JP32822289A JP32822289A JPH03189524A JP H03189524 A JPH03189524 A JP H03189524A JP 32822289 A JP32822289 A JP 32822289A JP 32822289 A JP32822289 A JP 32822289A JP H03189524 A JPH03189524 A JP H03189524A
Authority
JP
Japan
Prior art keywords
light
frequency
wavelength
spectrometer
wavelength plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32822289A
Other languages
Japanese (ja)
Inventor
Takashi Iwasaki
隆志 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ando Electric Co Ltd
Original Assignee
Ando Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ando Electric Co Ltd filed Critical Ando Electric Co Ltd
Priority to JP32822289A priority Critical patent/JPH03189524A/en
Publication of JPH03189524A publication Critical patent/JPH03189524A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To simplify a measuring operation by providing a filter where an output from a photodetector is taken as an input and a cut-off frequency is set much smaller than the fourfold frequency of the rotational frequency of a 1/2 wavelength plate to pass a low band. CONSTITUTION:The 1/2 wavelength plate 2 is arranged perpendicular to measuring light from an input terminal 1 and rotated at a constant speed by a motor 3. Next, the light transmitted through the wavelength plate 2 is received by a spectroscope 4, where the light is spectrally splitted to the respective wavelength components, and the lightn outputted from the spectroscope 4 is converted into an electrical signal in the photodetector 5. Since the cut-off frequency is set much smaller than the fourfold frequency of the rotational frequency of the wavelength plate 2 in the LPF 6, the output of the LPF 6 is proportioned to a value averaged over the 1/4 cycle of a rotational angle alpha. With such constitution, the measuring operation is simplified.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、光の偏光状態が変動しても、測定レベルが
変動しない光波長特性測定装置についてのものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an optical wavelength characteristic measuring device whose measurement level does not change even if the polarization state of light changes.

[従来の技術] 次に、従来技術による光波長特性測定装置の溝数を第2
図により説明する。
[Conventional technology] Next, the number of grooves in the optical wavelength characteristic measuring device according to the conventional technology is
This will be explained using figures.

!! 2図の11は測定光の入力端子、12は分光器、
13は分光素子制御部、14は偏光素子、15と16は
光検出器、17はパワー測定部、18は表示部である。
! ! In Figure 2, 11 is the measurement light input terminal, 12 is the spectrometer,
13 is a spectroscopic element control section, 14 is a polarizing element, 15 and 16 are photodetectors, 17 is a power measurement section, and 18 is a display section.

分光器12は入力端子11からの測定光を受けて分光し
、分光素子制御部13は分光器12を制御する。
The spectrometer 12 receives the measurement light from the input terminal 11 and spectrally spectra it, and the spectroscopic element control section 13 controls the spectrometer 12 .

分光器12で分光された各波長成分は、偏光素子14て
2つの互いに違う方向のP偏光成分とS偏光成分に分離
される。
Each wavelength component separated by the spectrometer 12 is separated into two P-polarized light components and an S-polarized light component in two mutually different directions by a polarizing element 14.

光検出器15・16は、偏光素子14で分離されたP偏
光、S偏光を受光して各光パワーに対応した電気信号に
変換する。
The photodetectors 15 and 16 receive the P-polarized light and the S-polarized light separated by the polarizing element 14, and convert them into electrical signals corresponding to each optical power.

パワー測定部17には、特性記憶部17A、パワー算出
部17B、光波長制御部17Gがあり、パワー測定部1
7は光検出器15・16からの電気信号を受け、分光器
12の各偏光成分に対する回折効率と偏光素子14の損
失率に基づいて測定)1乙のパワーを演算して求める。
The power measurement section 17 includes a characteristic storage section 17A, a power calculation section 17B, and an optical wavelength control section 17G.
7 receives electric signals from the photodetectors 15 and 16, and calculates the power of 1 (measured) based on the diffraction efficiency for each polarized light component of the spectrometer 12 and the loss rate of the polarizing element 14.

第2図の装置によ九は、分光器12で測定光から特定の
波長成分だけ取り出し、そのパワーを測定することがで
きる。また、分光器12の透過波長を順次変えながら、
次々とパワーを測定していくことにより、測定31Gの
波長対レベル特性を求めることができる。
The apparatus shown in FIG. 2 can extract only a specific wavelength component from the measurement light using the spectrometer 12 and measure its power. Also, while sequentially changing the transmission wavelength of the spectrometer 12,
By measuring the power one after another, the wavelength versus level characteristic of the measurement 31G can be determined.

また、第2図の装置によれば、分光器12の出力を2つ
の方向の違う偏光成分に分離した後に、それぞれの成分
についてパワーを測定し、その後で予め測定されている
分光器12の偏光特性を演算で補正するので、測定光の
偏光状態の影響を受けないで測定光のパワーを測定する
ことができる。
Further, according to the apparatus shown in FIG. 2, after separating the output of the spectrometer 12 into two polarized components in different directions, the power of each component is measured, and then the polarization of the spectrometer 12 that has been measured in advance is Since the characteristics are corrected by calculation, the power of the measurement light can be measured without being affected by the polarization state of the measurement light.

[発明が解決しようとする課題] 第2図の分光器↓2には回折格子が使われることが多い
[Problem to be solved by the invention] A diffraction grating is often used for the spectrometer ↓2 in FIG.

回折格子は、光の偏光状態によって回折効率が違うとい
う特性を備えている。すなわち、回折格子の溝が向に平
行に入射する偏光成分Pと、垂直に入射する偏光成分S
とで、回折効率が違う。
Diffraction gratings have the characteristic that their diffraction efficiency varies depending on the polarization state of light. In other words, a polarized light component P that is incident parallel to the direction of the grooves of the diffraction grating, and a polarized light component S that is incident perpendicular to the direction of the grooves of the diffraction grating.
The diffraction efficiency is different between the two.

次に、回折格子の特性を第3図により説明する。Next, the characteristics of the diffraction grating will be explained with reference to FIG.

第3図の横軸は波長であり、縦軸は相対回折効率である
。実線の曲線はP偏光のデータであり、点線の曲線はS
偏光のデータである。
The horizontal axis in FIG. 3 is wavelength, and the vertical axis is relative diffraction efficiency. The solid curve is data for P polarization, and the dotted curve is data for S polarization.
This is polarization data.

回折格子が第3図のような特性を備えているので、光波
長特性測定装置では、次のような問題がおきている。
Since the diffraction grating has the characteristics as shown in FIG. 3, the following problems occur in the optical wavelength characteristic measuring device.

(ア)測定光の偏光状態によってパワーの測定値が違っ
てくるので、絶対値を知ることができない。
(a) The measured power value varies depending on the polarization state of the measurement light, so the absolute value cannot be determined.

(イ)測定光が波長と偏光状態が違う複数の光成分で構
成されている場合、各波長成分の間のレベル差が正確に
測定できない。
(b) If the measurement light is composed of multiple light components with different wavelengths and polarization states, the level difference between each wavelength component cannot be measured accurately.

そこで、これらの問題を解決するために、第2図の測定
装置が使用されている。
Therefore, in order to solve these problems, the measuring device shown in FIG. 2 is used.

しかし、第2図の測定装置を使用しても、次のような問
題がある。
However, even if the measuring device shown in FIG. 2 is used, there are the following problems.

(つ)高価な偏光素子や、複雑な制御回路を必要とする
ので、装置が複雑かつ高価になり、調整も難しい。
(1) Since expensive polarizing elements and complicated control circuits are required, the device becomes complicated and expensive, and adjustment is difficult.

(1)装置江を使用する前に、回折格子や偏光素子の各
間)′0成分について、各波長ごとの効率特性をill
、11定し、それを制御回路の記憶部に記憶させなけれ
ばならない。
(1) Before using the device, check the efficiency characteristics for each wavelength for the '0 component (between each of the diffraction gratings and polarizing elements).
, 11 must be determined and stored in the storage section of the control circuit.

この発明は、測定光の偏光状態が変動しても測定レベル
が変動せず、しかも実現が容易な光波長特性測定装置の
提供を目的とする。
An object of the present invention is to provide an optical wavelength characteristic measuring device that does not change the measurement level even if the polarization state of measurement light changes and is easy to implement.

[課題を解決するための手段] この目的を達成するため、この発明では、測定)ICに
対し直角に配置される1/2波長板2と、1/2波長板
2を一定速度で回転させるモータ3と、L/2波長板2
を透過した光を受けて各波長成分に分光する分光器4と
、分光器4の出力光を電気信号に変換する光検出器5と
、光検出器5の出力を六ノjとし、遮断周波数が1/2
波長板2の回転周波数の4倍よりも十分小さく設定され
、低域を通過させるフィルタ6とを備える。
[Means for Solving the Problem] In order to achieve this object, the present invention includes a 1/2 wavelength plate 2 disposed perpendicular to the IC (measurement), and a 1/2 wavelength plate 2 that is rotated at a constant speed. Motor 3 and L/2 wavelength plate 2
a spectrometer 4 that receives the transmitted light and separates it into each wavelength component; a photodetector 5 that converts the output light of the spectrometer 4 into an electrical signal; is 1/2
The filter 6 is set to be sufficiently smaller than four times the rotation frequency of the wave plate 2, and is provided with a filter 6 that passes low frequencies.

次に、この発明による光波長特性測定装置の構成を第1
図により説明する。
Next, the configuration of the optical wavelength characteristic measuring device according to the present invention will be explained in the first part.
This will be explained using figures.

第1図の1は入力端子、2は1/2波長板、3はモータ
、11は分光器、5は光検出器、6はフィルタ、7は出
力端子である。
In FIG. 1, 1 is an input terminal, 2 is a half-wave plate, 3 is a motor, 11 is a spectrometer, 5 is a photodetector, 6 is a filter, and 7 is an output terminal.

1/2波長販2は、入力端子1からの測定光に直角に配
置され、モータ3により一定速度で回転される。
The 1/2 wavelength beam 2 is arranged at right angles to the measurement light from the input terminal 1, and is rotated by a motor 3 at a constant speed.

分光器4は、1/2波長板2を透過した光を受けて各波
長成分に分光し、光検出器5は、分光器4の出力光を電
気信号に変換する。
The spectrometer 4 receives the light transmitted through the 1/2 wavelength plate 2 and separates it into each wavelength component, and the photodetector 5 converts the output light of the spectrometer 4 into an electrical signal.

フィルタ6は、ローパスフィルタであり、フィルタ6の
遮断周波数は1/2波長板2の回転周波数の4倍よりも
十分小さく設定される。
The filter 6 is a low-pass filter, and the cutoff frequency of the filter 6 is set to be sufficiently smaller than four times the rotation frequency of the half-wave plate 2.

[作用コ 次に、第1図の作用を説明する。[Action Co. Next, the operation of FIG. 1 will be explained.

分光器4の回折格子の溝方向をy軸、溝に直角な方向を
y軸にとり、被測定光の偏光成分Pの電界の強さをE 
yn、偏光成分Sの電界の強さをE、。
The direction of the grooves in the diffraction grating of the spectrometer 4 is taken as the y-axis, and the direction perpendicular to the grooves is taken as the y-axis, and the electric field strength of the polarized component P of the light to be measured is E.
yn, the electric field strength of the polarization component S is E,.

とすれば、Eよ。。、E y Qを次のように表すこと
ができる。
If so, E. . , E y Q can be expressed as follows.

E 、IC,: E cos O°cosωtE、、、
)= Es1nO−cos (ωt+φ)・・・・・・
・・・(1)ここで、Eは被測定光の電界の振幅、0は
電界の振動方向(偏光面の方向)のX軸からの傾き、ω
は角周波数、しは時間、φはE 、、0とE yOとの
間の位相差である。
E, IC,: E cos O°cosωtE,,,
)=Es1nO−cos (ωt+φ)・・・・・・
...(1) Here, E is the amplitude of the electric field of the light to be measured, 0 is the inclination of the vibration direction of the electric field (direction of the polarization plane) from the X axis, ω
is the angular frequency, is the time, and φ is the phase difference between E , , 0 and E yO.

次に、1/2波長板2の高速軸のxlIIIに対する傾
き角をαとおき、1/2波長板2の高速軸方向をへ輔、
低速軸方向をB軸とする。
Next, the inclination angle of the fast axis of the 1/2 wavelength plate 2 with respect to xlIII is set as α, and the direction of the fast axis of the 1/2 wavelength plate 2 is set as
The direction of the low speed axis is the B axis.

高速軸とは、1/2波長板2のもつ互いに直交する2つ
の主座醒(輔のうち、他の軸に対して高速に光を伝躍す
る方の輔をいい、低速軸とは、他の輔に対して低速に光
を伝1般する方の軸をいう。
The high-speed axis refers to the one of the two mutually orthogonal main axes of the half-wave plate 2 that transmits light at high speed relative to the other axis, and the low-speed axis is This is the axis that transmits light at a low speed to other objects.

式(1)で表された光のA軸成分EAo、B軸成分EB
oは、次のようになる。
A-axis component EAo and B-axis component EB of light expressed by equation (1)
o becomes as follows.

EAO=CO3α°E :+l” + sinαI E
 、、。
EAO=CO3α°E:+l”+sinαI E
,,.

=E[cosα0CO8O′CO8ωt+5incz 
+5inO1CO8(Ckl t+φ)]E[1,、=
 −5incz 0E、、n+coscLIEyn= 
E [−5inα°cosO°C05(11t+cos
α1sjnOゝCO8((L) t+φ)]・・・・・
・・・・(2) 1/2波長板2では、高速軸に対して低速軸の(+1相
がπだけ遅、fLるから、1/2波長板2を透過した光
のA軸成分E2.1、■33成分Etl、は、次のよう
になる。
=E[cosα0CO8O'CO8ωt+5incz
+5inO1CO8(Ckl t+φ)]E[1,,=
-5incz 0E,, n+coscLIEyn=
E [-5inα°cosO°C05(11t+cos
α1sjnOゝCO8((L) t+φ)]・・・・・・
(2) In the 1/2 wavelength plate 2, the (+1 phase of the slow axis is slower than the fast axis by π, fL), so the A-axis component E2 of the light transmitted through the 1/2 wavelength plate 2 .1, ■33 components Etl, are as follows.

EA l :EA +、i =E[cosα′C05O6CO8ωt+5i11α′
5inO′C05(ωt+φ)コE[、l=  E13
・、・ = E [sir+ct 0cos e 0CO8(1
1を−CO8α I Si口O+ CO8(ω し +
 φ) ]・・・・・・・・・(3) 式(3)をxy座標系に戻す。すなわち、1/2波長板
2の透過光のX軸成分E、21、y軸成分E、、1は、 E、1=cosaIL’:A1−5incz °EB。
EA l : EA +, i = E[cos α′C05O6CO8ωt+5i11α′
5inO′C05(ωt+φ)koE[,l=E13
・,・ = E [sir+ct 0cos e 0CO8(1
1 to -CO8α I Si mouth O + CO8 (ω +
φ) ]・・・・・・・・・(3) Return equation (3) to the xy coordinate system. That is, the X-axis component E, 21 and the y-axis component E, , 1 of the light transmitted through the half-wave plate 2 are E, 1=cosaIL':A1-5incz°EB.

=E[cos2α′C05O°cosωt+5in2 
a 0sin(7ICO5((1) t+φ)]E、、
1=sincz IEA、IC03(E 0E、1= 
IE  [!;in2αIC06OICO8ωを−く二
()S2 α 9 sin 0 8 cos  (ω 
し + φ ) ]・・・・・・・・・(・1) 次に、式(11)による透過光が分光器4を透過したI
烏合を考える。分ゲ6 z:’t 4のP成分(X軸成
分)に対する透過率をKP、S成分(X軸成分)に対す
る透過率をに、、とすると、分光器4を透過した、′0
のX軸成分E2.0、y軸成分E5.ユは、E、=1(
、、・E、I =に□′l三[cos2α′C08O0CO5ωL+5
in2 α1sinOTeO2(CLJ t+φ)]E
 2=に、・Ey。
=E[cos2α′C05O°cosωt+5in2
a 0sin(7ICO5((1) t+φ)]E,,
1=sincz IEA, IC03(E 0E, 1=
IE [! ;in2αIC06OICO8ω-ku2()S2 α 9 sin 0 8 cos (ω
+ φ ) ]・・・・・・・・・(・1) Next, the transmitted light according to equation (11) passes through the spectrometer 4
Think about Karasu. If the transmittance for the P component (X-axis component) of z:'t 4 is KP, and the transmittance for the S component (X-axis component) is , then the transmittance through the spectrometer 4, '0
X-axis component E2.0, y-axis component E5. U is E, = 1 (
,,・E,I = □′l3[cos2α′C08O0CO5ωL+5
in2 α1sinOTeO2(CLJ t+φ)]E
2 = ・Ey.

=  K、  I E   [5in2  a  9 
cos  O′ C08CLI  し−cos2 a 
′5in(10CO8(CLI t+φ)]・・・・・
・・・・(5) 式(5)による光は光検出器5に導かれ、パワーを測定
する。そこで誘電率なεとして、式(5)の)もの平均
パワーのX軸成分なP、とし、X軸成分をI)1、とし
て、P、とP7を求めると、次の式(6)%式% ) (6) 光検出器5の後に、1/2波長板2の回転周波数の4倍
よりも七分小さい遮断周波数をもつフィルタ6が入って
いるので、フィルタ6の出力は、式(6)のP、とP、
の和を、回転角αの1/4周期にわたって平均した値に
比例する。なぜならば、式(6)はいずれも4αの周期
関数となっているからである。
= K, I E [5in2 a 9
cos O' C08CLI shi-cos2 a
'5in(10CO8(CLI t+φ)]...
(5) The light according to equation (5) is guided to the photodetector 5 and its power is measured. Therefore, as the permittivity ε, let P be the X-axis component of the average power of () in formula (5), and let the X-axis component be I)1, and find P and P7. (6) After the photodetector 5, there is a filter 6 whose cutoff frequency is seven times smaller than four times the rotation frequency of the half-wave plate 2, so the output of the filter 6 is expressed by the formula (%). 6) P, and P,
is proportional to the average value over 1/4 period of the rotation angle α. This is because both equations (6) are periodic functions of 4α.

したがって、フィルタ6の出力は、次式により求められ
るPに比例した電圧となる。
Therefore, the output of the filter 6 becomes a voltage proportional to P determined by the following equation.

d 式(7)は、測定光の偏光状態を表すOやφに無関係で
ある。すなわち、測定されるパワーは光源の偏光状態の
影響を受けないことになる。
d Equation (7) is unrelated to O and φ, which represent the polarization state of the measurement light. That is, the measured power will not be affected by the polarization state of the light source.

分光器4に回折格子を使用した場合を説明したが、回折
格子以外のものを分光器4に使用してもよい。
Although a case has been described in which a diffraction grating is used in the spectrometer 4, something other than a diffraction grating may be used in the spectrometer 4.

その場合は、分光器4に対し適宜P成分(y軸)とS成
分(X輔)の方向を定めればよい。
In that case, the directions of the P component (y-axis) and the S component (X-axis) may be appropriately determined for the spectrometer 4.

[発明の効果] この発明によれば、光波長特性測定装置を一定速度で回
転する1/2波長板、分光器、光検出器およびフィルタ
で構成しているので、難しい1mが不要になる。
[Effects of the Invention] According to the present invention, the optical wavelength characteristic measuring device is composed of a 1/2 wavelength plate rotating at a constant speed, a spectrometer, a photodetector, and a filter, so that a difficult 1 m distance is not required.

また、分光器の偏光特性を測定して記憶する作業か不要
となるので、測定作業が簡単になる。
Furthermore, since there is no need to measure and store the polarization characteristics of a spectrometer, the measurement work becomes simpler.

したがって、この発明によれば、測定光の偏光状態が変
動しても、測定レベルが変動することのない光波長特性
測定装置を提供することができる。
Therefore, according to the present invention, it is possible to provide an optical wavelength characteristic measuring device in which the measurement level does not change even if the polarization state of the measurement light changes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明による光波長特性測定装置の構成図、
第2図は従来技術による光波長特性測定装置の構成図、
第3図は回折格子の特性説明図である。 1・・・・・・測定光の入力端子、2・・・・・・1/
2波長板、3・・・・・・モータ、4・・・・・・分光
器、5・・・・・・光検出器、6・・・・・・フィルタ
、7・・・・・・出力端子。
FIG. 1 is a configuration diagram of an optical wavelength characteristic measuring device according to the present invention.
Figure 2 is a configuration diagram of a conventional optical wavelength characteristic measuring device.
FIG. 3 is an explanatory diagram of the characteristics of the diffraction grating. 1...Measurement light input terminal, 2...1/
2 wavelength plate, 3...Motor, 4...Spectrometer, 5...Photodetector, 6...Filter, 7... Output terminal.

Claims (1)

【特許請求の範囲】 1、測定光に対し直角に配置される1/2波長板(2)
と、 1/2波長板(2)を一定速度で回転させるモータ(3
)と、 1/2波長板(2)を透過した光を受けて各波長成分に
分光する分光器(4)と、 分光器(4)の出力光を電気信号に変換する光検出器(
5)と、 光検出器(5)の出力を入力とし、遮断周波数が1/2
波長板(2)の回転周波数の4倍よりも十分小さく設定
され、低域を通過させるフィルタ(6)とを備えること
を特徴とする光波長特性測定装置。
[Claims] 1. Half-wave plate (2) arranged at right angles to the measurement light
and a motor (3) that rotates the 1/2 wavelength plate (2) at a constant speed.
), a spectrometer (4) that receives the light transmitted through the 1/2 wavelength plate (2) and separates it into each wavelength component, and a photodetector (4) that converts the output light of the spectrometer (4) into an electrical signal.
5), and the output of the photodetector (5) is input, and the cut-off frequency is 1/2.
An optical wavelength characteristic measuring device characterized by comprising a filter (6) which is set to be sufficiently smaller than four times the rotation frequency of the wavelength plate (2) and which passes a low frequency band.
JP32822289A 1989-12-20 1989-12-20 Light wavelength characteristic measuring device Pending JPH03189524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32822289A JPH03189524A (en) 1989-12-20 1989-12-20 Light wavelength characteristic measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32822289A JPH03189524A (en) 1989-12-20 1989-12-20 Light wavelength characteristic measuring device

Publications (1)

Publication Number Publication Date
JPH03189524A true JPH03189524A (en) 1991-08-19

Family

ID=18207807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32822289A Pending JPH03189524A (en) 1989-12-20 1989-12-20 Light wavelength characteristic measuring device

Country Status (1)

Country Link
JP (1) JPH03189524A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005292140A (en) * 2004-03-31 2005-10-20 Mitsutoyo Corp Light measuring device and its method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005292140A (en) * 2004-03-31 2005-10-20 Mitsutoyo Corp Light measuring device and its method

Similar Documents

Publication Publication Date Title
US3728030A (en) Polarization interferometer
JP2521395B2 (en) Optical voltage / electric field sensor
JPH0618332A (en) Measuring method and device for stokes parameter
JPS6228623A (en) Photometer
JPH03189524A (en) Light wavelength characteristic measuring device
US3737235A (en) Polarization interferometer with beam polarizing compensator
JP2000131193A (en) Device for measuring extinction ratio of light module
JPH02159528A (en) Two-stage type spectroscope
JPS59107273A (en) Photocurrent and magnetic field sensor
JPS63284432A (en) Spectrophotometer
CN109696241B (en) Polarization state detection device, detection method and application thereof
JP2705543B2 (en) Method for measuring magnetic field strength and optical magnetic field sensor using the same
JPS58158506A (en) Optical measuring method of displacement
JPH0431068B2 (en)
JP3301324B2 (en) Optical voltage / electric field sensor
JP3227934B2 (en) Polarization characteristics measurement method
JPS62229004A (en) Heterodyne type optical fiber displacement meter
JPH0432991B2 (en)
JPS62113010A (en) Device for stabilizing mean wavelength of light source having wide-zone spectrum and optical fiber gyro applying said device
SU813133A1 (en) Device for measuriing crystal rlate thiskness in the process of finishing
JPH02227619A (en) Optical spectrum analyzer
RU2014576C1 (en) Device for measurement of total difference of phases of light
JP2638312B2 (en) Light sensor
JPS62240801A (en) Measuring apparatus for optical path difference
JPH0324972B2 (en)