JPH03186269A - Apparatus for producing carbonated spring - Google Patents

Apparatus for producing carbonated spring

Info

Publication number
JPH03186269A
JPH03186269A JP32645989A JP32645989A JPH03186269A JP H03186269 A JPH03186269 A JP H03186269A JP 32645989 A JP32645989 A JP 32645989A JP 32645989 A JP32645989 A JP 32645989A JP H03186269 A JPH03186269 A JP H03186269A
Authority
JP
Japan
Prior art keywords
gas
carbon dioxide
carbonated spring
combustion gas
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32645989A
Other languages
Japanese (ja)
Other versions
JPH0624569B2 (en
Inventor
Harumasa Furuya
古谷 治正
Hideo Iwata
岩田 秀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP32645989A priority Critical patent/JPH0624569B2/en
Publication of JPH03186269A publication Critical patent/JPH03186269A/en
Publication of JPH0624569B2 publication Critical patent/JPH0624569B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Devices For Medical Bathing And Washing (AREA)

Abstract

PURPOSE:To obtain the carbonated spring having a high concn. and a high physiological effect by providing a cavity type pressure buffer between a thickening means and a feeding means. CONSTITUTION:The combustion gas 4 generated by closing a valve 11, opening valves 10, 12, and burning a city gas 2 in a duct 8 by obtaining the air 1 generated by the operation of a pressurizing machine 9 is sent into an adsorption column 19. The gas 4 is cooled by a cooler 5 and the condensate 6 is stored in a condensate reservoir 7, by which the gas 4 is dehumidified. Carbon dioxide is mainly adsorbed in an adsorption column 19 and a non-adsorbed gas 20 is discharged. A suction pump 21 is operated after the adsorption to previously maintain the inside of the cavity type pressure buffer 13 in a reduced pressure state. The valves 10, 12 are then closed and the valve 11 is opened to flush the concd. carbon dioxide into the cavity type pressure buffer 13 in the reduced pressure state, by which the desorption of the carbon dioxide in the column 19 is accelerated. The concd. carbon dioxide is sent into hot water 16 by the pump 21, by which the carbonated spring is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、生理的に効果のある炭酸泉が容易に得られ
る炭酸泉製造装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a carbonated spring production device that can easily produce physiologically effective carbonated springs.

〔従来の技術〕[Conventional technology]

浴槽内の湯水が炭酸ガスを含む炭酸泉であると、入浴中
の人体内の血流量に増加がみられ、生理的な効果(疲労
感の軽減や保温効果など)があることが、たとえば、日
本医事新報 No、3165 (昭和59年12月22
日発行)「人工炭酸浴と微小循環」などによって認めら
れている。
For example, in Japan, when the hot water in the bathtub is carbonated spring containing carbon dioxide gas, the blood flow in the human body increases during bathing, and it has physiological effects (such as reducing fatigue and keeping warm). Medical Newspaper No. 3165 (December 22, 1980)
(Published in Japan) ``Artificial carbonated bath and microcirculation'' etc.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記炭酸泉を得る方法として、炭酸塩と酸との配合物の
投入によりこれらの反応で炭酸ガスを発生させるように
する方法や、炭酸ガス入りのボンベやタンクにより同炭
酸ガスを湯水中に供給する方法等がある。前記炭酸塩と
酸との配合物による方法によると、同配合物を購入し準
備しておく必要があるとともにその度ごとに浴槽中に配
合物を投入する必要があって、手数がかかる問題がある
。前記炭酸ガスをボンベ等により直接供給するようにす
る方法であると、ボンベ等の設置により比較的長期にわ
たって供給することができるが、ボンベ等の高圧容器に
よるので、その取扱いが煩わしくなるとともに、ボンベ
等の入手が必ずしも簡便ではないという問題がある。
The carbonated spring can be obtained by adding a mixture of carbonate and acid to generate carbon dioxide gas through their reaction, or by supplying carbon dioxide gas into hot water using a cylinder or tank containing carbon dioxide gas. There are methods etc. According to the method using a mixture of carbonate and acid, it is necessary to purchase and prepare the same mixture, and it is also necessary to pour the mixture into the bathtub each time, which is a time-consuming problem. be. If the carbon dioxide gas is directly supplied from a cylinder or the like, it can be supplied for a relatively long period of time by installing a cylinder or the like, but since it uses a high-pressure container such as a cylinder, it becomes cumbersome to handle, and the cylinder There is a problem that it is not always easy to obtain such materials.

この発明は、前記事情に鑑みてなされたもので、その課
題とするところは、入手や取り扱いに不便や手数をとる
ようなことをなくすようにし、炭数束が必要に応じてい
つでも得られるようにするとともに、濃度が高く生理的
効果のある炭酸泉が得られるようにし、機器類の耐久性
が向上するようにすることにある。
This invention was made in view of the above circumstances, and its object is to eliminate inconvenience and trouble in obtaining and handling, and to make it possible to obtain bundles of charcoal whenever necessary. At the same time, the purpose is to make it possible to obtain carbonated springs with high concentration and physiological effects, and to improve the durability of equipment.

〔課題を解決するための手段〕[Means to solve the problem]

前記課題を解決するため、この発明にかかる炭酸泉製造
装置は、炭化水素を有する燃料から燃焼ガスを得る手段
と、前記燃焼ガス中の炭酸ガスを濃縮する手段と、前記
濃縮された炭酸ガスを液中に送り込む手段とを有する炭
酸泉製造装置において、前記濃縮する手段と送り込む手
段との間に、空洞型圧力バッファが設けられている。
In order to solve the above problems, the carbonated spring production apparatus according to the present invention includes a means for obtaining combustion gas from a fuel containing hydrocarbons, a means for concentrating carbon dioxide in the combustion gas, and a means for converting the concentrated carbon dioxide into a liquid. In the carbonated spring manufacturing apparatus having a means for feeding into the carbonated spring, a cavity pressure buffer is provided between the means for concentrating and the means for feeding.

〔作   用〕[For production]

この発明にかかる炭酸泉製造装置は、下記の式で示され
る燃焼ガス生成燃焼反応に基づき、炭化水素を含有する
燃料を燃焼し、炭酸ガスを生じさせて、これを炭酸ガス
源とするものである。
The carbonated spring production device according to the present invention burns fuel containing hydrocarbons to generate carbon dioxide gas, which is used as a carbon dioxide gas source, based on the combustion gas generation combustion reaction shown by the following formula. .

CnHm+ (n+m/4+に+α)Q、+ (4n+
m+4 k+β) Nt + 7 HI O+ t C
Ot−’(n+ε)COt + (m/2+y)Hz 
0+  (k+α)Os  +  (4n+m+4に+
β)N。
CnHm+ (+α to n+m/4+) Q, + (4n+
m+4 k+β) Nt + 7 HI O+ t C
Ot-'(n+ε)COt+(m/2+y)Hz
0+ (k+α)Os + (4n+m+4+
β)N.

・・・・・・・・・0式 ただし、空気中のO,、N、のモル比N、/○、を概数
で4とした。燃焼余剰空気はkO,と4kN、とからな
り、炭酸ガス非濃縮ガスの成分比はO,:Nt  :H
t O:COt =α:β:γ:εとした。n、mは自
然数、k、α、β、γ、εは正の実数である。
・・・・・・・・・Formula 0 However, the molar ratio N, /○, of O, N, in the air is approximately 4. The combustion surplus air consists of kO, and 4kN, and the component ratio of carbon dioxide non-concentrated gas is O, :Nt :H
It was set as tO:COt=α:β:γ:ε. n and m are natural numbers, and k, α, β, γ, and ε are positive real numbers.

発生した燃焼ガス(■式右辺〉中の炭酸ガスを濃縮の上
、液中に送入して、同波(たとえば、湯水)中に炭酸ガ
スを溶解させることで炭酸泉を作る。濃縮する手段と送
り込む手段との間に、空洞型圧力バッファが設けられて
いると、同バッファを濃縮手段よりも低圧にすることで
、濃縮された炭酸ガスが同バッファ内に急激に流れ込み
、時間当り多量に液中に送り込まれるようになる。同バ
ッファの存在により、濃縮手段等に圧力変動があっても
、これを吸収する。
Carbonated springs are made by concentrating the carbon dioxide gas in the generated combustion gas (the right side of the formula ■) and sending it into the liquid, dissolving the carbon dioxide gas in the same wave (for example, hot water). If a hollow pressure buffer is provided between the feeding means and the pressure of the buffer is lower than that of the concentrating means, the concentrated carbon dioxide gas will rapidly flow into the buffer and a large amount of liquid will be generated per hour. Due to the presence of the buffer, even if there is a pressure fluctuation in the concentration means, it will be absorbed.

〔実 施 例〕〔Example〕

以下に、この発明を、その実施例をあられす図面を参照
しつつ詳しく説明する。
Hereinafter, embodiments of the present invention will be explained in detail with reference to the accompanying drawings.

この実施例では、炭化水素を有する燃料として都市ガス
を用いている。第1図は、この発明の一実施例のシステ
ムの概略を示すものである。この実施例のシステムは、
燃料から燃焼ガスを得る手段(プロセス)Aと、前記燃
焼ガス中の炭酸ガスを濃縮する手段(プロセス〉Bと、
前記濃縮された炭酸ガスを液中に送り込む手段(プロセ
ス)Cとを有する。
In this embodiment, city gas is used as the fuel containing hydrocarbons. FIG. 1 shows an outline of a system according to an embodiment of the present invention. The system of this example is
A means (process) A for obtaining combustion gas from fuel, a means (process) B for concentrating carbon dioxide in the combustion gas,
and means (process) C for sending the concentrated carbon dioxide gas into the liquid.

燃焼ガスを得る手段Aは、加圧機9のボンピング動作に
より空気1が吸引されるようになるダクト8を備え、同
ダクト8内には、炭化水素を有する都市ガス2が別途送
り込まれるようにバーナー3が臨んでいる。同バーナー
3の燃焼が行なわれる部分は、発生した燃焼ガス4がダ
クト8外の空気により稀釈されないよう、ダクト8内部
にのみ面している。都市ガス2による燃焼装置は、近年
普及しているボタンあるいはスイッチ1つで着火・消火
が可能な使用簡便な形式のものが好ましい。都市ガス2
によるもののほか、普及性の高いプロパンガスによるも
のでもよい。バーナー3をダクト8内に臨ませたのは、
燃焼ガス4がダクト8外の空気により稀釈されないよう
にするためである。
Means A for obtaining combustion gas includes a duct 8 through which air 1 is sucked in by the pumping operation of a pressurizer 9, and a burner is installed in the duct 8 so that city gas 2 containing hydrocarbons is separately sent. 3 is coming. The part of the burner 3 where combustion is performed faces only the inside of the duct 8 so that the generated combustion gas 4 is not diluted by the air outside the duct 8. The combustion device using city gas 2 is preferably of an easy-to-use type that can be ignited and extinguished with a single button or switch, which has become popular in recent years. city gas 2
In addition to the method using propane gas, which is widely used, it is also possible to use propane gas. The reason why burner 3 was placed facing inside duct 8 was as follows.
This is to prevent the combustion gas 4 from being diluted by the air outside the duct 8.

燃焼ガス4は、加圧機9により次に送られるが、発生直
後は数1ooo℃〜数100℃と高温であるため、その
ままで浴槽15内の湯水16中に送り込まれると、使用
上の安全性に欠ける。そのため、燃焼ガス4を数10℃
程度に下げる必要からダクト8の外周囲に冷却器5が設
けられている。この冷却器5は、水冷式、あるいは空冷
式のいずれでもよく、また、水冷式および空冷式の併用
タイプにしてもよい。同冷却器5の配置は、ダクト8の
外周囲以外に内周囲であったり、内周および外周双方に
配置されるものであってもよい。燃焼ガス4には、相当
量の水分が含まれていて、冷却に伴いダクト8内に凝縮
水6としてあられれるので、これらの凝縮水6・・・を
有効に除くため、ダクト8の底部をテーパー8aにして
流出しやすくしであるとともに、同テーパー8aの傾斜
下端部には、凝縮水6・・・を溜めるため凝縮水溜7が
接続されている。ここにおいて、前記冷却するための手
段は濃縮する手段Bの一部にもなっている。
The combustion gas 4 is sent next by the pressurizer 9, but immediately after generation, it is at a high temperature of several 100°C to several 100°C, so if it is sent as it is into the hot water 16 in the bathtub 15, it will not be safe for use. It lacks. Therefore, the combustion gas 4 is heated to several tens of degrees Celsius.
A cooler 5 is provided around the outer periphery of the duct 8 because it is necessary to lower the temperature to a certain degree. The cooler 5 may be either water-cooled or air-cooled, or may be a combination of water-cooling and air-cooling. The cooler 5 may be arranged not only on the outer periphery of the duct 8 but also on the inner periphery thereof, or may be arranged on both the inner periphery and the outer periphery. The combustion gas 4 contains a considerable amount of moisture, and as it cools, it forms as condensed water 6 in the duct 8. In order to effectively remove this condensed water 6, the bottom of the duct 8 is The taper 8a makes it easy to flow out, and a condensed water reservoir 7 is connected to the inclined lower end of the taper 8a to store the condensed water 6. Here, the means for cooling is also part of the means B for concentrating.

濃縮する手段Bの要部は吸着塔19になっている。吸着
塔19と加圧機9とは管24で接続され、同接続管24
にはバルブ10が設けられている。吸着塔19の内部構
造は、第2図に一部を切り欠いて示されている。この吸
着塔19は、塔本体の内部空間に、上下に離間する吸着
剤22・・・を有し、同吸着剤22・・・は、たとえば
、ゼオライト系の材料によりハニカム構造のものとされ
ている。
The main part of the concentrating means B is an adsorption tower 19. The adsorption tower 19 and the pressurizer 9 are connected by a pipe 24.
is provided with a valve 10. The internal structure of the adsorption tower 19 is shown in FIG. 2 with a portion cut away. This adsorption tower 19 has adsorbents 22 vertically spaced apart in the internal space of the tower body, and the adsorbents 22 are made of, for example, a zeolite material and have a honeycomb structure. There is.

吸着塔19内には、加圧機9による燃焼ガス4が送り込
まれて吸着剤22・・・により)(x O> CO!>
Nz>Oxの順に吸着されるようになっている。吸着塔
19の上端には管25が接続され、間管25には、バル
ブ12が設けられている。同バルブ12が開かれること
で、吸着塔19で吸着されない非吸着ガス20が管25
を通して系外に排出されるようになっている。接続管2
4上のバルブ10と吸着塔19との間から浴槽15まで
は、第1図にみるように、他の管14で接続されている
。間管14上には、吸着塔19側から順にバルブ11と
吸引ポンプ21が設けられているとともに、バルブ11
と吸引ポンプ21との間には空洞型圧力バッファ13が
設けられている。
Combustion gas 4 is fed into the adsorption tower 19 by the pressurizer 9 and absorbed by the adsorbent 22...) (x O>CO!>
It is designed to be adsorbed in the order of Nz>Ox. A pipe 25 is connected to the upper end of the adsorption tower 19, and the valve 12 is provided in the intermediate pipe 25. When the valve 12 is opened, the non-adsorbed gas 20 that is not adsorbed in the adsorption tower 19 is transferred to the pipe 25.
It is designed to be discharged out of the system through. Connecting pipe 2
The space between the valve 10 on 4 and the adsorption tower 19 and the bath 15 is connected by another pipe 14, as shown in FIG. On the intermediate pipe 14, a valve 11 and a suction pump 21 are provided in order from the adsorption tower 19 side, and the valve 11
A hollow pressure buffer 13 is provided between the pump 21 and the suction pump 21 .

吸着プロセスにおいて、バルブ11は閉じられ、バルブ
10.12は開らかれた状態とされている。加圧機9の
稼動によりダクト8の入口を通して空気lが吸い込まれ
、バーナー3から供給される都市ガス2が同空気1を得
てダクト8内で燃焼状態となる。これにより、発生する
燃焼ガス4は、加圧機9によりダクト8から接続管24
を通して吸着塔19に送られる。ダクト8内での燃焼ガ
ス4は、冷却器5により冷却を受け、その凝縮水6・・
・は凝縮水溜7に溜められることで、燃焼ガス4が除湿
される。除湿された燃焼ガス4は次いで濃縮プロセスに
入る。濃縮プロセスでは、加圧機9により燃焼ガス4が
加圧されて吸着塔19内に送入される。吸着塔19内の
吸着剤22・・・は、窒素および酸素よりも炭酸ガスの
方を吸着じやすい特性をもつので、吸着塔19内では、
主として炭酸ガスが吸着されることになる。非吸着ガス
20は接続管12を通して排出される。吸着後、吸引ポ
ンプ21を稼動させ、予め空洞型圧力バッファ13内を
減圧状態にしておく。次いで、バルブ10.12を閉じ
、吸引ポンプ21を稼動させつつバルブ11を開ける。
During the adsorption process, valve 11 is closed and valve 10.12 is left open. By operating the pressurizer 9, air 1 is sucked in through the inlet of the duct 8, and the city gas 2 supplied from the burner 3 obtains the same air 1 and enters a combustion state within the duct 8. As a result, the generated combustion gas 4 is transferred from the duct 8 to the connecting pipe 24 by the pressurizer 9.
It is sent to the adsorption tower 19 through. The combustion gas 4 in the duct 8 is cooled by the cooler 5, and the condensed water 6...
The combustion gas 4 is dehumidified by being stored in the condensed water reservoir 7. The dehumidified combustion gas 4 then enters a concentration process. In the concentration process, the combustion gas 4 is pressurized by the pressurizer 9 and sent into the adsorption tower 19 . The adsorbents 22 in the adsorption tower 19 have the property of adsorbing carbon dioxide gas more easily than nitrogen and oxygen, so in the adsorption tower 19,
Mainly carbon dioxide gas will be adsorbed. Non-adsorbed gas 20 is discharged through connecting pipe 12. After adsorption, the suction pump 21 is operated to bring the inside of the cavity pressure buffer 13 into a reduced pressure state in advance. Valve 10.12 is then closed and valve 11 is opened while suction pump 21 is running.

これにより、濃縮された炭酸ガスは、減圧状態にある空
洞型圧力バッファ13内に急激に流れ込むようになり、
吸着塔1,9内での炭酸ガスの離脱が速く積極的になる
。同濃縮ガスは、吸引ポンプ21により浴槽15内の湯
水16に送入され、炭酸泉が生成される。バッファ13
内に濃縮ガス分が一旦溜められたのちに吸引ポンプ21
により浴槽15内に送り込まれるので、炭酸泉の生成量
は均一化する。気泡17・・・は、同ガスを湯水16内
に溶解させやすくする。同空洞型圧力バッファ13の存
在により、吸着塔19内の圧力変動があってもそれがバ
ッファ13で有効に吸収され、その結果、圧力変動に伴
う吸引ポンプ21等の劣化を抑えることが可能になる。
As a result, the concentrated carbon dioxide gas rapidly flows into the hollow pressure buffer 13 which is in a reduced pressure state.
The separation of carbon dioxide gas within the adsorption towers 1 and 9 becomes rapid and active. The concentrated gas is sent to the hot water 16 in the bathtub 15 by the suction pump 21, and carbonated spring is generated. Buffer 13
After the concentrated gas is once stored inside the suction pump 21
Since the carbonated spring water is fed into the bathtub 15, the amount of carbonated spring produced becomes uniform. The bubbles 17... facilitate the dissolution of the gas into the hot water 16. Due to the presence of the cavity-type pressure buffer 13, even if there is a pressure fluctuation within the adsorption tower 19, it is effectively absorbed by the buffer 13, and as a result, it is possible to suppress deterioration of the suction pump 21 etc. due to pressure fluctuation. Become.

次いで、燃焼ガス16中に存する炭酸ガスの濃縮を行な
う理由を記す。文献(「人工炭酸浴と微小循環」)によ
れば、湯水中における炭酸ガス濃度は約60ppm以上
であれば、入浴中の人体内の血流量に増加現象がみられ
、炭酸泉としての生理的な効果(疲労感の軽減や保温効
果など)があることがほぼ認められている。
Next, the reason for concentrating the carbon dioxide gas present in the combustion gas 16 will be described. According to the literature ("Artificial carbonated bath and microcirculation"), if the carbon dioxide concentration in hot water is approximately 60 ppm or higher, an increase in blood flow in the human body during bathing is observed, and the physiological effect of carbonated springs is It is generally recognized that there are effects (such as reducing fatigue and keeping warm).

ところで、炭酸泉を作るために必要な炭酸ガス源として
普及性の高い都市ガスやプロパンガスの排ガスを用いる
ことは、利便性の面から有効であるが、以下に記すよう
に、燃焼ガス中の炭酸ガス濃度が低い点に問題がある。
By the way, it is effective from the viewpoint of convenience to use widely used city gas or propane gas exhaust gas as the carbon dioxide gas source necessary for making carbonated springs, but as described below, the carbon dioxide in the combustion gas The problem is that the gas concentration is low.

都市ガスの主成分のメタンガス(CH4)とプロパンガ
ス(CiH*)の燃焼は、次の式で示される(簡単にす
るため、空気中の酸素と窒素の比を1:4としである)
CH4+20x  + 8 Nt −’Cot +2Hs O+8N1〜・−・・−・・−
・−■式%式% −’3CO1+4H! O+2ONx’−−・〜・−■
式但し、上式は理論燃焼式であって、通常は実質的完全
燃焼を図るため、空気量を上式の理論空気量の数割増〜
数倍増とする。たとえば、5割増とすると、上記0式お
よび■式は、次のようになるCH4+30! +12N
t −Co! +2H10+O* +12Nl・・−■式%
式% ・・・−・■式 燃焼ガスは、■式、■式ともに右辺に示されており、燃
焼ガス中に占める炭酸ガスの比率は、■式の場合、6.
3%、水蒸気成分を除いた乾燥ガスにおいて7.1%、
■式の場合7.6%、乾燥ガスにおいて8.5%である
ことがわかる。
The combustion of methane gas (CH4) and propane gas (CiH*), the main components of city gas, is expressed by the following formula (for simplicity, the ratio of oxygen to nitrogen in the air is assumed to be 1:4).
CH4+20x + 8 Nt −'Cot +2Hs O+8N1~・−・・−・・−
・-■Formula%Formula% -'3CO1+4H! O+2ONx'−−・〜・−■
However, the above formula is a theoretical combustion formula, and in order to achieve substantially complete combustion, the amount of air is usually increased by several times the theoretical air amount in the above formula.
Increase by several times. For example, if the increase is 50%, the above equations 0 and ■ will become CH4+30! +12N
t-Co! +2H10+O* +12Nl...-■Formula%
Formula %...--The combustion gas of the ■Formula is shown on the right side of both the ■Formula and the ■Formula.The ratio of carbon dioxide gas in the combustion gas is 6.
3%, 7.1% in dry gas excluding water vapor component,
It can be seen that it is 7.6% for formula (2) and 8.5% for dry gas.

ここで、7%前後の炭酸ガス比率を持つ燃焼ガスが湯水
中に送られた場合の炭酸ガス溶解量を検討する。化学便
覧基礎編(改訂第3版;昭和59年6月25日 丸善■
発行)によれば、水中に溶解する炭酸ガス濃度は、水温
40℃(通常の入浴水温度は40℃前後である)で約1
000pp+mである。なお、この値は、気相中の炭酸
ガス圧力が1ata+である場合の飽和平衡値であり、
炭酸ガスと湯水との接触時間が相当あって初めて達せら
れる値である。ガスが湯水16中に気泡17となって存
在する際には、はぼ大気圧1at11であり、内炭酸ガ
ス比率が7%とすると、炭酸ガス分圧は約0.07at
mとなる。一般に、水に対するガスの溶解量は気相中の
ガス分圧にほぼ比例することから考えて、炭酸ガスを7
%含有する全圧がほぼ1at−の燃焼ガスを40℃程度
の湯水17中に気泡17として存在せしめ、溶解を行な
わせた場合には、最大限1000ppn+ Xo、0?
=70ppm+程度の溶解炭酸ガス濃度の炭酸泉ができ
るにすぎない。
Here, we will examine the amount of carbon dioxide dissolved when combustion gas having a carbon dioxide ratio of around 7% is sent into hot water. Chemistry Handbook Basic Edition (revised 3rd edition; June 25, 1980 Maruzen■
According to the publication), the concentration of carbon dioxide dissolved in water is approximately 1 at a water temperature of 40°C (normal bathing water temperature is around 40°C).
000pp+m. Note that this value is a saturated equilibrium value when the carbon dioxide pressure in the gas phase is 1 ata +,
This value can only be reached after a considerable amount of contact time between carbon dioxide gas and hot water. When gas exists as bubbles 17 in hot water 16, the atmospheric pressure is approximately 1at11, and if the internal carbon dioxide ratio is 7%, the carbon dioxide partial pressure is approximately 0.07at.
m. Generally speaking, considering that the amount of gas dissolved in water is approximately proportional to the gas partial pressure in the gas phase, carbon dioxide gas is
% containing a total pressure of approximately 1 at- is made to exist as bubbles 17 in hot water 17 at about 40°C and dissolved, a maximum of 1000 ppn+ Xo, 0?
Only carbonated springs with a dissolved carbon dioxide concentration of about 70 ppm+ can be produced.

さらに、この70ppmなる値も、前述のように、炭酸
ガスと湯水との接触時間が相当径た後に初めて到達でき
る値である。以上のことから、炭酸ガス比率が7%程度
のガスを単に気泡状態で湯水16中に送入せしめる程度
では、生理的効果を持つ炭酸ガス濃度60ppm+を確
実に遠戚することすら困難であるといわなければならな
い。
Furthermore, as described above, this value of 70 ppm can only be reached after a considerable amount of contact time between carbon dioxide gas and hot water. From the above, it is difficult to reliably achieve a carbon dioxide concentration of 60 ppm+, which has a physiological effect, by simply introducing gas with a carbon dioxide ratio of about 7% into the hot water 16 in the form of bubbles. I have to say it.

前述の文献(日本医事新報 No、3165(昭和59
年12月22日発行)「人工炭酸浴と微小循環」)によ
ると、入浴中の血流量増加作用は、溶解炭酸ガスのガス
濃度が約60pp+*の時に比べ約150ppmの時の
方が数倍(4〜5倍程度)に高まることが明らかになっ
ている。そのため、単に燃焼ガスを湯水16中に送入し
、炭酸ガスを溶解せしめた程度では、より生理的効果の
高い炭酸ガス濃度レベルまで達することが困難と考えら
れる。
The above-mentioned document (Nippon Iji Shinpo No. 3165 (Showa 59)
According to ``Artificial carbonated bath and microcirculation'' published on December 22, 2016), the effect of increasing blood flow during bathing is several times higher when the concentration of dissolved carbon dioxide gas is approximately 150 ppm than when it is approximately 60 pp+*. It has been revealed that this increases by about 4 to 5 times. Therefore, it is considered difficult to reach a carbon dioxide concentration level that has a higher physiological effect by simply introducing combustion gas into the hot water 16 and dissolving carbon dioxide gas.

炭酸泉製造に必要な炭酸ガス源としては、普及性の高さ
から炭化水素を含有する燃料(たとえば、都市ガスやプ
ロパンガスといったもの)の燃焼ガスを用いるものが有
力であるが、この場合、湯水中に溶解する炭酸ガス濃度
が、生理的効果を持つレベルに至るよう、本来希薄な燃
焼ガス中の炭酸ガスを濃縮する必要性のあることは明ら
かである。
As a source of carbon dioxide gas required for producing carbonated springs, the use of combustion gas from fuels containing hydrocarbons (such as city gas or propane gas) is likely, due to its high popularity. It is clear that there is a need to concentrate the carbon dioxide in the inherently dilute combustion gases so that the concentration of carbon dioxide dissolved therein reaches a level that has physiological effects.

この実施例では、燃焼ガス中の炭酸ガスの濃度を高める
ために、上記のように吸着塔19を用いている。
In this embodiment, the adsorption tower 19 is used as described above in order to increase the concentration of carbon dioxide in the combustion gas.

なお、前記実施例では、吸着塔が1個であるので、濃縮
された炭酸ガスの湯水中への供給が不連続になることが
ある。このことをなくすため、吸着塔を複数個設置し、
炭酸ガスの濃縮が連続的に行なわれるようにすることも
できる。
In the above embodiment, since there is only one adsorption tower, the supply of concentrated carbon dioxide gas to the hot water may be discontinuous. In order to eliminate this problem, multiple adsorption towers are installed,
It is also possible to continuously concentrate the carbon dioxide gas.

前記吸着塔19は、第3図にみるようなものにすること
もできる。すなわち、同吸着塔19は、濃縮された炭酸
ガスを離脱させる前に、予め同吸着塔19内の吸着剤に
炭酸ガスを吸着させておくようにするものであり、これ
により、予め炭酸ガスを吸着させておかないものに比べ
て、単位時間当りに発生する発熱量が少なくて済み、延
いては、冷却器5がより小さい容量のもので済むことに
なる。
The adsorption tower 19 can also be of the type shown in FIG. In other words, the adsorption tower 19 allows the adsorbent in the adsorption tower 19 to adsorb carbon dioxide gas before desorbing the concentrated carbon dioxide gas. Compared to the case where no adsorption is performed, the amount of heat generated per unit time is smaller, and as a result, the cooler 5 can have a smaller capacity.

〔発明の効果〕〔Effect of the invention〕

この発明にかかる炭酸泉製造装置は、以上のように構成
されているため、都市ガス、プロパンガスなどの普及性
の高い燃焼ガスを用いることが可能になり、常設可能で
入手や取り扱いに不便や手数をとるようなことがなくな
り、炭酸泉が必要に応じていつでも得られるようになる
。とくに、濃度が高く生理的効果のある炭酸泉が均一に
得られるようになり、機器類の耐久性が向上するように
なる。
Since the carbonated spring production device according to the present invention is configured as described above, it is possible to use widely used combustion gas such as city gas and propane gas, and it can be installed permanently and is inconvenient and troublesome to obtain and handle. You will no longer have to drink water, and you will be able to get carbonated spring water whenever you need it. In particular, it will be possible to uniformly obtain carbonated springs with high concentration and physiological effects, and the durability of equipment will be improved.

【図面の簡単な説明】[Brief explanation of drawings]

Claims (1)

【特許請求の範囲】[Claims] 1 炭化水素を有する燃料から燃焼ガスを得る手段と、
前記燃焼ガス中の炭酸ガスを濃縮する手段と、前記濃縮
された炭酸ガスを液中に送り込む手段とを有する炭酸泉
製造装置において、前記濃縮する手段と送り込む手段と
の間に、空洞型圧力バッファが設けられていることを特
徴とする炭酸泉製造装置。
1. A means for obtaining combustion gas from a fuel containing hydrocarbons;
In the carbonated spring production apparatus, which has means for concentrating carbon dioxide in the combustion gas and means for feeding the concentrated carbon dioxide into the liquid, a cavity-type pressure buffer is provided between the means for concentrating and the means for feeding. A carbonated spring production device characterized by being provided with:
JP32645989A 1989-12-15 1989-12-15 Carbonated spring manufacturing equipment Expired - Lifetime JPH0624569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32645989A JPH0624569B2 (en) 1989-12-15 1989-12-15 Carbonated spring manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32645989A JPH0624569B2 (en) 1989-12-15 1989-12-15 Carbonated spring manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH03186269A true JPH03186269A (en) 1991-08-14
JPH0624569B2 JPH0624569B2 (en) 1994-04-06

Family

ID=18188047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32645989A Expired - Lifetime JPH0624569B2 (en) 1989-12-15 1989-12-15 Carbonated spring manufacturing equipment

Country Status (1)

Country Link
JP (1) JPH0624569B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110538064A (en) * 2019-09-06 2019-12-06 辽宁大学 Hydrodynamic cavitation auxiliary traditional Chinese medicine skin disease treatment bathtub

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110538064A (en) * 2019-09-06 2019-12-06 辽宁大学 Hydrodynamic cavitation auxiliary traditional Chinese medicine skin disease treatment bathtub

Also Published As

Publication number Publication date
JPH0624569B2 (en) 1994-04-06

Similar Documents

Publication Publication Date Title
KR970025675A (en) Single Bed Pressure Cyclic Adsorption Method for Recovery of Oxygen from Air
US20150182904A1 (en) Device for temperature swing process
JP2012500093A5 (en)
ES2031907T3 (en) CO-PRODUCTION OF CARBON DIOXIDE AND HYDROGEN.
JPH03186269A (en) Apparatus for producing carbonated spring
JPH03131258A (en) Apparatus for making carbonated spring
JPH03186268A (en) Method and apparatus for producing carbonated spring
JPH0678963A (en) Carbon dioxide gas supplying device
JPS5481192A (en) Ozone generator
JPS6427619A (en) Super pure water generator
GB881941A (en) Improvements in or relating to processes of heat recovery between gas humidification and de-humidification processes
JPH04132553A (en) Carbonated spring water production apparatus
JPH072177B2 (en) Carbonated spring manufacturing method and device
JP2007144283A (en) Apparatus for producing synthetic air
JPH06205926A (en) Improved device for rapid drying of compressed air
JPH0271085A (en) Liquid nitrogen generator
SU1733062A1 (en) Method for cleaning hydrogen-containing gas from carbon dioxide
JPH03293012A (en) Low-purity oxygen feeder
JPS5839761B2 (en) Oxygen recycling ozone generator
JPH029414A (en) Apparatus for treating combustion gas
JPS62236412A (en) Perishable food storage apparatus
JP2000212644A (en) Regeneration of furnace gas and apparatus therefor
JPH08245202A (en) Supplying device for high concentration ozone
GB2274407A (en) Separating gases
JP3993485B2 (en) Geothermal hot water treatment method and geothermal hot water treatment apparatus