JPH03187591A - Driving method for solid-state image pickup element - Google Patents

Driving method for solid-state image pickup element

Info

Publication number
JPH03187591A
JPH03187591A JP1326800A JP32680089A JPH03187591A JP H03187591 A JPH03187591 A JP H03187591A JP 1326800 A JP1326800 A JP 1326800A JP 32680089 A JP32680089 A JP 32680089A JP H03187591 A JPH03187591 A JP H03187591A
Authority
JP
Japan
Prior art keywords
transfer
potential
solid
driving
odd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1326800A
Other languages
Japanese (ja)
Inventor
Yoshihiro Okada
吉弘 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1326800A priority Critical patent/JPH03187591A/en
Publication of JPH03187591A publication Critical patent/JPH03187591A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

PURPOSE:To prevent the generation of flicker at the time of interlace-driving the solid-state image pickup element of a frame transfer type attached with a mosaic-shaped color separation filter by outputting a balanced color component signal in an even field and an odd field. CONSTITUTION:In interlace-driving, since the potential of a transfer electrode during the transfer period of photoelectric charge becomes equal in the even field EVEN and the odd field ODD, and the accumulation of the photoelectric charge in both the fields is executed under the state of the same potential, difference between the video signals of both the fields is eliminated. Besides, since the photoelectric charge accumulated for every picture element is transferred successively after the portion of two picture elements is mixed once as making transfer clock phi2 or phi4 high potential, the unnecessary mixing of the photoelectric charge due to the phase shift of the transfer clocks phi1 to phi4 is prevented. Thus, the solid state image pickup element of a frame transfer system attached with the mosaic filter can be interlace-driven without causing the flicker.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、モザイク状の色分離フィルタが装着されたフ
レームトランスファ方式の固体撮像素子の駆動方法に係
り、特にインターレース駆動の際のフリッカ防止に関す
る。
Detailed Description of the Invention (a) Industrial Application Field The present invention relates to a method for driving a frame transfer type solid-state image sensor equipped with a mosaic color separation filter, and in particular to a method for preventing flicker during interlaced driving. Regarding.

(口〉従来の技術 単板式のカラー撮像装置に於いては、撮像装置に搭載さ
れるCCD固体撮像素子の受光面にモザイク状、ストラ
イプ状等の色分離フィルタが装着され、受光面の各受光
画素が各色成分に対応付けられる。モザイク状の色分離
フィルタを用いると、ストライブ状の色分離フィルタを
用いた場合よりも高い水平解像度を得られるものの、C
CDから出力される映像信号の処理が複雑になるといっ
た問題があるため、撮像装置の使用目的等に応じて色分
離フィルタが選択される。
(Existence) Conventional technology In single-chip color imaging devices, color separation filters in mosaic, stripe, etc. are attached to the light-receiving surface of the CCD solid-state image sensor mounted on the imaging device. Pixels are associated with each color component. Although using a mosaic color separation filter provides higher horizontal resolution than using a stripe color separation filter, the C
Since there is a problem that the processing of the video signal output from the CD becomes complicated, a color separation filter is selected depending on the purpose of use of the imaging device.

第3図は、モザイク状の色分離フィルタが装着されたフ
レームトランスファ方式のCCDCC固体撮像素子光面
を示す平面図である。
FIG. 3 is a plan view showing the light surface of a frame transfer type CCDCC solid-state image sensor equipped with a mosaic color separation filter.

CCDの受光面には、複数のチャネル領域(1)がチャ
ネル分離領域(2)で互いに分離され、垂直方向に延在
して設けられる。そして、チャネル領域(1)に直交し
て2層構造の転送電極(3)(4)が絶縁膜を介して形
成される。また、上層側の転送電極(4)は、チャネル
分離領域(2〉上で、その幅が狭く形成され、転送電極
(3)との間で開口部が形成されて受光効率の向上が図
られている。これら転送電極(3)(4)にit例えば
4相の転送クロックが印加され、チャネル領域(1)に
発生した情報電荷がチャネル領域(1)に沿って転送さ
れる。
A plurality of channel regions (1) are separated from each other by channel separation regions (2) and extend in the vertical direction on the light receiving surface of the CCD. Then, two-layer transfer electrodes (3) and (4) are formed perpendicularly to the channel region (1) with an insulating film interposed therebetween. In addition, the upper layer side transfer electrode (4) is formed with a narrow width on the channel separation region (2>), and an opening is formed between it and the transfer electrode (3) to improve light receiving efficiency. For example, a four-phase transfer clock is applied to these transfer electrodes (3) and (4), and information charges generated in the channel region (1) are transferred along the channel region (1).

受光面に装着されるモザイク状の色分離フィルタ(10
)は、受光面の画素に従って分割されており、各分割領
域にイエロー(Ye)、シアン(Cy)、グノーン(G
)及びホワイト(w)の各色が所定の順序で与えられて
いる。受光面の画素は、チャネル分離領域(2〉に依っ
て垂直方向に分離されると共に、転送電極(3)(4)
が形成するポテンシャルの障壁に依って水平方向に分離
される。即ち、転送電極(3)(4)の端部付近が各画
素の境界となり、一対の転送電極(3)(4)の幅が一
画素に相当する。従って、色分離フィルタ(10)は、
チャネル分離領域(2)に沿って垂直方向に分割される
と共に、転送it!1(3)(4)の端部に沿って水平
方向に分割される。
A mosaic color separation filter (10
) is divided according to the pixels on the light-receiving surface, and each divided area has yellow (Ye), cyan (Cy), and gnome (G).
) and white (w) are given in a predetermined order. Pixels on the light-receiving surface are vertically separated by a channel separation region (2) and are separated by transfer electrodes (3) and (4).
are separated horizontally by a potential barrier formed by That is, the vicinity of the ends of the transfer electrodes (3) and (4) become the boundaries of each pixel, and the width of the pair of transfer electrodes (3 and 4) corresponds to one pixel. Therefore, the color separation filter (10) is
Vertically divided along the channel separation region (2) and transferred it! 1 (3) (4) horizontally along the edges.

このようなCODに於いては、通常、垂直方向の2画素
が同時に読出され、フィールド毎にその組合せを反転さ
せるインターレース駆動が採用され、解像度の向上が図
られている。即ち、奇数フィールドに於いては、n行目
とn+1行目との画素が同時に読出され、偶数フィール
ドに於いてはn−1行目とn行目との画素が同時に読出
されることになる。そして、CCDから読出された信号
の水平方向に隣り合うものの和から輝度信号、差から色
成分信号を夫々得ている。
In such a COD, interlaced driving is usually adopted in which two pixels in the vertical direction are simultaneously read out and the combination is reversed for each field, thereby improving the resolution. That is, in an odd field, the pixels in the n-th row and the n+1-th row are read out simultaneously, and in the even-numbered field, the pixels in the n-1th row and the n-th row are read out simultaneously. . A luminance signal is obtained from the sum of horizontally adjacent signals read out from the CCD, and a color component signal is obtained from the difference.

第4図は上述の如きインターレース駆動を行う際のタイ
ミング図であり、第5図は各タイミングのポテンシャル
の状態を示す図で、第3図のX−Y断面を示す。
FIG. 4 is a timing diagram when performing interlaced driving as described above, and FIG. 5 is a diagram showing the potential state at each timing, and shows the XY cross section of FIG. 3.

偶数フィールドEVENでは、光電荷の蓄積期間中転送
クロックφ1〜φ3が高電位、転送クロックφ4が低電
位に固定され、第5図のTIに示すように転送クロック
φ4で形成されるポテンシャル障壁で2画素毎に分離さ
れて転送クロックφ、〜φ、で形成されるポテンシャル
井戸にWとYe、WとCyの各色成分の光電荷が混合し
て蓄積される。そして、蓄積期間が終了時点で転送クロ
ックφ、が低レベルとなって第2図のT、に示すように
転送クロックφ1で形成されていたポテンシャル井戸が
なくなり、転送クロックφ、φ、で形成されるポテンシ
ャル井戸に光電荷が移される。この後、転送クロックを
φ4.φ1.φ2.φ、の順に繰り返し高電位とすると
共に、転送クロックをφ□φ8.φ4゜φ、の順で低電
位とする4相駆動に依って光電荷が転送される。従って
、色成分信号W+ Ye 、 ’d+ Cyが繰り返し
得られる。また、隣り側のチャネル領域(1)に於いて
は、Gとcy、cとYeが混合されて色成分信号G+C
y、G+Yeが得られる。
In the even field EVEN, the transfer clocks φ1 to φ3 are fixed at a high potential and the transfer clock φ4 is fixed at a low potential during the photocharge accumulation period, and as shown in TI in FIG. 5, the potential barrier formed by the transfer clock φ4 Photocharges of the respective color components of W and Ye, W and Cy are mixed and accumulated in potential wells separated for each pixel and formed by transfer clocks φ, to φ. Then, at the end of the accumulation period, the transfer clock φ becomes low level, and as shown at T in FIG. 2, the potential well formed by the transfer clock φ1 disappears, and the potential well formed by the transfer clocks φ, φ A photocharge is transferred to a potential well. After this, the transfer clock is set to φ4. φ1. φ2. φ is repeatedly set to a high potential in the order of φ□φ8 . Photocharges are transferred by four-phase driving in which the potential is lowered in the order of φ4°φ. Therefore, color component signals W+ Ye and 'd+ Cy are repeatedly obtained. In addition, in the adjacent channel region (1), G and cy, c and Ye are mixed and the color component signal G+C
y, G+Ye are obtained.

一方、奇数フィールドODDでは、光電荷の転送期間中
φ、φ、φ4が高電位、転送クロックφ、が低電位に固
定され、第5図のT、に示すように転送クロックφ、で
形成されるポテンシャル障壁で2画素毎に分離され、転
送クロックφ1φ、φ4で形成されるポテンシャル井戸
にW+Ye、 W+Cy(7)色成分の光電荷が蓄積さ
れる。そして、蓄積期間が終了すると転送クロックφ、
が低レベルとなり、続いて転送クロックφ1〜φ4の4
相駆動に依り光電荷が出力される。この奇数フィールド
ODDで杜、混合される画素の組合せが偶数フィールド
EYENと反転しており、偶数フィールドEVENで得
られた映像信号と奇数フィールドODDで得れた映像信
号とを組合せることで1フレームが構成される。
On the other hand, in the odd field ODD, φ, φ, φ4 are fixed at a high potential and the transfer clock φ is fixed at a low potential during the photocharge transfer period, and the transfer clock φ is formed as shown in T in FIG. The photocharges of the W+Ye and W+Cy (7) color components are accumulated in potential wells formed by transfer clocks φ1φ and φ4, which are separated every two pixels by a potential barrier. When the accumulation period ends, the transfer clock φ,
becomes low level, and then transfer clocks φ1 to φ4 of 4
Photocharge is output by phase drive. In this odd field ODD, the combination of pixels to be mixed is reversed to that in the even field EYEN, and by combining the video signal obtained in the even field EVEN and the video signal obtained in the odd field ODD, one frame is obtained. is configured.

以上の様にして得られる映像信号は、(W+Ye)+(
Cy+G)から輝度信号、(w+ ye) −(Cy+
 c)或いは($J+ Cy) −(Ye十c)から色
信号を得る。即ち、W=R+G+B、Ye=R+G、C
y=G+B(R:レッド、Bニブル−)であることから
輝度信号4f2R+4c+2B、色信号は夫々2R或い
は2Bとなる。
The video signal obtained in the above manner is (W+Ye)+(
Luminance signal from (Cy+G), (w+ye) −(Cy+
c) Or obtain a color signal from ($J+Cy)-(Ye+c). That is, W=R+G+B, Ye=R+G, C
Since y=G+B (R: red, B nibble), the luminance signal is 4f2R+4c+2B, and the color signal is 2R or 2B, respectively.

(八〉発明が解決しようとする課題 しかながら、上述の如きインターレース駆動を行う場合
、光電荷の蓄積期間中の各転送電極(3)(4〉の電位
が偶数フィールドEVENと奇数フィールドODDとで
異なり、転送クロックφ、〜φ4の対称性がないことか
ら、両フィールドから得られる各色成分信号に僅かな差
が生じ、この差がフリッカとなって再生画面に表われる
といった問題が生じる。
(8) Problems to be Solved by the Invention However, when performing interlaced driving as described above, the potential of each transfer electrode (3) (4) during the photocharge accumulation period is different between even field EVEN and odd field ODD. In contrast, the lack of symmetry between the transfer clocks φ and φ4 causes a slight difference between the color component signals obtained from both fields, and this difference causes a problem that appears as flicker on the reproduced screen.

そこで本発明は、モザイク状の色分離フィルタを装着し
たフレームトランスファ型の固体撮像素子をインターレ
ース駆動する際のフリッカの発生を防止することを目的
とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to prevent flicker from occurring when a frame transfer type solid-state image pickup device equipped with a mosaic color separation filter is interlace driven.

〈二)課題を解決するための手段 本発明は上述の課題を解決するためになされたもので、
分離領域で区画されて互いに平行に配列され光電変換に
依り発生する光電荷が蓄積転送される複数のチャネル領
域と、このチャネル領域内にポテンシャルの障壁を形成
して受光画素の分離をする第1の転送電極及び、第1の
転送電極に形成されるポテンシャル障壁の間にポテンシ
ャルの井戸を形成して上記光電荷を蓄積する第2の転送
電極と、上記第1の転送電極に沿って分割された各領域
が各受光画素に対応付けられ各分割領域が特定波長の入
射光を透過する色分離フィルタと、を備え、第1の期間
に各受光画素に光電荷を蓄積した後、偶数フィールドに
於いては、第2の期間に偶数列の上記第1の転送電極で
上記チャネル領域にポテンシャルの井戸を形成して隣接
する受光画素の光電荷を合成し、奇数フィールドに於い
ては、第2の期間に奇数列の上記第2の転送電極で上記
チャネル領域にポテンシャル井戸を形成して隣接する受
光画素の光電荷を合成し、続く第3の期間に上記第1及
び第2の転送電極のパルス駆動で上記光電荷を上記チャ
ネル領域に沿って転送することを特徴とするものである
(2) Means for solving the problems The present invention has been made to solve the above problems,
A plurality of channel regions partitioned by separation regions and arranged parallel to each other to accumulate and transfer photocharges generated by photoelectric conversion, and a first channel region that separates light-receiving pixels by forming a potential barrier within the channel regions. a transfer electrode, a second transfer electrode that stores the photocharge by forming a potential well between the potential barrier formed in the first transfer electrode, and a second transfer electrode that is divided along the first transfer electrode. a color separation filter in which each region is associated with each light-receiving pixel, and each divided region transmits incident light of a specific wavelength; In the second period, a potential well is formed in the channel region by the first transfer electrodes in even-numbered columns to combine the photocharges of adjacent light-receiving pixels, and in the odd-numbered field, a potential well is formed in the channel region. During the period, potential wells are formed in the channel region by the second transfer electrodes in odd-numbered columns to combine the photocharges of adjacent light-receiving pixels, and during the following third period, the second transfer electrodes in the odd-numbered columns form a potential well in the channel region. The photoelectric charge is transferred along the channel region by pulse driving.

(本)作用 本発明に依れば、光電荷を蓄積する期間中の第1及び第
2の転送電極の電位が偶数フィールドと奇数フィールド
とで同一となり、両フィールドで蓄積される光電荷が同
一となる。そして、この光電荷を光電荷の蓄積期間の終
了時点で混合すべき画素間のポテンシャル障壁を消滅さ
せて2画素の光電荷を混合した後に、転送電極を多相の
転送クロックでパルス駆動して転送することで、偶数フ
ィールドと奇数フィールドとでバランスのとれた色成分
信号が出力される。
(Main) Effect According to the present invention, the potentials of the first and second transfer electrodes during the period of accumulating photocharges are the same in even and odd fields, and the photocharges accumulated in both fields are the same. becomes. Then, at the end of the photocharge accumulation period, the potential barrier between the pixels to be mixed is eliminated and the photocharges of the two pixels are mixed, and then the transfer electrodes are pulse-driven with a multiphase transfer clock. By transferring, a color component signal with a good balance between even and odd fields is output.

(へ)実施例 本発明の一実施例を図面に従って説明する。(f) Example An embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の固体撮像素子の駆動方法を示すタイミ
ング図であり、第2図は各タイミングのボテンシ号ルの
状態を示す図である。この図に於いては、第5図と同様
に第3図のX−Y断面を示している。
FIG. 1 is a timing diagram showing the method for driving a solid-state image sensor according to the present invention, and FIG. 2 is a diagram showing the state of the potentiometer at each timing. In this figure, the XY cross section of FIG. 3 is shown similarly to FIG. 5.

偶数フィールドEVENでは、光電荷の蓄積期間に転送
クロックφ1φ、が高電位、転送クロックφ、φ4が低
電位に固定され、第2図のT、に示すように転送クロッ
クφ、φ4で形成されるポテンシャル障壁で1画素毎に
分離され、転送クロックφ、φ、で形成されるポテンシ
ャル井戸に各画素に対応する色成分(W 、 Ye 、
 Cy)の光電荷が蓄積される。
In the even field EVEN, during the photocharge accumulation period, the transfer clock φ1φ is fixed at a high potential, and the transfer clocks φ, φ4 are fixed at a low potential, and the transfer clocks φ, φ4 are formed as shown in T in FIG. Each pixel is separated by a potential barrier, and color components (W, Ye,
Cy) photocharges are accumulated.

この固体撮像素子杜、過剰な光電荷を基板側に排出させ
る縦型オーバーブロードレイン方式が採用されており、
基板側の電位の制御に依って転送クロックφ、φ4で形
成されるポテンシャル障壁の部分が無感度領域となるよ
うに構成され、光電荷の混合が防止されている。即ち、
縦型オーバーブロードレイン方式の固体撮像素子は、転
送電極の電位と基板側の電位とに依っては、チャネル領
域に発生する光電荷が全て基板側に排出されるため、転
送クロックφ1〜φ、が低電位のときに光電荷がチャネ
ル領域から基板側に流れるように基板側の電位を設定し
ておけば、転送クロックφ1〜φ4が低電位のときに実
効的な受光感度がなくなる。
This solid-state image sensor uses a vertical over-drain method that discharges excess photocharge to the substrate side.
By controlling the potential on the substrate side, the portion of the potential barrier formed by the transfer clocks φ and φ4 is configured to become an insensitive region, and mixing of photocharges is prevented. That is,
In a vertical overbroad drain type solid-state imaging device, depending on the potential of the transfer electrode and the potential on the substrate side, all the photocharges generated in the channel region are discharged to the substrate side, so the transfer clocks φ1 to φ, If the potential on the substrate side is set so that the photocharge flows from the channel region to the substrate side when is at a low potential, there will be no effective light receiving sensitivity when the transfer clocks φ1 to φ4 are at a low potential.

そして、光電荷の蓄積期間の終了時点で転送クロックφ
、を高電位とし、第2図のT、に示すように2画素の光
電荷を混合し、続いて転送クロックφ、を低電位として
第2図のT、に示すように転送クロックφヨで形成され
ていたポテンシャル井戸の光電荷を転送クロックφ、φ
、で形成されるポテンシャル井戸に転送する。以後の転
送期間で辻、転送クロックφ□〜φ4の4相駆動に依り
2画素分が混合された光電荷が転送される。
Then, at the end of the photocharge accumulation period, the transfer clock φ
, is set to a high potential, and the photocharges of two pixels are mixed as shown at T in FIG. The photocharges in the potential well that had been formed are transferred using clocks φ and φ.
, transfer to the potential well formed by . In the subsequent transfer period, the mixed photocharges of two pixels are transferred by four-phase driving of the transfer clocks φ□ to φ4.

また、奇数フィールドODDでも光電荷の蓄積期間中は
転送クロックφ、φ、が高電位、転送クロックφ、φ4
が低電位に固定され、偶数フィールドEVENと同様に
第2図のT1に示すようなポテンシャル障壁及び井戸が
形成され、各画素に対応する色成分の光電荷が蓄積され
る。
Also, in the odd field ODD, the transfer clocks φ, φ are at a high potential during the photocharge accumulation period, and the transfer clocks φ, φ4 are at a high potential.
is fixed at a low potential, a potential barrier and a well as shown at T1 in FIG. 2 are formed as in the even field EVEN, and photocharges of color components corresponding to each pixel are accumulated.

そして、光電荷の蓄積期間の終了時点で転送クロックφ
4を高電位とし、第2図のT4に示すように2画素の光
電荷を混合する。この後、転送クロックφ、を低電位と
して転送クロックφ、で形成されていたポテンシャル井
戸の光電荷を転送クロックφ4φ、で形成されるポテン
シャル井戸に転送し、続く転送期間に偶数フィールドE
VENと同様に転送クロックφ、〜φ、の4相駆動で転
送される。
Then, at the end of the photocharge accumulation period, the transfer clock φ
4 is set to a high potential, and the photocharges of the two pixels are mixed as shown at T4 in FIG. After this, the transfer clock φ is set to a low potential, and the photocharges in the potential well formed by the transfer clock φ are transferred to the potential well formed by the transfer clock φ4φ, and in the subsequent transfer period, the even field E
Similar to VEN, the data is transferred using four-phase drive of transfer clocks φ and φ.

従って、偶数フィールドEVENと奇数フィールドOD
Dとで夫々色成分信号W+Ya、 W+Cy、 Cy+
G及びYe+Gが得られ、これらの色成分信号の演算に
依って輝度信号及び色信号が作成される。この色成分信
号の演算に関しては、従来と同一であり、説明は省略す
る。
Therefore, even field EVEN and odd field OD
D and color component signals W+Ya, W+Cy, Cy+ respectively.
G and Ye+G are obtained, and a luminance signal and a color signal are created by calculating these color component signals. The calculation of this color component signal is the same as the conventional one, and the explanation will be omitted.

上述の如きインターレース駆動に於いては、光電荷の転
送期間中の転送電極の電位が偶数フィールドEVENと
奇数フィールドODDとで等しくなり、両フィールドで
の光電荷の蓄積が同じボテンシケルの状態で行われるた
め、両フィールド間の映像信号の差はなくなる。また、
各画素毎に蓄積された光電荷は、転送クロックφ、或い
はφ4を高電位として2画素分が一旦混合された後に順
次転送されることから、転送クロックφ1〜φ4の位相
ずれ等に依る光電荷の不要な混合を防止できる。
In the interlaced drive as described above, the potential of the transfer electrode during the photocharge transfer period is equal in the even field EVEN and the odd field ODD, and the photocharge accumulation in both fields is performed at the same voltage. Therefore, there is no difference in the video signals between the two fields. Also,
The photocharges accumulated in each pixel are transferred sequentially after the two pixels are mixed with the transfer clock φ or φ4 at a high potential. Unnecessary mixing of components can be prevented.

(ト)発明の効果 本発明に依れば、モザイクフィルタを装着したフレーム
トランスファ方式の固体撮像素子をフリッカが発生する
ことなくインターレース駆動をすることができるため、
本発明駆動方法の採用で高い水平解像度を有するテレビ
カメラを提供することができる。
(g) Effects of the Invention According to the present invention, a frame transfer type solid-state image sensor equipped with a mosaic filter can be driven in interlace mode without flickering.
By employing the driving method of the present invention, a television camera with high horizontal resolution can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の固体撮像素子の駆動方法を示すタイミ
ング図、第2図は第1図のタイミングのポテンシャル状
態を示す図、第3図はフレームトランスファ方式の固体
撮像素子の受光面を示す平面図、第4図は従来の固体撮
像素子の駆動方法を示すタイミング図、第5図は第2図
の各タイミングのポテンシャル状態を示す図である。 (1)・・・チャネル領域、 (2)・・・チャネル分
離領域、 (3)(4)・・・転送電極、 (10)・
・・色分離フィルタ。
Fig. 1 is a timing diagram showing the driving method of the solid-state image sensor of the present invention, Fig. 2 is a diagram showing the potential state at the timing of Fig. 1, and Fig. 3 shows the light-receiving surface of the solid-state image sensor of the frame transfer method. FIG. 4 is a plan view, a timing diagram showing a conventional method for driving a solid-state image sensor, and FIG. 5 is a diagram showing potential states at each timing in FIG. (1)...channel region, (2)...channel separation region, (3)(4)...transfer electrode, (10)...
...Color separation filter.

Claims (3)

【特許請求の範囲】[Claims] (1)分離領域で区画されて互いに平行に配列され光電
変換に依り発生する光電荷が蓄積転送される複数のチャ
ネル領域と、 このチャネル領域内にポテンシャルの障壁を形成して受
光画素の分離をする第1の転送電極及び、第1の転送電
極に形成されるポテンシャル障壁の間にポテンシャルの
井戸を形成して上記光電荷の蓄積をする第2の転送電極
と、 上記第1の転送電極に沿って分割された各領域が各受光
画素に対応付けられ各分割領域が特定波長の入射光を透
過する色分離フィルタと、 を備え、 第1の期間に各受光画素に光電荷を蓄積した後、偶数フ
ィールドに於いては、第2の期間に偶数列の上記第1の
転送電極で上記チャネル領域にポテンシャルの井戸を形
成して隣接する受光画素の光電荷を合成し、 奇数フィールドに於いては、第2の期間に奇数列の上記
第2の転送電極で上記チャネル領域にポテンシャル井戸
を形成して隣接する受光画素の光電荷を合成し、 続く第3の期間に上記第1及び第2の転送電極のパルス
駆動で上記光電荷を上記チャネル領域に沿って転送する
ことを特徴とする固体撮像素子の駆動方法。
(1) A plurality of channel regions, which are divided by separation regions and arranged parallel to each other, where photocharges generated by photoelectric conversion are accumulated and transferred, and a potential barrier is formed within these channel regions to separate light-receiving pixels. a first transfer electrode that stores the photocharge by forming a potential well between a potential barrier formed in the first transfer electrode; a color separation filter in which each area divided along the axis corresponds to each light-receiving pixel, and each divided area transmits incident light of a specific wavelength; , in the even field, a potential well is formed in the channel region by the first transfer electrodes in the even columns in the second period to combine the photocharges of adjacent light receiving pixels, and in the odd field, In the second period, a potential well is formed in the channel region by the second transfer electrodes in odd-numbered columns to combine the photocharges of adjacent light receiving pixels, and in the subsequent third period, the first and second transfer electrodes are combined. A method for driving a solid-state imaging device, comprising transferring the photocharge along the channel region by pulse-driving a transfer electrode.
(2)上記チャネル領域は、一導電型の半導体基板の一
面に埋設された逆導電型の拡散領域内に形成され、 上記チャネル領域の過剰な光電荷を上記半導体基板側に
排出することを特徴とする請求項第1項記載の固体撮像
素子の駆動方法。
(2) The channel region is formed in a diffusion region of an opposite conductivity type buried in one surface of a semiconductor substrate of one conductivity type, and excess photocharge in the channel region is discharged to the semiconductor substrate side. A method for driving a solid-state image sensor according to claim 1.
(3)上記第1及び第2の転送電極は、互いに絶縁され
た多層構造を成し、 各転送電極に4相の転送クロックが供給されることを特
徴とする請求項第1項記載の固体撮像素子の駆動方法。
(3) The solid state according to claim 1, wherein the first and second transfer electrodes have a multilayer structure insulated from each other, and each transfer electrode is supplied with a four-phase transfer clock. How to drive the image sensor.
JP1326800A 1989-12-15 1989-12-15 Driving method for solid-state image pickup element Pending JPH03187591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1326800A JPH03187591A (en) 1989-12-15 1989-12-15 Driving method for solid-state image pickup element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1326800A JPH03187591A (en) 1989-12-15 1989-12-15 Driving method for solid-state image pickup element

Publications (1)

Publication Number Publication Date
JPH03187591A true JPH03187591A (en) 1991-08-15

Family

ID=18191848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1326800A Pending JPH03187591A (en) 1989-12-15 1989-12-15 Driving method for solid-state image pickup element

Country Status (1)

Country Link
JP (1) JPH03187591A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009159634A (en) * 2009-04-13 2009-07-16 Sony Corp Solid-state imaging apparatus, driving method thereof and camera system
JP2009159635A (en) * 2009-04-13 2009-07-16 Sony Corp Solid-state imaging apparatus, driving method thereof and camera system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009159634A (en) * 2009-04-13 2009-07-16 Sony Corp Solid-state imaging apparatus, driving method thereof and camera system
JP2009159635A (en) * 2009-04-13 2009-07-16 Sony Corp Solid-state imaging apparatus, driving method thereof and camera system

Similar Documents

Publication Publication Date Title
JPS634751B2 (en)
JPS6359587B2 (en)
JPS60146583A (en) Solid-state image pickup device
JPS6118914B2 (en)
JP4497261B2 (en) Charge transfer device, CCD image sensor, and CCD imaging system
JPS588631B2 (en) 2 Jigenjiyouhouyouyomidashisouchi
JPH03187591A (en) Driving method for solid-state image pickup element
JP2000138943A (en) Solid-state image pickup element, its driving method and camera system
JPS5838026B2 (en) color signal generator
JPS6210469B2 (en)
JP3509184B2 (en) Driving method of solid-state imaging device
US7719594B2 (en) Solid-state imaging device with OB region and camera provided with the same
JPS59122085A (en) Solid-state image pickup element
JPH0685582B2 (en) Solid-state imaging device
JP3021513B2 (en) Solid-state imaging device
KR0165375B1 (en) Ccd type solid state image pick-up device
JPH08140105A (en) Solid-state color imaging device
JP3392607B2 (en) Driving method of solid-state imaging device
JP2001057419A (en) Solid-state image sensor and its manufacture
JP4734760B2 (en) Driving device and driving method of solid-state imaging device
JP2591182B2 (en) Color solid-state imaging device
JP3713863B2 (en) Solid-state image sensor
JPH03166875A (en) Drive method for solid-state image pickup element
JPH07274185A (en) Method for constituting color solid-state image pickup element and color filter
JP2000152093A (en) Solid-state image pickup device