JP2705543B2 - Method for measuring magnetic field strength and optical magnetic field sensor using the same - Google Patents

Method for measuring magnetic field strength and optical magnetic field sensor using the same

Info

Publication number
JP2705543B2
JP2705543B2 JP5292862A JP29286293A JP2705543B2 JP 2705543 B2 JP2705543 B2 JP 2705543B2 JP 5292862 A JP5292862 A JP 5292862A JP 29286293 A JP29286293 A JP 29286293A JP 2705543 B2 JP2705543 B2 JP 2705543B2
Authority
JP
Japan
Prior art keywords
magnetic field
optical
photodetector
component
field sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5292862A
Other languages
Japanese (ja)
Other versions
JPH07146346A (en
Inventor
陽介 浅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP5292862A priority Critical patent/JP2705543B2/en
Publication of JPH07146346A publication Critical patent/JPH07146346A/en
Application granted granted Critical
Publication of JP2705543B2 publication Critical patent/JP2705543B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、磁気光学素子のファラ
デ−効果を用いて静磁界や交流磁界の磁界強度を測定す
る光磁界センサに関するものである。そして、本発明の
光磁界センサは、特に電力を供給する送電線、配電線や
受変電設備(以下キュ−ビクル)、GIS(GAS INSULAT
ED SWITCH GEAR)などの電線の周囲に発生する磁界の強
度を測定して電線に流れる電流の大きさを検知するため
に用いるのに最適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical magnetic field sensor for measuring the intensity of a static magnetic field or an alternating magnetic field using the Faraday effect of a magneto-optical element. In addition, the optical magnetic field sensor of the present invention is particularly applicable to transmission lines, distribution lines and substation facilities (hereinafter, cubicles) for supplying electric power, GIS (GAS INSULAT).
ED SWITCH GEAR) is most suitable for measuring the strength of the magnetic field generated around the electric wire and detecting the magnitude of the current flowing through the electric wire.

【0002】[0002]

【従来の技術】発電所から消費者までの電力輸送経路で
ある、送電線、配電線に流れる電流の大きさを測定し異
常を発見する電流センサや、キュ−ビクル、GIS内で
使用されている電流センサはトランス型のものが用いら
れてきた。このトランス型電流センサは鉄芯に電線を巻
いたものであり、そのため大型であり、大重量であり、
絶縁性が悪いなどの種々の問題点を含んでいた。この問
題点を解消するため、トランス型電流センサを、これら
の問題点を含まない光磁界センサに置き換える計画が進
められている。
2. Description of the Related Art It is used in current sensors, cubicles, and GISs, which measure the magnitude of current flowing in power transmission lines and distribution lines, which are power transmission routes from power plants to consumers, and detect abnormalities. Some current sensors have been of the transformer type. This transformer-type current sensor is made by winding an electric wire around an iron core, and is therefore large and heavy.
There were various problems such as poor insulation. In order to solve this problem, a plan is underway to replace the transformer-type current sensor with an optical magnetic field sensor that does not include these problems.

【0003】光磁界センサの原理を図を用いて説明す
る。図5は今までに開発されている電流測定用の光磁界
センサの基本構成の1例を示したものである。この光磁
界センサは、光源1、第1の光ファイバ2、第1のレン
ズ3、第1の偏光ビームスプリッタ(以下PBSとい
う)4、半波長板5、磁気光学材料6、第2のPBS
7、第2のレンズ8、第2の光ファイバ9、光検出器1
0、演算器11がこの順に設けられたものである。使用
に際しては最低限磁気光学材料6が被測定磁界(以下
「磁界」と示す。)の中に置かれる。
The principle of the optical magnetic field sensor will be described with reference to the drawings. FIG. 5 shows an example of the basic configuration of a current measuring optical magnetic field sensor that has been developed. This optical magnetic field sensor includes a light source 1, a first optical fiber 2, a first lens 3, a first polarizing beam splitter (hereinafter referred to as PBS) 4, a half-wave plate 5, a magneto-optical material 6, Second PBS
7, second lens 8, second optical fiber 9, photodetector 1
0 and the arithmetic unit 11 are provided in this order. In use, at a minimum, the magneto-optical material 6 is placed in a magnetic field to be measured (hereinafter, referred to as a "magnetic field").

【0004】光源1から射出した光は第1の光ファイバ
2を通り第1のレンズ3、第1のPBS4を通過し、
1のPBS4により直線偏光とされ、次いで半波長板5
を通過し磁気光学材料6に入射される。この光は磁気光
学材料6を通過するときに、磁界の強さに応じて旋光さ
れる。この結果、第2のPBS7を通過した光の強度は
磁界の強さに応じた値をとることになる。第2のPBS
7を通過した光は第2のレンズ8で集光され、第2の
ファイバ9を経て光検出器10に至る。光検出器10で
光は光電変換される。
[0004] Light emitted from the light source 1 first optical fiber 2 as the first lens 3, passes through the first PBS 4, the
1 is changed to linearly polarized light by the PBS 4 and then the half-wave plate 5
Pass through and enter the magneto-optical material 6. When this light passes through the magneto-optical material 6, it is rotated according to the strength of the magnetic field. As a result, the intensity of the light passing through the second PBS 7 takes a value corresponding to the intensity of the magnetic field. Second PBS
The light passing through 7 is condensed by a second lens 8 and reaches a photodetector 10 via a second optical fiber 9. The light is photoelectrically converted by the photodetector 10.

【0005】磁界が交流磁場の場合、光検出器10より
出力される信号は交流電圧成分と直流電圧成分との和と
なっている。演算器11では信号はまず交流電圧成分と
直流電圧成分に分けられ、次に割り算器により交流電圧
成分を直流電圧成分で割った値が算出され、出力され
る。被測定磁界の強度はこの出力の実効値で表されてい
る。ここで交流電圧成分/直流電圧成分を検出する理由
は光源の出射光強度の変動、およびファイバの揺れ等に
よる光量の変動を消去してより正確に磁界強度を検出す
るためである。
When the magnetic field is an AC magnetic field, the signal output from the photodetector 10 is the sum of an AC voltage component and a DC voltage component. In the arithmetic unit 11, the signal is first divided into an AC voltage component and a DC voltage component, and then a value obtained by dividing the AC voltage component by the DC voltage component is calculated and output by the divider. The strength of the magnetic field to be measured is represented by the effective value of this output. Here, the reason why the AC voltage component / DC voltage component is detected is to eliminate the fluctuation of the intensity of the emitted light from the light source and the fluctuation of the light amount due to the fluctuation of the fiber and to detect the magnetic field intensity more accurately.

【0006】一方磁界が静磁界の場合検出器10の出力
は直流成分のみとなる。
On the other hand, when the magnetic field is a static magnetic field, the output of the detector 10 has only a DC component.

【0007】以上述べたことから分かるように、光磁界
センサは、トランス型電流センサと比較して、耐圧、絶
縁性が高く、小型軽量化可能である等の大きな特徴があ
る。この特徴を一層活かし、更に高感度で低価格化を図
るため、磁気光学材料として量産性が高く、磁気感度の
高い磁性ガーネット、あるいはBi置換型の磁性ガーネ
ットを用いるのが最近の傾向である。
[0007] As can be understood from the above description, the optical magnetic field sensor has large characteristics, such as higher withstand voltage and insulation, and can be reduced in size and weight, as compared with the transformer type current sensor. In order to further utilize this feature and further reduce the cost with higher sensitivity, it is a recent trend to use magnetic garnet, which has high mass productivity and high magnetic sensitivity, or a Bi-substituted magnetic garnet as a magneto-optical material.

【0008】このような磁気感度の高い磁気光学材料の
一つとしてRIG(Bi: Rare EarthIron Garnet)があ
る。このRIGは迷路状磁区構造をしているので、光が
RIGを透過する時、磁区が位相格子として働き、透過
光は回折現象を起こす。特開平5−126924号公報
記載の内容によれば、磁界強度とセンサの出力強度との
直線性を良くするためには、これらの回折光を全て光検
出器に取り込むことが必要となる。しかし、全ての回折
光を光検出器に取り込むことは特別に選択されたレンズ
を用い、このレンズと光学部品との位置関係を極めて精
密に調節することによりはじめて実現可能となる。この
ためセンサの量産性は低く、製造コストは高いものとな
る。一方、センサの生産性を高め、製造コストを低くす
るために、例えば、0次光のみを検出器に取り込むとす
れば、以下の関係より分かる通り磁界強度とセンサの出
力との関係の直線性は失われる。
One of such magneto-optical materials having high magnetic sensitivity is RIG (Ri: Rare Earth Iron Garnet). Since the RIG has a maze-like magnetic domain structure, when light passes through the RIG, the magnetic domain functions as a phase grating, and the transmitted light causes a diffraction phenomenon. According to the contents described in JP-A-5-126924, in order to improve the linearity between the magnetic field intensity and the output intensity of the sensor, it is necessary to take all these diffracted lights into the photodetector. However, taking all the diffracted light into the photodetector can be realized only by using a specially selected lens and adjusting the positional relationship between the lens and the optical component very precisely. Therefore, the mass productivity of the sensor is low, and the manufacturing cost is high. On the other hand, in order to increase the productivity of the sensor and reduce the manufacturing cost, for example, if only the zero-order light is taken into the detector, the linearity of the relationship between the magnetic field intensity and the output of the sensor can be understood from the following relationship. Is lost.

【0009】0次光のみを取り込み、従来の演算器を使
用して得られる出力と磁界強度との関係は、磁気光学素
子への入力をIinとし光検出器10からの出力をI0
したとき、I0は数1で近似的に求められる。ただし、
inは、磁気光学材料への入力光量を直接光検出器に入
射したときに、光検出器より得られる電流値の絶対値を
示すものとする。
The relationship between the output obtained by using only the zeroth-order light and using a conventional arithmetic unit and the magnetic field strength is as follows: the input to the magneto-optical element is I in and the output from the photodetector 10 is I 0 . Then, I 0 is approximately obtained by Expression 1. However,
I in indicates the absolute value of the current value obtained from the photodetector when the amount of light input to the magneto-optical material is directly incident on the photodetector.

【0010】[0010]

【数1】 I0=Iin・(cosθcosφ+(H0sinωt/Hs)sinθsinφ)2 ここでθは磁気光学材料のファラデ−回転角、φは2つ
の偏光子間角度差、Hsは飽和磁界強度、H0は外部印加磁
界強度、ωは交流磁界の周波数(即ち、電流の周波
数)、tは時間である。
I 0 = I in · (cos θ cos φ + (H 0 sin ωt / Hs) sin θ sin φ) 2 where θ is the Faraday rotation angle of the magneto-optical material, φ is the angle difference between the two polarizers, and Hs is the saturation magnetic field. The intensity, H 0 is the intensity of the externally applied magnetic field, ω is the frequency of the AC magnetic field (ie, the frequency of the current), and t is the time.

【0011】演算器ではI0の直流成分I0DCと交流成分
0ACとに分離される。各々の成分は数2,3となる。
[0011] In the calculator is separated into AC component I 0AC the DC component I zero DC of I 0. Each component is represented by Formulas 2 and 3.

【0012】[0012]

【数2】 I0DC=Iin・(cos2θcos2φ+H0 2sin2θsin2φ/2Hs2)## EQU2 ## I 0DC = I in · (cos 2 θcos 2 φ + H 0 2 sin 2 θsin 2 φ / 2Hs 2 )

【数3】 I0AC=Iin・(H0sin2θsin2φsinωt-H0 2sin2θsin2φcos2ωt/2Hs2) 演算器内の割り算回路で数4に基づきI1が求められ
る。この実効値V0は数5で求められる。
Equation 3] I 1 based on the I 0AC = I in · (H 0 sin2θsin2φsinωt-H 0 2 sin 2 θsin 2 φcos2ωt / 2Hs 2) Number 4 divider circuit in the arithmetic unit is determined. This effective value V 0 is obtained by Expression 5.

【0013】[0013]

【数4】I1=I0AC/I0DC ## EQU4 ## I 1 = I 0AC / I 0DC

【数5】 数4,5より明らかなように実効値V0は外部印加磁界と
直線的関係にはならず、また被測定値(H0sinωt)がゼロ
になる位相とI1=0となる位相はずれることがわかる(以
後この位相のずれを位相角と称する)。
(Equation 5) As is apparent from Equations 4 and 5, the effective value V 0 does not have a linear relationship with the externally applied magnetic field, and the phase at which the measured value (H 0 sinωt) becomes zero and the phase at which I 1 = 0 deviate from each other. (Hereinafter, this phase shift is referred to as a phase angle).

【0014】[0014]

【発明が解決しようとする課題】以上述べたように、高
感度の磁気光学材料にRIGを用いて安価で、大量生産
に適した光磁界センサを得ようとすると磁界強度と演算
器からの出力との直線性が悪く、また位相角も大きくな
る等の問題点があった。
As described above, in order to obtain an inexpensive optical magnetic field sensor suitable for mass production using RIG as a high-sensitivity magneto-optical material, the magnetic field intensity and the output from the arithmetic unit are required. And the phase angle is increased.

【0015】本発明はこのような状況に鑑みて、高感度
でかつ、高精度(磁界の大きさと出力の直線性がよく、
位相角も小さい)の測定を可能とし、しかも量産性に優
れた光磁界センサとこれを可能とする磁界強度の測定方
法を提供することを目的とする。
In view of such a situation, the present invention has high sensitivity and high precision (good linearity of magnetic field magnitude and output,
It is an object of the present invention to provide an optical magnetic field sensor which enables measurement of a small phase angle) and which is excellent in mass productivity, and a method of measuring a magnetic field intensity which enables this.

【0016】[0016]

【課題を解決するための手段】上記課題を解決する本発
明の方法は、光検出器の出力の平方根値を求め、得られ
た値の交流成分と直流成分とを分割し、交流成分を直流
成分で除して得た値より磁界強度を測定するものであ
る。そして、上記課題を解決する本発明の光磁界センサ
は、主要構成部分が光源、第1の光ファイバ、第1の
ンズ、第1の偏光子、磁性ガーネット、第2の偏光子、
第2のレンズ、第2の光ファイバ、光検出器、演算器か
ら構成される光磁界センサで、第2の光ファイバからの
信号を光検出器で光電変換し電気信号とし、該電気信
号を演算処理し、出力を得る光磁界センサにおいて、演
算器が主として光検出器の出力の平方根値を求める回路
と、求められた値の交流成分と直流成分とを分割する回
路と、求めた交流成分を直流成分で除す回路とから構成
されているものである。また、これらの回路は各々分離
し、相互に結線して光磁界センサを構成してもよく、ま
た平方根演算回路を光検出器側に設けてもよい。
According to a method of the present invention, a square root value of an output of a photodetector is obtained, an AC component and a DC component of the obtained value are divided, and the AC component is converted to a DC component. The magnetic field strength is measured from the value obtained by dividing the component. The optical magnetic field sensor of the present invention that solves the above-mentioned problems has a main component of a light source, a first optical fiber, a first lens, a first polarizer, a magnetic garnet, and a second polarized light. Child,
Second lens, the second optical fiber, optical detector, the arithmetic unit or <br/> that consists of light field sensor, from the second optical fiber
In an optical magnetic field sensor that photoelectrically converts an optical signal with a photodetector and converts it into an electric signal, and arithmetically processes the electric signal to obtain an output, a circuit in which the arithmetic unit mainly obtains the square root value of the output of the photodetector is obtained. It comprises a circuit for dividing the AC component and the DC component of the value, and a circuit for dividing the obtained AC component by the DC component. These circuits may be separated from each other and connected to each other to form an optical magnetic field sensor, or a square root operation circuit may be provided on the photodetector side.

【0017】なお、本発明の光磁界センサは磁性ガーネ
ット膜の回折光の全てを光検出器取り込まない場合に
特に有効である。
The optical magnetic field sensor according to the present invention is particularly effective when not all of the diffracted light from the magnetic garnet film is taken into the photodetector.

【0018】[0018]

【作用】本発明の光磁界センサでは、平方根演算回路、
あるいは平方根演算器により光検出器の出力を1/2乗
し、次いで、交流成分と直流成分とに分割し、交流成分
を直流成分で除し、得た値を出力とする。このようにす
るため、磁気光学材料からの回折光の全てを光検出器に
取り込まなくても、例えば回折光の0次光のみを光検出
器に取り込んでも、磁界の大きさと光磁界センサの出力
との直線性が改良される。
In the optical magnetic field sensor of the present invention, a square root operation circuit,
Alternatively, the output of the photodetector is squared by a square root calculator, then divided into an AC component and a DC component, the AC component is divided by the DC component, and the obtained value is output. Therefore, even if all of the diffracted light from the magneto-optical material is not taken into the photodetector, for example, only the 0th-order light of the diffracted light is taken into the photodetector, the magnitude of the magnetic field and the output of the optical magnetic field sensor are reduced. Is improved.

【0019】なお、0次光のみを意識的に光検出器に取
り込むには図1の磁気光学素子第2のレンズの距
離を離す、あるいは第2のレンズ第2のファイバ
の距離を調節することで容易に実現できる。
In order to intentionally take only the zero-order light into the photodetector, the distance between the magneto-optical element 6 and the second lens 8 in FIG. 1 is increased or the distance between the second lens 8 and the second fiber 9 is increased.
The distance can be easily adjusted by adjusting the distance.

【0020】[0020]

【実施例】(実施例1)図1に本発明の光磁界センサの
1例を示した。図1の光磁界センサは光源1、第1の
ファイバ2、第1のレンズ3、第1のPBS4、半波長
板5、磁気光学材料6、第2のPBS7、第2のレンズ
8、第2の光ファイバ9、光検出器10、平方根演算回
路を持つ演算器11がこの順に設けられたものである。
図1の装置では、光源1に波長0.85μmの光を放射
する発光ダイオードを、第1の光ファイバ2および第2
の光ファイバ9にはマルチモードファイバを、第1の
ンズ3および第2のレンズ8にはセルフォクレンズを、
6の磁気光学材料に(YbYbBi)3Fe5O12 の組成のRIG
を、光検出器10にはSiフォトダイオードを用いた。
FIG. 1 shows an example of an optical magnetic field sensor according to the present invention. Optical magnetic field sensor is a light source 1 of FIG. 1, the first optical fiber 2, the first lens 3, a first PBS 4, the half-wave plate 5, magneto-optical material 6, the second PBS 7, the second lens 8, the Two optical fibers 9, a photodetector 10, and an arithmetic unit 11 having a square root arithmetic circuit are provided in this order.
In the apparatus shown in FIG. 1, a light emitting diode that emits light having a wavelength of 0.85 μm to a light source 1 is connected to a first optical fiber 2 and a second optical fiber 2 .
The optical fiber 9 has a multi-mode fiber, the first lens 3 and the second lens 8 have a self-focusing lens,
RIG with composition of (YbYbBi) 3 Fe 5 O 12 for magneto-optical material 6
The photodetector 10 used a Si photodiode.

【0021】さらに第1のPBS4および第2のPBS
7を同一平面上に置きかつ45度配置にするために半波
長板5を磁気光学素子6の直前に配置した。演算器10
は平方根演算回路と、フィルタにより直流成分と交流成
分とを分離する回路と、交流成分を直流成分で除すため
の演算回路とから構成した。そして、評価は演算器の出
力電圧の実効値を求め行った。
Further, a first PBS 4 and a second PBS
The half-wave plate 5 was placed immediately before the magneto-optical element 6 in order to place 7 on the same plane and to arrange it at 45 degrees. Arithmetic unit 10
Is composed of a square root operation circuit, a circuit for separating a DC component and an AC component by a filter, and an operation circuit for dividing the AC component by the DC component. In the evaluation, the effective value of the output voltage of the arithmetic unit was obtained.

【0022】なお、この光センサでは磁気光学材料の回
折光の0次光のみが光検出器に入射されるようになって
いる。
In this optical sensor, only the zero-order light of the diffracted light of the magneto-optical material is incident on the photodetector.

【0023】次に、磁界センサに50Hzの交流磁界の強
度を0〜700 Oeの範囲で変化させ、演算器からの
出力電圧を得、その実効値と磁界強度の関係を求めた。
その結果を図2に示す。図中のa(実線)が本発明によ
る光磁界センサの結果である。磁界の大きさの変化に対
して光磁界センサの出力は直線的に変化していることが
わかる。なお、縦軸の出力は検出器の都合により相対値
で示している。
Next, the intensity of the 50 Hz AC magnetic field was varied in the range of 0 to 700 Oe by the magnetic field sensor to obtain an output voltage from the arithmetic unit, and the relationship between the effective value and the magnetic field intensity was obtained.
The result is shown in FIG. In the figure, a (solid line) is the result of the optical magnetic field sensor according to the present invention. It can be seen that the output of the optical magnetic field sensor changes linearly with the change in the magnitude of the magnetic field. The output on the vertical axis is shown as a relative value for the convenience of the detector.

【0024】次に数6により比誤差R(%)を求め、得
た結果を図3に実線で示した。
Next, the ratio error R (%) was obtained from Equation 6, and the obtained result is shown by a solid line in FIG.

【0025】[0025]

【数6】R=((Kn−K)/K)×100 ここでKは所望の強度の磁界を印加したさいのセンサ出
力を印加磁界強度で除して得た値であり、Knは飽和磁
界を印可したさいのセンサ出力を飽和磁界強度で除して
得た値である。
R = ((Kn−K) / K) × 100 where K is a value obtained by dividing the sensor output when a magnetic field of a desired strength is applied by the applied magnetic field strength, and Kn is the saturation. This is a value obtained by dividing the sensor output when the magnetic field is applied by the saturation magnetic field intensity.

【0026】次に磁界の大きさの変化による位相角の変
化を調べた。結果を図4に実線で示した。図4より0〜
700 Oeの磁界強度の範囲での位相角はほとんどゼ
ロであることがわかる。
Next, the change in the phase angle due to the change in the magnitude of the magnetic field was examined. The result is shown by a solid line in FIG. From FIG.
It can be seen that the phase angle in the range of the magnetic field strength of 700 Oe is almost zero.

【0027】本実施例において、光源より発せられた光
は、光ファイバーを通り、レンズにより平行光線とさ
れ、第1のPBS4に入射される。第1のPBS4で直
線偏光とされた光は、磁気光学素子を通過し、磁界の強
さに応じて旋光され、第2のPBS7を通過する。そし
て、レンズにより光ファイバ断面に集光され、光検出
器10に至る。
In this embodiment, light emitted from the light source passes through an optical fiber, is converted into a parallel light by a lens, and is incident on the first PBS 4. The light linearly polarized by the first PBS 4 passes through the magneto-optical element, is rotated according to the strength of the magnetic field, and passes through the second PBS 7. Then, the light is focused on the cross section of the optical fiber by the lens, and reaches the photodetector 10.

【0028】本装置では磁気光学素子の回折光の0次光
のみを光ファイバーに集光しているため、磁気光学材料
への入力をIinとし光検出器10からの出力をI0とし
たとき、I0は近似的に数7で求められる。ただし、I
inは、磁気光学材料への入力光量を直接光検出器に入射
したときに、光検出器より得られる電流値の絶対値を示
すものとする。
In this apparatus, since only the zero-order light of the diffracted light of the magneto-optical element is focused on the optical fiber, when the input to the magneto-optical material is I in and the output from the photodetector 10 is I 0. , I 0 are approximately determined by Equation 7. Where I
in indicates the absolute value of the current value obtained from the photodetector when the amount of light input to the magneto-optical material is directly incident on the photodetector.

【0029】[0029]

【数7】 I0=Iin・(cosθcosφ+(H0sinωt/Hs)sinθsinφ)2 ここでθは磁気光学材料のファラデ−回転角、φは2つ
の偏光子間角度差、Hsは飽和磁界強度,H0は外部印加磁
界強度、ωは交流磁界の周波数(即ち、電流の周波
数)、tは時間である。
I 0 = I in · (cos θ cos φ + (H 0 sinωt / Hs) sin θ sin φ) 2 where θ is the Faraday rotation angle of the magneto-optical material, φ is the angle difference between the two polarizers, and Hs is the saturation magnetic field. The intensity, H 0 is the intensity of the externally applied magnetic field, ω is the frequency of the AC magnetic field (ie, the frequency of the current), and t is the time.

【0030】本発明のように光検出器出力を平方根演算
回路を通すことにより、平方根演算回路の出力I2は数
8となる。
By passing the output of the photodetector through the square root operation circuit as in the present invention, the output I 2 of the square root operation circuit is given by the following equation (8).

【0031】[0031]

【数8】 I2=Iin 1/2・(cosθcosφ+(H0sinωt/Hs)sinθsinφ) 次いでI2の直流成分I2DCと交流成分I2ACとが求めら
れる。
Equation 8] and the I 2 = I in 1/2 · ( cosθcosφ + (H 0 sinωt / Hs) sinθsinφ) then the DC component I 2DC and an AC component I 2AC of I 2 is determined.

【0032】[0032]

【数9】I2DC=cosθcosφ[Equation 9] I 2DC = cosθcosφ

【数10】I2AC=(H0sinω/Hs)tsinθsinφ 最後に、割り算回路により数11に従いI3=I2AC/I
2DCが求められる。
Equation 10] I 2AC = (H 0 sinω / Hs) tsinθsinφ Finally, as the number 11 by the divider circuit I 3 = I 2AC / I
2DC is required.

【0033】[0033]

【数11】 I3=((H0sinω/Hs)tsinθsinφ)/(cosθcosφ) そして、I3の実効値V1は数12で表される。I 3 = ((H 0 sin ω / Hs) tsin θ sin φ) / (cos θ cos φ) Then, the effective value V 1 of I 3 is expressed by Expression 12.

【0034】[0034]

【数12】V1=(H0/(2Hs)1/2)tanθtanφ 数11,12より明らかなようにV1は外部印加磁界H0
比例し、I3は外部磁界H0sinωtの位相に一致すること
がわかる。このことは、上記測定結果を理論的に裏付け
るものといえる。
V 1 = (H 0 / (2Hs) 1/2 ) tan θtan φ As is clear from Equations 11 and 12, V 1 is proportional to the externally applied magnetic field H 0 , and I 3 is the phase of the external magnetic field H 0 sinωt It can be seen that it matches. This can be said to theoretically support the above measurement results.

【0035】ところで、磁界が静磁界の場合には、光検
出器からの出力I3は数13で示される。
When the magnetic field is a static magnetic field, the output I 3 from the photodetector is expressed by Expression 13.

【0036】[0036]

【数13】I3=Iin・(cosθcosφ+H/Hs sinθsinφ)2 ここでHは静磁界である。I 3 = I in · (cos θ cos φ + H / Hs sin θ sin φ) 2 where H is a static magnetic field.

【0037】そして、平方根演算回路後の出力I4は数
14で示される。
Then, the output I 4 after the square root operation circuit is expressed by Expression 14.

【0038】[0038]

【数14】 I4=Iin 1/2・(cosθcosφ+H/Hs sinθsinφ) この結果、演算器からの出力は平方根演算器を通ること
で静磁界Hに比例することになる。またこのとき、I4
Hに対する感度はθ=φ=90度のとき最大になることも
わかる。このことから、磁気光学素子にRIGを使用し
て図1の構成として、演算器内の入力側に平方根演算回
路を設けることにより静磁界の大きさと出力の直線性の
よい、量産性に優れた光磁界センサを得ることができる
といえる。
I 4 = I in 1/2 · (cos θ cos φ + H / Hs sin θ sin φ) As a result, the output from the arithmetic unit passes through the square root arithmetic unit and is proportional to the static magnetic field H. At this time, I 4
It can also be seen that the sensitivity to H is maximized when θ = φ = 90 degrees. For this reason, the RIG is used as the magneto-optical element and the square root operation circuit is provided on the input side in the arithmetic unit as shown in FIG. 1 so that the magnitude of the static magnetic field and the linearity of the output are excellent, and mass production is excellent. It can be said that an optical magnetic field sensor can be obtained.

【0039】なお、本例では演算器の一部に平方根演算
回路を設けたが、従来の装置の光検出器と演算器との間
に平方根演算器を設けてもよい。
In this embodiment, the square root arithmetic circuit is provided in a part of the arithmetic unit. However, a square root arithmetic unit may be provided between the photodetector and the arithmetic unit of the conventional device.

【0040】(従来例)実施例1の光磁界センサと比較
するために、図1の光磁界センサから演算器の中の平方
根演算回路のみを取り除いたもの(図5の従来品と同じ
もの)を作製して、実施例1と同様にして特性評価をお
こなった。結果を図2,3,4に併せて示した。各図中
のb(破線)がその結果である。磁界と出力の直線性は
悪く(図2)、比誤差も大きく(図3)、位相角は磁界
の大きさが大きくなるにしたがって大きくなっている
(図4)。この結果は予測され通りであり、好ましくな
いものである。
(Conventional example) For comparison with the optical magnetic field sensor of the first embodiment, only the square root arithmetic circuit in the arithmetic unit is removed from the optical magnetic field sensor of FIG. 1 (the same as the conventional product of FIG. 5). Was prepared, and the characteristics were evaluated in the same manner as in Example 1. The results are also shown in FIGS. B (broken line) in each figure is the result. The linearity between the magnetic field and the output is poor (FIG. 2), the ratio error is large (FIG. 3), and the phase angle increases as the magnitude of the magnetic field increases (FIG. 4). This result is as expected and undesirable.

【0041】以上実施例、従来例で示したように、本発
明による光磁界センサは磁界の大きさと出力の直線性が
よく、位相角も小さく、高感度に磁界測定することが
できる。さらに光学部品間のアライメントが容易である
ため量産性に優れている。
As shown in the above embodiments and the conventional example, the optical magnetic field sensor according to the present invention has good linearity of the magnitude and output of the magnetic field, a small phase angle, and can measure the magnetic field with high sensitivity. Further, since the alignment between the optical components is easy, the mass productivity is excellent.

【0042】[0042]

【発明の効果】以上述べたように、本発明による光磁界
センサは広い磁界の範囲で磁界の大きさと演算器からの
出力の直線性が良く、位相角も小さいため、高感度でか
つ高精度な磁界の測定を可能にする。さらに量産性に優
れ低価格化が可能である。また本発明による光磁界セン
サは静磁界の大きさを直線性良く測定することも可能で
ある。
As described above, the optical magnetic field sensor according to the present invention has a high sensitivity and a high accuracy because the magnitude of the magnetic field and the linearity of the output from the arithmetic unit are good and the phase angle is small in a wide magnetic field range. Measurement of a magnetic field. Furthermore, it is excellent in mass productivity and can be reduced in price. Further, the optical magnetic field sensor according to the present invention can measure the magnitude of the static magnetic field with good linearity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施例の光磁界センサの基本構成図であ
る。
FIG. 1 is a basic configuration diagram of an optical magnetic field sensor according to an embodiment of the present invention.

【図2】実施例で得られた磁界強度とセンサ出力との関
FIG. 2 shows the relationship between the magnetic field strength obtained in the embodiment and the sensor output.

【図3】実施例で得られた磁界強度と比誤差の関係FIG. 3 shows the relationship between the magnetic field strength obtained in the example and the ratio error.

【図4】実施例で得られた磁界強度と位相角の関係FIG. 4 shows the relationship between the magnetic field strength and the phase angle obtained in the example.

【図5】従来の光磁界センサの構成図である。FIG. 5 is a configuration diagram of a conventional optical magnetic field sensor.

【符号の説明】[Explanation of symbols]

1−−−光源、2−−−第1の光ファイバ、3−−−第
1のレンズ、4−−−第1の偏光子、5−−−半波長
板、6−−−磁気光学材料、7−−−第2の偏光子、8
−−−第2のレンズ、9−−−光ファイバ、10−−−
光検出器、11−−−演算器
1 ---- light source, 2-- first optical fiber, 3--
1 lens, 4--first polarizer, 5--half-wave plate, 6- magneto-optical material, 7--second polarizer, 8
--- Second lens, 9 ---- Optical fiber, 10 ----
Photo detector, 11

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 磁性ガーネットを用いた光磁界センサ
を用いて磁界強度を測定する方法において、磁性ガーネ
ットよりの光信号を光検出器で光電変換し電気信号と
し、該電気信号の平方根値を求め、求めた値の交流成分
と直流成分とを分割し、交流成分を直流成分で除して得
た値より磁界強度を求めることを特徴とする磁界強度の
測定方法。
1. A method for measuring a magnetic field intensity using an optical magnetic field sensor using a magnetic garnet, wherein an optical signal from the magnetic garnet is photoelectrically converted by a photodetector into an electric signal, and a square root value of the electric signal is obtained. A magnetic field intensity measuring method, wherein the AC component and the DC component of the obtained value are divided, and the magnetic field intensity is obtained from a value obtained by dividing the AC component by the DC component.
【請求項2】 主要構成部分が、光軸上に順に配置さ
れた、光源第1の光ファイバ第1のレンズ
第1の偏光子、磁性ガーネット第2の偏光子
第2のレンズ第2の光ファイバ、光検出器と、該
光検出器に接続された演算器とから構成され且つ前記第
2の光ファイバからの光信号を前記光検出器により光電
変換し電気信号とし、該電気信号を前記演算器によ
演算処理し出力を得るようにした光磁界センサにお
いて、前記演算器が主として前記光検出器の出力の平
方根値を求める回路と、求められた値の交流成分と直流
成分とを分割する回路と、求めた交流成分を直流成分で
除す回路とから構成されていることを特徴とする光磁界
センサ。
2. The main components are sequentially arranged on the optical axis.
The, a light source, a first optical fiber, a first lens,
A first polarizer, a magnetic garnet, a second polarizer,
A second lens , a second optical fiber , a photodetector ,
Are calculator Toka et configured to be connected to the optical detector and the second
It such an electric signal by photoelectric conversion by the photodetector an optical signal from the second optical fiber, an electrical signal to said computing unit
In the optical magnetic field sensor to obtain the arithmetic processing and outputs Ri, the calculator divides mainly a circuit for obtaining a square root value of the output of the photodetector, the AC component of the determined value and the DC component An optical magnetic field sensor, comprising: a circuit; and a circuit for dividing the obtained AC component by a DC component.
【請求項3】 主要構成部分が、光軸上に順に配置さ
れた、光源第1の光ファイバ第1のレンズ
第1の偏光子、磁性ガーネット第2の偏光子
第2のレンズ第2の光ファイバ、光検出器と、該
光検出器に接続された演算器とから構成され且つ前記第
2の光ファイバからの光信号を前記光検出器により光電
変換し電気信号とし、該電気信号を前記演算器によ
演算処理して出力を得るようにした光磁界センサにお
いて、前記光検出器により光電変換して得られた値の平
方根値を前記光検出器の出力となすようにしたことを特
徴とする光磁界センサ。
3. The main components are sequentially arranged on the optical axis.
The, a light source, a first optical fiber, a first lens,
A first polarizer, a magnetic garnet, a second polarizer,
A second lens , a second optical fiber , a photodetector ,
Are calculator Toka et configured to be connected to the optical detector and the second
It such an electric signal by photoelectric conversion by the photodetector an optical signal from the second optical fiber, an electrical signal to said computing unit
In the optical magnetic field sensor to obtain a processing to output Ri, characterized in that the square root values obtained by photoelectric conversion and so as to form an output of the photodetector by the photodetector Optical magnetic field sensor.
JP5292862A 1993-11-24 1993-11-24 Method for measuring magnetic field strength and optical magnetic field sensor using the same Expired - Fee Related JP2705543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5292862A JP2705543B2 (en) 1993-11-24 1993-11-24 Method for measuring magnetic field strength and optical magnetic field sensor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5292862A JP2705543B2 (en) 1993-11-24 1993-11-24 Method for measuring magnetic field strength and optical magnetic field sensor using the same

Publications (2)

Publication Number Publication Date
JPH07146346A JPH07146346A (en) 1995-06-06
JP2705543B2 true JP2705543B2 (en) 1998-01-28

Family

ID=17787339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5292862A Expired - Fee Related JP2705543B2 (en) 1993-11-24 1993-11-24 Method for measuring magnetic field strength and optical magnetic field sensor using the same

Country Status (1)

Country Link
JP (1) JP2705543B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2266470A1 (en) * 1996-09-20 1998-03-26 Siemens Aktiengesellschaft Method for obtaining an output signal that is compensated for temperature variation using an optical current measuring sensor
CN103869264B (en) * 2014-03-26 2016-04-27 北京大学 For the nonmagnetic atom sensor of optically pumped magnetometer
CN103869265B (en) * 2014-03-26 2016-04-27 北京大学 For the nonmagnetic atom sensor of optically pumped magnetometer

Also Published As

Publication number Publication date
JPH07146346A (en) 1995-06-06

Similar Documents

Publication Publication Date Title
US5696858A (en) Fiber Optics apparatus and method for accurate current sensing
US4564754A (en) Method and apparatus for optically measuring a current
JPH0424664B2 (en)
JPH0224349B2 (en)
US6114846A (en) Optical measuring method and device for measuring a magnetic alternating field with an expanded measuring range and good linearity
JPS5897669A (en) Magnetic field-light converter
US6043648A (en) Method for temperature calibration of an optical magnetic field measurement array and measurement array calibrated by the method
JP2705543B2 (en) Method for measuring magnetic field strength and optical magnetic field sensor using the same
Takahashi et al. Sagnac interferometer-type fibre-optic current sensor using single-mode fibre down leads
CA2238971A1 (en) Process and device for measuring a quantity, in particular an electric current, with a high measurement resolution
Bosselmann Electric and magnetic field sensing for high-voltage applications
Ghosh et al. Development of a fiber-optic current sensor with range-changing facility using shunt configuration
JPH08327712A (en) Optical magnetic-field sensor and method for measuring strength of magnetic field using this sensor
RU2767166C1 (en) Optical interference current meter
JP3357734B2 (en) Optical sensor
JP3350280B2 (en) Optical current transformer
JPH0720158A (en) Optical current transformer
JPH07306095A (en) Polarization-analysis evaluation method of polarization modulation optical signal
JPH07209397A (en) Optical magnetic field sensor
Yoshino et al. Polygonal Faraday effect current sensor with polarization-preserving dielectric mirrors
JPH07333569A (en) Optical current transformer
JP3201729B2 (en) How to use the optical sensor system
Zhang et al. Theory and experimental research of a Y-phase-modulator based optical fiber current sensor
JPH02143173A (en) Optical dc transformer
JPH04326066A (en) Optical voltage synthesizer and optical zero phase current sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees