JPH03185242A - Fuel injection controller of internal combustion engine - Google Patents

Fuel injection controller of internal combustion engine

Info

Publication number
JPH03185242A
JPH03185242A JP32264889A JP32264889A JPH03185242A JP H03185242 A JPH03185242 A JP H03185242A JP 32264889 A JP32264889 A JP 32264889A JP 32264889 A JP32264889 A JP 32264889A JP H03185242 A JPH03185242 A JP H03185242A
Authority
JP
Japan
Prior art keywords
fuel injection
learning
fuel
injection valve
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32264889A
Other languages
Japanese (ja)
Inventor
Katsuhiko Hirose
雄彦 広瀬
Kenichi Nomura
野村 憲一
Koichi Tamura
田村 光一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP32264889A priority Critical patent/JPH03185242A/en
Publication of JPH03185242A publication Critical patent/JPH03185242A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • F02D41/2445Methods of calibrating or learning characterised by the learning conditions characterised by a plurality of learning conditions or ranges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To secure a proper fuel injection quantity all the time by setting a learning range in response to respective using ranges of a fuel injection valve, and compensating the fuel injection quantity from the fuel injection valve which corresponds, with a learning value learned in the learning range, during operation range which corresponds to the set learning range. CONSTITUTION:An inter-cylinder fuel injection valve 9 which supplies pressurized fuel from a fuel supply system to cylinders and a port fuel injection valve 10 arranged inside an intake port 11 are provided on every cylinder. Fuel injection is performed by the inter-cylinder fuel injection valve 9 for whole operation range, and a fuel quantity which is an amount exceeding the maximum injection quantity of the fuel injection valve 9 is injected from the port fuel injection valve 10. In such an internal combustion engine, a value based on the output signal of an O2 sensor 15 in a control circuit 6 is learned so as to compensate the fuel injection. In addition, a plurality of learning ranges are set in response to using conditions of respective fuel injection valves 9, 10, respective learning values learned in respective learning ranges are used so as to compensate the fuel injection quantity at the time of operation condition corresponding to the learning range.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は内燃機関の燃料噴射制御装置に関し、特に1気
筒当たり複数個の燃料噴射弁を備え、アイドルから高負
荷までの広い負荷領域において過不足なく要求された燃
料を供給する内燃機関の燃料噴射制御装置に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a fuel injection control device for an internal combustion engine, and particularly to a fuel injection control device for an internal combustion engine, which is equipped with a plurality of fuel injection valves per cylinder and is capable of controlling overload in a wide load range from idle to high load. The present invention relates to a fuel injection control device for an internal combustion engine that supplies required fuel without shortage.

〔従来の技術〕[Conventional technology]

例えば2サイクル内燃機関において、吸気ポートを2分
割し、その夫々に燃料噴射弁を設は機関負荷に応じて噴
射弁の使用個数を変え、燃料の吹き抜けと高負荷時の燃
料噴射量の確保を両立しようとした機関が既に知られて
いる(特開昭63−9627号)。
For example, in a two-stroke internal combustion engine, the intake port is divided into two and a fuel injection valve is installed in each.The number of injectors used can be changed depending on the engine load to prevent fuel from flowing through and to ensure the amount of fuel injected at high loads. An organization that attempted to achieve both is already known (Japanese Patent Application Laid-Open No. 63-9627).

また、これとは別に空燃比を目標空燃比(例えば理論空
燃比)に維持する空燃比フィードバック制御において、
機関排気系に設けられた酸素センサの出力信号に基づい
た値(学習補正量〉を予め学習して、現実の運転条件に
該当する学習補正量を以って燃料噴射量を補正し、空燃
比フィードバック制御の精度を向上しようとした学習制
御装置も既に知られている。
In addition, in air-fuel ratio feedback control to maintain the air-fuel ratio at a target air-fuel ratio (for example, stoichiometric air-fuel ratio),
A value (learning correction amount) based on the output signal of an oxygen sensor installed in the engine exhaust system is learned in advance, and the fuel injection amount is corrected using the learning correction amount that corresponds to the actual operating conditions, thereby adjusting the air-fuel ratio. Learning control devices that attempt to improve the accuracy of feedback control are also already known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで上述したような酸素センサの出力信号に基づい
た値を学習して燃料噴射量を補正しているものでは、当
然、その機関に搭載される燃料噴射弁のバラツキ(固体
差)も学習値を左右する一因子となっており、実際の燃
料噴射制御においてはその固体差も補正していることに
なる。従ってこのような学習制御を、上述した複数の燃
料噴射弁を有する内燃機関に適用しようとすると、特定
の運転領域で記憶された学習値を用いて複数の燃料噴射
弁からの燃料噴射量を補正しても、学習を行なった運転
領域(学習領域)で使用された燃料噴射弁と、その学習
値を用いて燃料噴射量を補正する場合の使用燃料噴射弁
とが異なる場合には、搭載された燃料噴射弁間の固体差
により噴射量の補正精度が悪化するという問題があった
。本発明は斯る問題に鑑み、1気筒当たり複数の燃料噴
射弁を備えた内燃機関において、噴射燃料の学習制御を
実行するにあたり、その補正精度を悪化させない燃料噴
射制御装置を提供することを目的とする。
By the way, in the case where the fuel injection amount is corrected by learning the value based on the output signal of the oxygen sensor as described above, it goes without saying that the learned value is also affected by variations (individual differences) in the fuel injection valves installed in the engine. This is one of the influencing factors, and in actual fuel injection control, this individual difference is also corrected. Therefore, if such learning control is applied to an internal combustion engine having multiple fuel injection valves as described above, the amount of fuel injected from the multiple fuel injection valves will be corrected using the learned values stored in a specific operating range. However, if the fuel injector used in the operating area (learning area) in which learning is performed is different from the fuel injector used when correcting the fuel injection amount using the learned value, the installed There was a problem in that the accuracy of correcting the injection amount deteriorated due to individual differences between the fuel injection valves. In view of such problems, an object of the present invention is to provide a fuel injection control device that does not deteriorate the correction accuracy when executing learning control of injected fuel in an internal combustion engine equipped with a plurality of fuel injection valves per cylinder. shall be.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的のため本発明によれば、1気筒当たり複数個の
燃料噴射弁を備えた内燃機関の燃料噴射制御装置におい
て、 運転状態に応じて上記複数個の燃料噴射弁からの燃料噴
射を制御する手段、 機関の排気系に設けられた酸素センサからの出力信号に
基づく値を学習して燃料噴射量を補正する手段、 上記複数個の燃料噴射弁の使用状態に対応して複数の学
習領域を設定する手段、及び 上記学習領域の夫々において学習した各学習値を使用し
て各学習領域に対応する運転状態時に、燃料噴射量を補
正する手段を備えたことを特徴とする、内燃機関の燃料
噴射制御装置が提供される。
For the above purpose, according to the present invention, in a fuel injection control device for an internal combustion engine having a plurality of fuel injection valves per cylinder, fuel injection from the plurality of fuel injection valves is controlled according to the operating state. means for correcting the fuel injection amount by learning a value based on an output signal from an oxygen sensor installed in the exhaust system of the engine; and a means for correcting the fuel injection amount during an operating state corresponding to each learning area using each learning value learned in each of the learning areas. An injection control device is provided.

〔作 用〕[For production]

学習領域を夫々の燃料噴射弁の使用域に対応して設定し
、実際の運転時には設定された学習領域に対応する運転
状態の時、この学習領域で学習した学習値を以って対応
する燃料噴射弁からの燃料噴射量を補正するため、燃料
噴射弁間の個体差が補正され適確な噴射量が得られる。
A learning area is set corresponding to the usage range of each fuel injector, and during actual operation, when the operating state corresponds to the set learning area, the corresponding fuel is adjusted using the learning value learned in this learning area. In order to correct the fuel injection amount from the injection valve, individual differences between the fuel injection valves are corrected, and an appropriate injection amount can be obtained.

〔実施例〕〔Example〕

本発明を2サイクル内燃機関に例をとり、図面を参照し
て以下説明する。
The present invention will be described below with reference to the drawings, taking a two-stroke internal combustion engine as an example.

第1図は本発明に係る2サイクル内燃機関の全体概要図
である。本図において機関本体1の吸気通路2にはエア
フローメータ3が設けられている。
FIG. 1 is an overall schematic diagram of a two-stroke internal combustion engine according to the present invention. In this figure, an air flow meter 3 is provided in an intake passage 2 of an engine body 1.

エアフローメータ3はエアクリーナ4を介して外部より
取り込まれた吸入空気の量Qを直接計測するものであっ
て、ポテンショメータを内蔵して吸入空気量Qに比例し
たアナログ電圧の出力信号を発生する。この出力信号は
A/D変換器5aを介して制御回路6の入カポ−)6a
に供給されている。また、デイストリビュータフには、
機関回転速度Nの検出のために、基準位置検出用パルス
信号を発生するクランク角センサ8aおよび角度位置検
出用パルス信号を発生するクランク角センサ8bが設け
られている。これらのクランク角センサ8a・8bのパ
ルス信号は制御回路6の入力ポートロaに供給され、こ
のうち、クランク角センサ8bの出力はCP[I6bの
割り込み端子に供給される。
The air flow meter 3 directly measures the amount Q of intake air taken in from the outside via the air cleaner 4, has a built-in potentiometer, and generates an analog voltage output signal proportional to the amount Q of intake air. This output signal is input to the control circuit 6 via the A/D converter 5a.
is supplied to. In addition, in the distribution tough,
In order to detect the engine rotational speed N, a crank angle sensor 8a that generates a pulse signal for detecting a reference position and a crank angle sensor 8b that generates a pulse signal for detecting an angular position are provided. The pulse signals of these crank angle sensors 8a and 8b are supplied to the input port a of the control circuit 6, and the output of the crank angle sensor 8b is supplied to the interrupt terminal of CP[I6b.

ところで、一般に2サイクル内燃機関においては、第2
図に示すように給気弁と排気弁の開弁オーパラγプ期間
、即ち、掃気期間に発生する吹き抜けにより燃料が排気
系に吹き抜けるのを防止するため、極力筒内噴射を行う
ことが望ましい。しかしながら、この2サイクル内燃機
関の短い燃料噴射期間内で一個の燃料噴射弁によりアイ
ドルから高負荷まで燃料を噴射するには、噴射量の幅、
即ちダイナミックレンジの広い噴射弁が必要になり、こ
のようにダイナミックレンジの広い噴射弁を製作するこ
とは困難である。従って、2サイクル内燃機関を例にと
る本実施例の場合、第1図に示すように燃料供給系(図
示せず)からの加圧燃料を気筒に供給する筒内燃料噴射
弁9と、吸気ボート11内に配設したポート燃料噴射弁
10とを気筒毎に設け、以って運転域全般に亘り筒内燃
料噴射弁9により燃料噴射を行い、筒内燃料噴射弁9の
最大噴射量を越えた分の燃料をポート燃料噴射弁■0で
噴射することにより、燃料の吹き抜けと高負荷時の燃料
噴射量の確保を両立する。
By the way, generally in a two-stroke internal combustion engine, the second
As shown in the figure, it is desirable to perform in-cylinder injection as much as possible in order to prevent fuel from flowing into the exhaust system due to the blow-through that occurs during the opening period of the intake valve and the exhaust valve, that is, during the scavenging period. However, in order to inject fuel from idle to high load with one fuel injection valve within the short fuel injection period of this two-stroke internal combustion engine, the width of the injection amount,
That is, an injection valve with a wide dynamic range is required, and it is difficult to manufacture an injection valve with such a wide dynamic range. Therefore, in the case of this embodiment, which takes a two-stroke internal combustion engine as an example, as shown in FIG. A port fuel injection valve 10 disposed inside the boat 11 is provided for each cylinder, so that fuel is injected by the in-cylinder fuel injection valve 9 over the entire operating range, and the maximum injection amount of the in-cylinder fuel injection valve 9 is controlled. By injecting the excess amount of fuel using the port fuel injection valve ■0, it is possible to achieve both fuel blow-through and ensuring the amount of fuel to be injected during high loads.

尚、本実施例ではさらに、吸気通路2には、各気筒に新
気を供給する掃気ポンプ12が、また排気通路13には
排気を浄化する、例えば三元触媒14が、夫々設けられ
ており、さらに三元触媒14の排気上流側には酸素(0
2)センサ15が設けられる。この02センサ15は排
気ガス中の酸素濃度に応じ排気空燃比が理論空燃比に対
してリーン側かリッチ側かを判定し、それに応じて異な
る出力電圧を制御回路6の入カポ−)6aに供給する。
In this embodiment, the intake passage 2 is further provided with a scavenging pump 12 for supplying fresh air to each cylinder, and the exhaust passage 13 is provided with, for example, a three-way catalyst 14 for purifying exhaust gas. Furthermore, oxygen (0
2) A sensor 15 is provided. This 02 sensor 15 determines whether the exhaust air-fuel ratio is on the lean side or rich side with respect to the stoichiometric air-fuel ratio according to the oxygen concentration in the exhaust gas, and outputs a different output voltage to the input capacitor (6a) of the control circuit 6 accordingly. supply

尚、この02センサ15の排気上流側には、吹き抜けた
空気が02センサ15回りに滞留するのを防止するため
に、例えば酸化触媒やサーマルリアクタ等の燃焼器16
に代表される空気消費手段を設けても良い。
Note that a combustor 16 such as an oxidation catalyst or a thermal reactor is installed on the exhaust upstream side of the 02 sensor 15 in order to prevent the blown air from staying around the 02 sensor 15.
An air consumption means typified by: may be provided.

制御回路6は、例えばマイクロコンピュータとして構成
され、前出の人カポ−)6a・CPU6bの他に、各燃
料噴射弁9 、10等に駆動信号を出力する出力ポート
ロcや、メモリ6d、またこれらを接続するバス6eを
備えている。尚、この制御回路6の入カポ−)6aには
上述した出力信号の他に、後述する燃料噴射量TAU計
算に用いられる補正量にのための、冷却水温THWや吸
気温度TA等がAD変換器5b、5c・・・を介して入
力される。
The control circuit 6 is configured, for example, as a microcomputer, and includes, in addition to the aforementioned CPU 6a and CPU 6b, an output port c for outputting drive signals to each fuel injection valve 9, 10, etc., a memory 6d, and a memory 6d. It is equipped with a bus 6e for connecting. In addition to the above-mentioned output signals, the input capacitor (6a) of this control circuit 6 receives AD conversion signals such as the cooling water temperature THW and the intake air temperature TA for the correction amount used for calculating the fuel injection amount TAU, which will be described later. The signals are inputted via devices 5b, 5c, . . . .

制御回路6は以上述べた機関の運転条件を代表するパラ
メータを取り込み、以下の式を以って最終的な燃料噴射
量TAUを演算し、出力ポートロCより燃料噴射弁10
.11に駆動信号を出力する。
The control circuit 6 takes in the parameters representative of the engine operating conditions described above, calculates the final fuel injection amount TAU using the following formula, and calculates the final fuel injection amount TAU from the output port C.
.. A drive signal is output to 11.

TAU=k  −Q/NXKXFTIXFAF  XF
G〔但し、k:定数、Q:エアフロメータにより検出さ
れる吸入空気流量、N:クランク角センサにより検出さ
れる機関回転速度、K:冷却水温、吸気温度等により決
定される補正量、F、:運転条件(Q/N、N)に対応
して算出される新気捕捉係数、FAF :02センサ出
力により増減する空燃比補正係数、FG:学習値〕 第3図は以上の構成なる燃料噴射制御装置において、各
燃料噴射弁9.10からの燃料噴射を制御するフローチ
ャートを示しており、このルーチンはクランク角センサ
8bからの信号によりcpo6bにおいて所定クランク
角毎に実行される。
TAU=k-Q/NXKXFTIXFAF XF
G [where, k: constant, Q: intake air flow rate detected by air flow meter, N: engine rotation speed detected by crank angle sensor, K: correction amount determined by cooling water temperature, intake air temperature, etc., : Fresh air acquisition coefficient calculated according to the operating conditions (Q/N, N), FAF: Air-fuel ratio correction coefficient that increases or decreases depending on the 02 sensor output, FG: Learned value] Figure 3 shows the fuel injection with the above configuration. In the control device, a flowchart is shown for controlling fuel injection from each fuel injection valve 9.10, and this routine is executed at every predetermined crank angle in the cpo 6b based on a signal from the crank angle sensor 8b.

まずステップ31では吸入空気量Q、機関回転速度N、
冷却水温度THW、吸気温度TA等を読み込む。次に、
ステップ32においては、読み込まれたQとNとにより
新気捕捉係数FTRのマツプ演算が行なわれる。この新
気捕捉係数FTi1はエアフロメータ3により計測され
るQに対して、吹き抜は空気量を引いた、燃焼そのもの
に関与する新気の割合に関する燃料噴射量の補正因子で
あり、制御回路6のメモリ6dには図示したようなQ/
N−Hに対するFTRのデータが格納されている。次に
ステ7ブ33では冷却水温度THWや吸気温度TAから
補正係数Kが算出され、ステップ34においては現在の
運転条件に対応して、他のプログラムによって算出され
たFAFが読み込まれる。
First, in step 31, the intake air amount Q, the engine rotation speed N,
Read the cooling water temperature THW, intake air temperature TA, etc. next,
In step 32, a map calculation of the fresh air capture coefficient FTR is performed using the read Q and N. This fresh air capture coefficient FTi1 is a correction factor for the fuel injection amount related to the proportion of fresh air involved in combustion itself, with the air volume subtracted from the Q measured by the air flow meter 3, and the control circuit 6 The memory 6d has Q/ as shown in the figure.
FTR data for NH is stored. Next, in step 7, a correction coefficient K is calculated from the cooling water temperature THW and the intake air temperature TA, and in step 34, FAF calculated by another program is read in accordance with the current operating conditions.

ところで1気筒当たり複数の燃料噴射弁を備える内燃機
関においては、前述したように、運転状態によって使用
する燃料噴射弁が予め決められており、本実例の場合、
例えば第4図に示すような、使用燃料噴射弁を負荷(Q
/N>一回転速度(N)の関係で区分けしたマツプが制
御回路6のメモリ6d内に予め格納されることになる。
By the way, in an internal combustion engine having a plurality of fuel injection valves per cylinder, the fuel injection valve to be used is determined in advance depending on the operating condition, as described above, and in this example,
For example, as shown in Fig. 4, the fuel injector used is loaded (Q
A map divided according to the relation: /N>one rotational speed (N) is stored in advance in the memory 6d of the control circuit 6.

本図において領域1は筒内燃料噴射弁9のみによって必
要とする燃料をまかなう運転条件域を示しており、領域
0は2つの燃料噴射弁9.10により燃料供給する運転
条件域を示している。
In this figure, region 1 indicates an operating condition range in which the required fuel is supplied only by the in-cylinder fuel injection valve 9, and region 0 indicates an operating condition range in which fuel is supplied by two fuel injectors 9 and 10. .

従って第3図ステップ34に続くステップ35において
は、先のステップ31で読み込まれた現運転状態が第4
図に示すマツプにおいて領域1にあるか否かが判定され
る。ステップ35で第4図の領域l(筒内噴射のみ)と
判断されると、ステップ36に進み燃料噴射量がT A
 U = k Q / N X K X F T +1
 XFAFXFGI (但し、FGl:領域1における
学習値)として算出され、ステップ37で領域設定のた
めのフラグFを1とし、続くステップ38で筒内燃料噴
射弁9によってまかなわれるべき燃料噴射量TAU  
1をTAUとし、他方ポート燃料噴射弁10の燃料噴射
量TAU Qを0とする。
Therefore, in step 35 following step 34 in FIG. 3, the current operating state read in the previous step 31 is
It is determined whether or not it is in area 1 in the map shown in the figure. If it is determined in step 35 that the area is in the area l (in-cylinder injection only) shown in FIG.
U = k Q / N X K X F T +1
It is calculated as
1 as TAU, and the fuel injection amount TAU Q of the other port fuel injection valve 10 as 0.

一方、ステップ35で領域0(筒内噴射+ボート噴射)
と判断されると、ステップ39で燃料噴射量がTAU=
kQ/NXKXFt++XFAFXFGO(但し、FG
O:領域0における学習値)として算出され、ステップ
40で領域設定フラグFをOとし、続くステップ41で
筒内燃料噴射弁9の噴射量TAII  1をTALI 
3とし、ポート燃料噴射弁10の噴射ITALI Oを
TAU−TAU 31.:設定する。尚1.:コテTA
[l  3ハ、機関回転速度Nにより決定される筒内燃
料噴射弁9の最大噴射量(速度Nが増加する程、減少す
る。)から所定値(例えば、ポート燃料噴射弁■0の有
効最小噴射量)を引いた値である。
On the other hand, in step 35, area 0 (in-cylinder injection + boat injection)
If it is determined that the fuel injection amount is TAU=
kQ/NXKXFt++XFAFXFGO (However, FG
O: learned value in region 0), the region setting flag F is set to O in step 40, and the injection amount TAII 1 of the in-cylinder fuel injection valve 9 is set to TALI in the subsequent step 41.
3, and the injection ITALI O of the port fuel injection valve 10 is TAU-TAU 31. : Set. Note 1. : Iron TA
[l 3c. The maximum injection amount of the in-cylinder fuel injection valve 9 determined by the engine rotational speed N (decreases as the speed N increases) to a predetermined value (for example, the effective minimum of the port fuel injection valve ■0) This is the value obtained by subtracting the injection amount).

そしてステップ38又は41に続くステップ42では、
周知のように、筒内燃料噴射弁9からTAU  1、ポ
ート燃料噴射弁10からTAXI Oの燃料を噴射して
本ルーチンを終了する。
Then, in step 42 following step 38 or 41,
As is well known, the fuel of TAU 1 is injected from the in-cylinder fuel injection valve 9 and the fuel of TAXI O is injected from the port fuel injection valve 10, and this routine ends.

第5図は空燃比補正係数FAFの制御、及び学習値FG
O,FGIの制御ルーチンである。尚、このルーチンは
時間割り込みルーチンであり、例えば4 m5ec毎に
割り込み処理される。以下、02センサ出力に対応する
FAF変化モデルを示す第6図を参照して本ルーチンを
説明する。
Figure 5 shows the control of the air-fuel ratio correction coefficient FAF and the learned value FG.
This is a control routine for O, FGI. Note that this routine is a time interrupt routine, and interrupt processing is performed every 4 m5ec, for example. This routine will be described below with reference to FIG. 6, which shows an FAF change model corresponding to the 02 sensor output.

まずステップ51においては現在の運転条件が空燃比フ
ィードバック領域か否かを判断する。例えば冷却水温度
THWが低い時や、02センサ15の非活性時、また高
温増量時等は通常、フィードバック制御を実行しないた
め、フィードバック領域でないと判断された場合(NO
)、ステップ52に進み、FAFを1.0と固定する。
First, in step 51, it is determined whether the current operating conditions are in the air-fuel ratio feedback region. For example, feedback control is normally not executed when the coolant temperature THW is low, when the 02 sensor 15 is inactive, or when increasing the amount of water at a high temperature.
), the process proceeds to step 52 and FAF is fixed at 1.0.

一方、ステップ51でフィードバック領域と判定された
場合(Yes)、ステップ53に進み、現在の02セン
サ15の出力を見てリッチ信号が出力されているか否か
を判断される。現在、リッチ信号が出力されている場合
(YeS) 、次にステップ54に進み、前回のフロー
実行の際の02センサ信号と比較して、今回初めて02
センサ15の信号が反転したか、即ちリーン信号からリ
ッチ信号への反転があったか否かが判定される。ステッ
プ54でNO1即ち前回のフロー実行時よりリッチ信号
が継続して出力されている場合には、例えば第6図モデ
ルに示す地点aから地点すへの進行に相当するため、ス
テップ55に進み、FAFより所定値αが減算される処
理が実行される。一方、ステップ54で02センサ信号
が反転したと判断された場合には(第5園地点Cから地
点dへの進行に相当)、ステップ56に進み、FAFA
Vが算出される。このFAFAVは現在の値FAFと、
前回の02センサ反転時におけるスキップ直前の値FA
F Qとの平均値、即ち(FAF+FAF O) /2
であって、FAFの制御中心値からのずれ度合を推定す
るためのものである。そして続(ステップ57では次回
の02センサ信号反転時の際のFAFAv算出のために
、現在のFAFをスキップ直前の値としてFAF  O
に置換し、ステップ58に進み、第5図に示すように現
在のFAFより、リーン側スキップ量R3Lを減算する
処理が行なわれる。以上述べたステップ54からステッ
プ55までの処理は、リッチ信号からリーン信号に反転
する場合も同様であって、ステップ53でNoと判定さ
れた場合にはステップ59においてリッチ信号がリーン
信号への反転があったか否かが判定される。そして反転
しなかった場合にはくNO)、ステップ60にてFAF
に所定値βを加算する処理が実行され、反転した場合に
は、ステップ61〜63において先のステップ56〜5
8と同様にFAFAVを算出し、FAFをR3R分だけ
リッチ側にスキップする処理が行なわれる。
On the other hand, if it is determined in step 51 that it is in the feedback region (Yes), the process proceeds to step 53, where the current output of the 02 sensor 15 is checked and it is determined whether or not a rich signal is being output. If the rich signal is currently being output (Yes), then the process advances to step 54, where it is compared with the 02 sensor signal from the previous flow execution and the 02 sensor signal is output for the first time.
It is determined whether the signal of the sensor 15 has been inverted, that is, whether there has been an inversion from a lean signal to a rich signal. If the result in step 54 is NO1, that is, if the rich signal has been output continuously since the previous flow execution, this corresponds to, for example, progress from point a to point i shown in the model of FIG. 6, so the process proceeds to step 55. A process of subtracting a predetermined value α from FAF is executed. On the other hand, if it is determined in step 54 that the 02 sensor signal has been reversed (corresponding to progress from the fifth garden point C to point d), the process proceeds to step 56, and the FAFA
V is calculated. This FAFAV is the current value FAF,
Value FA immediately before skip at the previous 02 sensor reversal
Average value with FQ, i.e. (FAF+FAF O)/2
This is for estimating the degree of deviation from the control center value of FAF. Then, in step 57, in order to calculate FAFAv at the time of the next 02 sensor signal inversion, the current FAF is set as the value immediately before skipping and the FAF O
Then, the process proceeds to step 58, where a process of subtracting the lean side skip amount R3L from the current FAF is performed as shown in FIG. The processing from step 54 to step 55 described above is the same when inverting a rich signal to a lean signal, and if the determination is No in step 53, the rich signal is inverted to a lean signal in step 59. It is determined whether or not there was. If it is not reversed (NO), in step 60, the FAF
A process of adding a predetermined value β to
8, FAFAV is calculated and FAF is skipped to the rich side by R3R.

以上のようにしてFAFAvが算出されると、この大小
により次に学習値FGO,FGIを制御する処理が行な
われる。即ちステップ58又はステップ63に続くステ
ップ64では算出されたFAFAvが、予め定められた
FAF制御の中心上限値(例えば1.002)を超えて
いるか否かが判定される。
Once FAFAv is calculated as described above, a process is then performed to control the learning values FGO and FGI based on the magnitude. That is, in step 64 following step 58 or step 63, it is determined whether the calculated FAFAv exceeds a predetermined central upper limit value (for example, 1.002) of FAF control.

モしてFAFAV < 1.002の時、即ちNoの場
合にはステップ65に進み、FAFA’Vが制御の中心
下限値(例えば0.998)を下廻るか否か、即ちFA
FAv<0.998か否かが判定され、FAFAv>0
.998の時はこのままルーチンを終了する。即ち、こ
の場合はFAFは予め定められた制御範囲内に含まれて
おり学習値FGO,FGlを更新しない。ステップ64
でFAFAV>1.002の時は、ステップ66に進み
、第3図に示す制御ルーチン実行によって設定されたフ
ラグFが1か否かが判断される。そしてF=1の時はス
テップ67でこれまでの学習値FG1に予め定められた
補正値(本実施例では0.002とする。)が加算され
て更新し、他方F=0の時はステップ68でFGOに0
.002が加算される。また、ステップ65で、FAF
 Av < 0.998の時はステップ66と同様にス
テップ69でF=1か否かが判断され、F=1の時はス
テップ70でFGIから0.002を減算し、F=0の
時はステップ71でFGOから0.002が減算され、
本ルーチンを終了する。
When FAFAV < 1.002, that is, in the case of No, the process proceeds to step 65, and it is determined whether or not FAFA'V falls below the control central lower limit value (for example, 0.998), that is, in the case of FAFAV
It is determined whether FAv<0.998, and FAFAv>0.
.. If the number is 998, the routine ends as is. That is, in this case, FAF is included within a predetermined control range, and learning values FGO and FGl are not updated. Step 64
If FAFAV>1.002, the process proceeds to step 66, where it is determined whether the flag F set by the execution of the control routine shown in FIG. 3 is 1 or not. When F=1, a predetermined correction value (in this embodiment, 0.002) is added to the previously learned value FG1 in step 67 to update it, and on the other hand, when F=0, step 67 68 and 0 to FGO
.. 002 is added. Also, in step 65, FAF
When Av<0.998, it is determined in step 69 whether or not F=1 in the same way as step 66, and when F=1, 0.002 is subtracted from FGI in step 70, and when F=0, In step 71, 0.002 is subtracted from FGO,
This routine ends.

このように、上述した学習ルーチンにおいては学習値F
G 1 、 FG Oの更新にあたり、筒内噴射弁9の
みを使用している時には、FGIのみが更新され、また
筒内噴射弁9とポート噴射弁10の両方が使用されてい
る時はFGOのみが更新される。また、この学習値FG
IとFGQは大気密度の変化、噴射弁9゜10間の固体
差、経時変化等によって変化する。従って、仮りにこの
学習値FG 1 、 FG Oを更新した時(学習領域
)に使用していた噴射弁とこの学習値FGI、FGOを
用いて燃料噴射量を補正する時に使用している噴射弁が
異なると、燃料噴射量の補正精度が低下するが、本実施
例における学習値FGI。
In this way, in the learning routine described above, the learning value F
When updating G 1 and FGO, when only the in-cylinder injection valve 9 is used, only the FGI is updated, and when both the in-cylinder injection valve 9 and the port injection valve 10 are used, only the FGO is updated. is updated. Also, this learning value FG
I and FGQ change due to changes in atmospheric density, individual differences between the injection valves 9 and 10, changes over time, etc. Therefore, if the injector used when the learned values FG 1 and FG O are updated (learning area) and the injector used when the fuel injection amount is corrected using the learned values FGI and FGO, If the learning value FGI differs, the accuracy of correcting the fuel injection amount will decrease, but the learned value FGI in this embodiment.

FGOは第3図のフローチャートに示すように、各燃料
噴射弁9,10の使用状態が学習時と同一の時に使用さ
れ、燃料噴射量を補正している。従って、学習値による
燃料噴射量の補正精度が向上する。
As shown in the flowchart of FIG. 3, the FGO is used when the usage status of each fuel injection valve 9, 10 is the same as during learning, and corrects the fuel injection amount. Therefore, the accuracy of correcting the fuel injection amount based on the learned value is improved.

尚、第4図に示したマツプにおける領域1と領域0との
境界線に関しては実際にはヒステリシスを持たせ、噴射
弁切り換え点付近での噴射形態のハンチング現象を防止
することが好ましい。
Incidentally, it is actually preferable to provide hysteresis to the boundary line between region 1 and region 0 in the map shown in FIG. 4 to prevent hunting phenomenon of the injection form near the injection valve switching point.

以上、本発明を、1気筒当たり筒内燃料噴射弁とポート
燃料噴射弁を備える2サイクル内燃機関を例にとり説明
したが、本発明は上述した実施例に限定されず、通常の
4サイクル内燃機関においても、また1気筒当たり2本
以上の燃料噴射弁を備える内燃機関においても同様に適
用可能である。
The present invention has been described above by taking as an example a two-stroke internal combustion engine having an in-cylinder fuel injection valve and a port fuel injection valve per cylinder. The present invention is similarly applicable to internal combustion engines having two or more fuel injection valves per cylinder.

さらに噴射形態に関しても第7図に示すように、各燃料
噴射弁を単独使用、及び併用する運転領域を夫々設定し
、その領域A、B、Cに対応して燃料噴射量を補正する
学習値FGA、 FGB、 FGCを夫々設けるように
しても良く、さらにこの学習領域を噴射形態に限って対
応させるだけでなく他の条件も加味してさらに細分化し
ても良い。
Furthermore, regarding the injection form, as shown in Fig. 7, operating ranges in which each fuel injector is used alone and in combination are set respectively, and learning values are set to correct the fuel injection amount in accordance with the ranges A, B, and C. FGA, FGB, and FGC may be provided respectively, and this learning area may not only be made to correspond only to the injection form, but may also be further subdivided by taking other conditions into account.

〔効 果〕 以上説明したように、本発明によれば、1気筒当たり複
数の燃料噴射弁を備える内燃機関において、学習領域で
使用されている燃料噴射弁と、学習値を用いて燃料噴射
量を補正する時の使用噴射弁が一致するため噴射量の補
正精度が向上する。
[Effect] As explained above, according to the present invention, in an internal combustion engine having a plurality of fuel injection valves per cylinder, the fuel injection amount is determined using the fuel injection valves used in the learning area and the learning value. The accuracy of correcting the injection amount is improved because the injection valves used are the same when correcting the injection amount.

従ってこれに伴い空燃比の追従性が向上し排気エミッシ
ョンが改善される。また目標空燃比からの誤差が小さく
なるため空燃比をリーン側に設定しても失火の可能性を
少なくして燃費を向上することができる。
Accordingly, the followability of the air-fuel ratio is improved and exhaust emissions are improved. Furthermore, since the error from the target air-fuel ratio is reduced, even if the air-fuel ratio is set to the lean side, the possibility of misfire can be reduced and fuel efficiency can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による燃料噴射制御装置を備えた2サイ
クル内燃機関の概略構成図:第2図は第1図に示す機関
の掃気期間、及び燃料噴射時期を示す図;第3図は燃料
噴射弁からの燃料噴射を実行するフローチャート:第4
図は第3図に示すルーチンにおいて使用され、かつ運転
状態に応じて使用する燃料噴射弁を定めたマツプ図;第
5図は空燃比補正係数及び学習値を制御するフローチャ
ート;第6図は02センサ出力信号に対応する空燃比補
正係数の変化モデルを示す図;第7図は別実施例として
第4図とは異なる学習領域を設定するマツプ図。 1・・・機関本体、 9・・・筒内燃料噴射弁、 15・・・酸素(02)センサ。 6・・・制御回路、 10・・・ポート燃料噴射弁、 TDC(上死点) 第 図 第 図
Fig. 1 is a schematic diagram of a two-stroke internal combustion engine equipped with a fuel injection control device according to the present invention; Fig. 2 is a diagram showing the scavenging period and fuel injection timing of the engine shown in Fig. 1; Fig. 3 is a diagram showing the fuel injection timing of the engine shown in Fig. 1; Flowchart for executing fuel injection from the injection valve: 4th
The figure is a map that is used in the routine shown in Figure 3 and determines the fuel injection valves to be used depending on the operating condition; Figure 5 is a flowchart for controlling the air-fuel ratio correction coefficient and learning value; Figure 6 is a flowchart for controlling the air-fuel ratio correction coefficient and learning value; A diagram showing a change model of an air-fuel ratio correction coefficient corresponding to a sensor output signal; FIG. 7 is a map diagram for setting a learning area different from that in FIG. 4 as another embodiment. 1... Engine body, 9... In-cylinder fuel injection valve, 15... Oxygen (02) sensor. 6...Control circuit, 10...Port fuel injection valve, TDC (Top dead center)

Claims (1)

【特許請求の範囲】 1、1気筒当たり複数個の燃料噴射弁を備えた内燃機関
の燃料噴射制御装置において、 運転状態に応じて上記複数個の燃料噴射弁からの燃料噴
射を制御する手段、 機関の排気系に設けられた酸素センサからの出力信号に
基づく値を学習して燃料噴射量を補正する手段、 上記複数個の燃料噴射弁の使用状態に対応して複数の学
習領域を設定する手段、及び 上記学習領域の夫々において学習した各学習値を使用し
て各学習領域に対応する運転状態時に、燃料噴射量を補
正する手段を備えたことを特徴とする、内燃機関の燃料
噴射制御装置。
[Scope of Claims] 1. In a fuel injection control device for an internal combustion engine having a plurality of fuel injection valves per cylinder, means for controlling fuel injection from the plurality of fuel injection valves according to operating conditions; Means for correcting the fuel injection amount by learning a value based on an output signal from an oxygen sensor installed in an exhaust system of an engine, and setting a plurality of learning areas corresponding to usage conditions of the plurality of fuel injection valves. and means for correcting the fuel injection amount during the operating state corresponding to each learning area using each learning value learned in each of the learning areas. Device.
JP32264889A 1989-12-14 1989-12-14 Fuel injection controller of internal combustion engine Pending JPH03185242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32264889A JPH03185242A (en) 1989-12-14 1989-12-14 Fuel injection controller of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32264889A JPH03185242A (en) 1989-12-14 1989-12-14 Fuel injection controller of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH03185242A true JPH03185242A (en) 1991-08-13

Family

ID=18146048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32264889A Pending JPH03185242A (en) 1989-12-14 1989-12-14 Fuel injection controller of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH03185242A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1591650A2 (en) 2004-04-27 2005-11-02 Toyota Jidosha Kabushiki Kaisha Apparatus and method for controlling fuel injection in internal combustion engine
JP2006037744A (en) * 2004-07-22 2006-02-09 Toyota Motor Corp Control device of internal combustion engine
JP2006258037A (en) * 2005-03-18 2006-09-28 Toyota Motor Corp Control device of internal combustion engine
WO2006100923A1 (en) * 2005-03-18 2006-09-28 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
US7146963B2 (en) 2005-03-18 2006-12-12 Toyota Jidosha Kabushiki Kaisha State determination device for internal combustion engine
US7150266B2 (en) 2004-05-21 2006-12-19 Toyota Jidosha Kabushiki Kaisha Method of controlling air fuel ratio learning for dual injection internal combustion engine in hybrid vehicle
WO2007069553A1 (en) * 2005-12-15 2007-06-21 Toyota Jidosha Kabushiki Kaisha Fuel cell system and vehicle
WO2007099425A1 (en) * 2006-02-28 2007-09-07 Toyota Jidosha Kabushiki Kaisha Fuel injection control apparatus and control method of internal combustion engine
US7318412B2 (en) 2005-03-18 2008-01-15 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
JP2009002199A (en) * 2007-06-20 2009-01-08 Toyota Motor Corp Fuel injection control device for internal combustion engine
JP2009013818A (en) * 2007-07-02 2009-01-22 Toyota Motor Corp Control device of internal combustion engine
JP2009191662A (en) * 2008-02-12 2009-08-27 Honda Motor Co Ltd Fuel injection control device of internal combustion engine
JP2010168905A (en) * 2009-01-20 2010-08-05 Denso Corp Air-fuel ratio learning control device for internal combustion engine
WO2011117114A1 (en) * 2010-03-24 2011-09-29 Robert Bosch Gmbh Method and apparatus for adapting adaptation values for actuating injection valves in an engine system having a plurality of injection types
JP2012202209A (en) * 2011-03-23 2012-10-22 Toyota Motor Corp Air-fuel ratio control device of internal combustion engine
JP2013057274A (en) * 2011-09-07 2013-03-28 Toyota Motor Corp Fuel injection control device for internal combustion engine
WO2013073345A1 (en) * 2011-11-18 2013-05-23 三菱自動車工業株式会社 Internal combustion engine control device
JP2014172540A (en) * 2013-03-11 2014-09-22 Mazda Motor Corp Control unit of hybrid vehicle
JPWO2013038524A1 (en) * 2011-09-14 2015-03-23 トヨタ自動車株式会社 Control device for internal combustion engine
EP2884085A3 (en) * 2013-12-13 2015-09-30 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Fuel injection control apparatus of engine
JP2018009478A (en) * 2016-07-12 2018-01-18 トヨタ自動車株式会社 Fuel injection control device of engine
EP3273042A1 (en) * 2016-07-20 2018-01-24 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio control apparatus for engine

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7013873B2 (en) 2004-04-27 2006-03-21 Toyota Jidosha Kabushiki Kaisha Apparatus and method for controlling fuel injection in internal combustion engine
EP1591650A2 (en) 2004-04-27 2005-11-02 Toyota Jidosha Kabushiki Kaisha Apparatus and method for controlling fuel injection in internal combustion engine
CN100398798C (en) * 2004-04-27 2008-07-02 丰田自动车株式会社 Apparatus and method for controlling fuel injection in internal combustion engine
EP1591650A3 (en) * 2004-04-27 2007-05-09 Toyota Jidosha Kabushiki Kaisha Apparatus and method for controlling fuel injection in internal combustion engine
US7150266B2 (en) 2004-05-21 2006-12-19 Toyota Jidosha Kabushiki Kaisha Method of controlling air fuel ratio learning for dual injection internal combustion engine in hybrid vehicle
USRE42631E1 (en) 2004-05-21 2011-08-23 Toyota Jidosha Kabushiki Kaisha Method of controlling air fuel ratio learning for dual injection internal combustion engine in hybrid vehicle
JP2006037744A (en) * 2004-07-22 2006-02-09 Toyota Motor Corp Control device of internal combustion engine
WO2006100923A1 (en) * 2005-03-18 2006-09-28 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
US7318412B2 (en) 2005-03-18 2008-01-15 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
US7146963B2 (en) 2005-03-18 2006-12-12 Toyota Jidosha Kabushiki Kaisha State determination device for internal combustion engine
JP2006258037A (en) * 2005-03-18 2006-09-28 Toyota Motor Corp Control device of internal combustion engine
US7213574B2 (en) 2005-03-18 2007-05-08 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
US7258102B2 (en) 2005-03-18 2007-08-21 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
WO2006100854A1 (en) * 2005-03-18 2006-09-28 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
JP2007165183A (en) * 2005-12-15 2007-06-28 Toyota Motor Corp Fuel cell system and mobile body
WO2007069553A1 (en) * 2005-12-15 2007-06-21 Toyota Jidosha Kabushiki Kaisha Fuel cell system and vehicle
KR100966910B1 (en) * 2005-12-15 2010-06-30 도요타 지도샤(주) Fuel cell system and vehicle
US8642224B2 (en) 2005-12-15 2014-02-04 Toyota Jidosha Kabushiki Kaisha Fuel cell system with a learning capability to readjust the driving characteristic of a gas supply device and vehicle
WO2007099425A1 (en) * 2006-02-28 2007-09-07 Toyota Jidosha Kabushiki Kaisha Fuel injection control apparatus and control method of internal combustion engine
US7653475B2 (en) 2006-02-28 2010-01-26 Toyota Jidosha Kabushiki Kaisha Fuel injection control apparatus and control method of internal combustion engine
JP2009002199A (en) * 2007-06-20 2009-01-08 Toyota Motor Corp Fuel injection control device for internal combustion engine
JP2009013818A (en) * 2007-07-02 2009-01-22 Toyota Motor Corp Control device of internal combustion engine
JP2009191662A (en) * 2008-02-12 2009-08-27 Honda Motor Co Ltd Fuel injection control device of internal combustion engine
JP2010168905A (en) * 2009-01-20 2010-08-05 Denso Corp Air-fuel ratio learning control device for internal combustion engine
WO2011117114A1 (en) * 2010-03-24 2011-09-29 Robert Bosch Gmbh Method and apparatus for adapting adaptation values for actuating injection valves in an engine system having a plurality of injection types
US9309825B2 (en) 2010-03-24 2016-04-12 Robert Bosch Gmbh Method and device for adapting adaptation values for the control of injectors in an engine system having multiple injection types
JP2012202209A (en) * 2011-03-23 2012-10-22 Toyota Motor Corp Air-fuel ratio control device of internal combustion engine
JP2013057274A (en) * 2011-09-07 2013-03-28 Toyota Motor Corp Fuel injection control device for internal combustion engine
JPWO2013038524A1 (en) * 2011-09-14 2015-03-23 トヨタ自動車株式会社 Control device for internal combustion engine
US9416747B2 (en) 2011-09-14 2016-08-16 Toyota Jidosha Kabushiki Kaisha Internal combustion engine control apparatus
WO2013073345A1 (en) * 2011-11-18 2013-05-23 三菱自動車工業株式会社 Internal combustion engine control device
JP2013108399A (en) * 2011-11-18 2013-06-06 Mitsubishi Motors Corp Control device of internal combustion engine
US9574513B2 (en) 2011-11-18 2017-02-21 Mitsubishi Jisdosha Kogyo Kabushiki Kaisha Control unit for internal combustion engine
JP2014172540A (en) * 2013-03-11 2014-09-22 Mazda Motor Corp Control unit of hybrid vehicle
EP2884085A3 (en) * 2013-12-13 2015-09-30 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Fuel injection control apparatus of engine
JP2018009478A (en) * 2016-07-12 2018-01-18 トヨタ自動車株式会社 Fuel injection control device of engine
EP3273042A1 (en) * 2016-07-20 2018-01-24 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio control apparatus for engine

Similar Documents

Publication Publication Date Title
JPH03185242A (en) Fuel injection controller of internal combustion engine
US4365299A (en) Method and apparatus for controlling air/fuel ratio in internal combustion engines
JP2582586B2 (en) Air-fuel ratio control device for internal combustion engine
JPS58150038A (en) Fuel injection method of electronically controlled engine
US5193339A (en) Method of and an apparatus for controlling the air-fuel ratio of an internal combustion engine
JPH03179147A (en) Air-fuel learning controller for internal combustion engine
JPS63176638A (en) Fuel injection quantity controller for internal combustion engine
JPH0531243Y2 (en)
JP2927074B2 (en) Air-fuel ratio control device for internal combustion engine
JPH03185245A (en) Fuel injection control device for 2-cycle internal combustion engine
WO2023181209A1 (en) Excess air ratio calculation device
JPH07107376B2 (en) Learning control method for automobile engine
JPH03185243A (en) Fuel injection controller of two-cycle internal combustion engine
JPH04116237A (en) Air-fuel ratio controller of internal combustion engine
JP3453815B2 (en) Air-fuel ratio learning control device for internal combustion engine
JP3442216B2 (en) Engine control device
JP2640566B2 (en) Air-fuel ratio learning control device for internal combustion engine
JPS6146435A (en) Air fuel ratio controller
JP2631579B2 (en) Air-fuel ratio learning control device for internal combustion engine
JPH0255849A (en) Air-fuel ratio controller for internal combustion engine
JPH0791304A (en) Fuel supply controller of internal combustion engine
JPH0517396Y2 (en)
JP2512726Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH05156988A (en) Air fuel ratio control device of internal combustion engine
JPH03117645A (en) Air-fuel ratio control device for two-cycle internal combustion engine