JPH03184475A - Transform encoding system - Google Patents

Transform encoding system

Info

Publication number
JPH03184475A
JPH03184475A JP1324527A JP32452789A JPH03184475A JP H03184475 A JPH03184475 A JP H03184475A JP 1324527 A JP1324527 A JP 1324527A JP 32452789 A JP32452789 A JP 32452789A JP H03184475 A JPH03184475 A JP H03184475A
Authority
JP
Japan
Prior art keywords
coefficients
threshold value
zero
coefficient
quantization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1324527A
Other languages
Japanese (ja)
Other versions
JP2503698B2 (en
Inventor
Yoshiaki Kato
嘉明 加藤
Atsumichi Murakami
篤道 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP32452789A priority Critical patent/JP2503698B2/en
Priority to US07/564,824 priority patent/US5086488A/en
Priority to EP90115439A priority patent/EP0414074B1/en
Priority to DE69016880T priority patent/DE69016880T2/en
Priority to KR1019900012397A priority patent/KR930009872B1/en
Priority to FI903989A priority patent/FI98111C/en
Priority to NO903624A priority patent/NO303480B1/en
Priority to CA002023440A priority patent/CA2023440C/en
Priority to AU61069/90A priority patent/AU622572B2/en
Publication of JPH03184475A publication Critical patent/JPH03184475A/en
Application granted granted Critical
Publication of JP2503698B2 publication Critical patent/JP2503698B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

PURPOSE:To widely reduce processing time and the amount of information to be generated by providing a means to count the number of continuous zero coefficients out of quantized transform coefficient values, means to determine a threshold value for the number of the continuous zero coefficients to be transmitted based on the amount of data caused to remain in a transmission buffer, and means to make this quantized outputs zero to the following transform coefficients when the count value exceeds the threshold value. CONSTITUTION:An encoding control part 7 determines an quantizing step size 109 from a buffer remaining amount 108 of a transmission buffer 6. At a threshold value setting part 9, a threshold value 111 is determined similarly from the buffer remaining amount 108 and outputted to a decision part 10. A counter 8 counts how many zero coefficient values are continuous, and when the coefficient value not zero is outputted from a quantizing part 11, a count value 110 is reset and becomes zero. At the decision part 10, the count value 110 is compared with the threshold value 111 and a compared result 112 is outputted to the quantizing part 11. When the decided result 112 shows the count value = the threshold value, quantization is not executed but the coefficients from the next coefficient to the final coefficient are outputted as zero coefficients.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、画像データを線形変換符号化方式を用いて
帯域圧縮を行なうものに関するものであ[従来の技術] 第3図は例えばW 、 H、CHE N 、 W 、 
K 、 P RA T T 、 ” S c e n 
eA d a p t i v e Co d e r
”、 (IEEE Transactions onc
ommunications 、 vol、cOM−3
2,No3.1984 )に示された従来の変換係数符
号化方式を示すブロック図であり、図において、(1)
は入力信号をブロック化するブロック化部、(2)はブ
ロック化された信号を線形変換する線形変換部、(3〉
は信号列をブロック内で並び換えるスキャン変換部、(
4)は量子化部、(5)は符号化部、(6)は送信バッ
ファ、(7)は符号化制御部である。 次に動作について説明する。ディジタル化された1フレ
一ム分の入力画像信号(101)に対し、ブロック化部
(1)で水平、垂直方向n画素(nは自然数で例えばn
=4.8.16)を1まとめにした2次元のブロックに
分割する。ブロック化された画像信号(102)に対し
、線形変換部(2)では2次元線形変換(例えば離散コ
サイン変換などの直交変換)を施し、空間周波数領域の
変換係数ブロック(103)を生成す゛る。ここで例え
ば8×8画素ブロックf(x、y)(x+y=0+L”
’、7)に対する2次元離散コサイン変換は次式で与え
られる。 ここで、 u、v=o、1.・・・、7であり、 x、yは画素領域における座標、u、vは変換領域にお
ける座標である。 変換係数ブロックF (u * v ) (u + v
 = 0+ 1* ・・・+ 7)の性質を第4図をも
とに説明する。F(u、v)の値はブロック化された画
像信号(102)に含まれる、それぞれの空間周波数成
分がどの程度であるかを示している。水平方向の周波数
はUの値が大きくなるにつれて高くなり、垂直方向の周
波数は■の値が大きくなるにつれて高くなる。すなわち
F(0,0)の値はブロック化された画像信号(102
)の直流成分の強度に対応し、F(7,7)の値は水平
・垂直方向共に高い周波数をもつ交流成分の強度に対応
することになる。従って、画素の値の変化が少ない背景
などの平坦な画像ブロックに対しては低周波成分のみに
非零の有意係数があられれ、高周波成分はほとんど零係
数となる。逆に画素の値の変化が激しいエツジ部分など
の画像ブロックに対しては低周波成分のほか高周波成分
にも非零の有意係数があられれる。 次に、スキャン変換部(3)では変換係数ブロック(1
03)のブロック内で例えば第4図の矢印で示す順序で
変換係数を並び換え、変換係数列(104)を出力する
。先の8×8画素ブロックの場合、1ブロツクに対して
64個の係数が続く係数列が出力される。並び換えは有
意係数があられれやすい低周波成分の変換係数から有意
係数があられれにくい高周波成分の変換係数へとジグザ
グに走査することにより有意係数をなるべく前半に、後
半に零係数列を長く続かせるために行う。 次に量子化部(4)は変換係数列(104)を与えられ
た量子化ステップサイズ(109)で量子化し、量子化
係数列Q(u、v)(105)を出力する。符号化部(
5)では量子化係数列(105)に符号の割当てを行い
 符号化データ(106)として送信バッファ(6)へ
出力する。 ここで符号の割当て方法の1例として2次元可変長杆号
化について説明する。これは量子化係数列(105)に
対して連続する零係数の個数(以下ランと呼ぶ)とそれ
に続く非零係数の量子化レベルを組み合せ、その組み合
わせた事象(ラン、レベル)に対して1つのハフマン符
号を割当てることによって行われる。例えば、第5図に
示された量子化係数列の場合、事象(ラン、レベル)は
次のようになる。 (0,20)、(2,15)、(4,5)、(3,2)
、(7,1)、EOBここでEOBは以降に非零係数が
なくブロックの終わりまで零係数が続くことを示すマー
クである。 従って、この量子化係数列の場合EOBも含めた6つの
事象に対して、それぞれに予め決められたハフマン符号
が割当てられることになる。 次に送信バッファ(6)では変動する情報発生量を平滑
化し、一定レートで伝送路(107)へ送出する。符号
化制御部(7)では送信バッファ(6)中のデータ残量
であるバッファ残量(108)から量子化ステップサイ
ズ(109)を適応的にフィードバック制御し、量子化
部(4)へ出力する。すなわち、バッファ残量(108
)が多いときには、情報発生量を少なくするために量子
化ステップサイズ(109)を大きくして入力画像を粗
く量子化する。逆にバッファ残量(108)が少ないと
きには、情報発生量を多くするために量子化ステップサ
イズ(109)を小さくして入力画像を細かく量子化す
る。なお、量子化ステップサイズ(109)の大小によ
って非零係数の個数が大きく異なるため、その情報発生
量は11110倍から数1000倍まで大きく変化する
The present invention relates to band compression of image data using a linear transform coding method [Prior art] Fig. 3 shows, for example, W, H, CHE N, W,
K, PRATT, ”Scene
eA d a p t i v e Cod e r
”, (IEEE Transactions onc.
communications, vol, cOM-3
2, No. 2, No. 3, 1984). In the figure, (1)
(2) is a blocking unit that blocks the input signal; (2) is a linear transformation unit that linearly transforms the blocked signal; (3)
is a scan converter that rearranges the signal sequence within the block, (
4) is a quantization section, (5) is an encoding section, (6) is a transmission buffer, and (7) is an encoding control section. Next, the operation will be explained. For one digitized input image signal (101) for one frame, the blocking unit (1) converts n pixels in the horizontal and vertical directions (n is a natural number, for example, n
=4.8.16) into two-dimensional blocks. A linear transformation unit (2) performs two-dimensional linear transformation (for example, orthogonal transformation such as discrete cosine transformation) on the blocked image signal (102) to generate a transform coefficient block (103) in the spatial frequency domain. Here, for example, 8×8 pixel block f(x, y)(x+y=0+L”
', 7) is given by the following equation. Here, u, v=o, 1. ..., 7, where x and y are coordinates in the pixel domain, and u and v are coordinates in the transformation domain. Transform coefficient block F (u * v) (u + v
The properties of = 0+ 1*...+ 7) will be explained based on FIG. The value of F(u,v) indicates the level of each spatial frequency component included in the blocked image signal (102). The frequency in the horizontal direction increases as the value of U increases, and the frequency in the vertical direction increases as the value of ■ increases. In other words, the value of F(0,0) is the block image signal (102
) corresponds to the intensity of the DC component, and the value of F(7, 7) corresponds to the intensity of the AC component having high frequencies in both the horizontal and vertical directions. Therefore, for a flat image block such as a background with little change in pixel values, only low frequency components have non-zero significant coefficients, and high frequency components have almost zero coefficients. Conversely, for image blocks such as edge portions where pixel values change rapidly, non-zero significant coefficients are assigned to high frequency components as well as low frequency components. Next, in the scan conversion unit (3), the conversion coefficient block (1
03), the transform coefficients are rearranged in the order indicated by the arrows in FIG. 4, for example, and a transform coefficient sequence (104) is output. In the case of the previous 8×8 pixel block, a coefficient string of 64 coefficients for one block is output. The sorting is done by scanning in a zigzag pattern from the conversion coefficients of low frequency components where significant coefficients are likely to occur to the conversion coefficients of high frequency components where significant coefficients are difficult to occur, so that the significant coefficients are placed in the first half and the string of zero coefficients is continued as long as possible in the second half. I do it to make it work. Next, the quantization unit (4) quantizes the transform coefficient sequence (104) with a given quantization step size (109) and outputs a quantized coefficient sequence Q(u,v) (105). Encoding section (
In step 5), a code is assigned to the quantized coefficient sequence (105) and output as encoded data (106) to the transmission buffer (6). Here, two-dimensional variable length rod coding will be described as an example of a code assignment method. This combines the number of consecutive zero coefficients (hereinafter referred to as a run) for the quantized coefficient sequence (105) and the quantization level of the non-zero coefficients that follow, and then calculates 1 for the combined event (run, level). This is done by assigning two Huffman codes. For example, in the case of the quantized coefficient sequence shown in FIG. 5, the events (runs, levels) are as follows. (0,20), (2,15), (4,5), (3,2)
, (7, 1), EOB Here, EOB is a mark indicating that there are no non-zero coefficients thereafter and zero coefficients continue until the end of the block. Therefore, in the case of this quantized coefficient sequence, a predetermined Huffman code is assigned to each of the six events including EOB. Next, the transmission buffer (6) smoothes the fluctuating amount of generated information and sends it out to the transmission path (107) at a constant rate. The encoding control unit (7) adaptively controls the quantization step size (109) from the buffer remaining amount (108), which is the remaining data amount in the transmission buffer (6), and outputs it to the quantization unit (4). do. In other words, the remaining buffer capacity (108
), the input image is coarsely quantized by increasing the quantization step size (109) in order to reduce the amount of information generated. Conversely, when the remaining buffer capacity (108) is small, the input image is finely quantized by reducing the quantization step size (109) in order to increase the amount of information generated. Note that since the number of nonzero coefficients varies greatly depending on the size of the quantization step size (109), the amount of information generated varies greatly from 11110 times to several thousand times.

【発明が解決しようとする課M】[Problem M that the invention attempts to solve]

従来の変換係数符号化方式は以上のように構戒されてい
るので、すべての係数に対して量子化を行わなければな
らない上、量子化ステップサイズの大小により情報発生
量が大きく変動し、符号化の制御が困難であるという問
題点があった。 この発明は上記のような問題点を解決するためになされ
たもので、係数の伝送範囲を変換ブロック内の量子化係
数列に応じて決定し、量子化に要する処理時間を短縮し
、情報発生量の変動を少なくする変換係数符号化方式を
得ることを目的とする。 【XI題を解決するための手段J この発明に係わる変換符号化方式は、入力信号系列に対
して線形変換を行い変換領域で低域から高域へ順次変換
係数を量子化し符号化する変換符号化方式において、量
子化された変換係数の値のうち連続する零係数の個数を
計数する手段と、送信バッファのデータ残量に基づいて
伝送する連続した零係数の個数の閾値を決定する手段と
、零係数を計数した値が決定された閾値を越えたとき後
続する変換係数の量子化出力を零とする手段とを備える
。 【作用] この発明に係わる変換符号化方式は入力信号ブロックに
対して線形変換を行い与えられた順序により量子化を行
い、連続する零係数の個数を計数して送信バッファのデ
ータ残量から決定された閾値を越えたとき後続する量子
化係数の値を零とする。 【発明の実施例1 以下、この発明の一実施例を第1図をもとに説明する。 図において(8)は連続した零の量子化係数を計数する
カウンタ、(9)は閾値を設定する閾値設定部、(10
)は計数値と閾値とを比較し判定を行う判定部、(11
)は判定回路により動作が変化する量子化部であり、他
は第3図と同様である。 次に動作について説明する。第3図と同様、ディジタル
化された1フレ一ム分の入力画像信号(101)は線形
変換、変換係数の並び換えを行し)、量子化部(11)
で与えられた量子化ステップサイズ(109)で量子化
し、量子化係数列(105)を出力する。符号化制御部
(7)は送信バ・ソファ(6)のバッファ残量(108
)から量子化ステップサイズ(109)を決定し、量子
化部(11)に出力する。また、閾値設定部(9)では
同じくバッファ残量(10B)から閾値(111)を決
定し、判定部(10)へ出力する。カウンタ(8)は量
子化係数列(105)のうち零の係数値がいくつ連続し
たかを計数するもので、非零の係数値が量子化部(11
)から出力されると計数値(110)はリセットされて
零となる。判定部(10)では入力された計数値(11
0)と閾値設定部(9)から与えられた閾値(111)
との比較を行い 判定結果(112)を量子化部(11
)へ出力する。量子化部(11)では判定結果(112
)により、以下の処理に分岐する。 (1)判定結果(112)が計数値く閾値のとき次の係
数も同じ量子化ステップサイズ(109)で量子化を行
う。 (II )判定結果(112)が計数値二閾僅のとき量
子化を行わず、次の係数から最後の係数までを零係数と
して出力する。 第2図にこれらの動作フローを示す。 また、第5図の例において例えば閾値を4または5に設
定した時の事象、量子化を行う係数の個数は次のように
なる。 閾値4のとき事象は(0,20)、(2,15)、EO
Bであり、量子化を行う係数の個数はQ(0,0)から
Q(2,1)までの8個となる。 閾値5のとき事象は(0,20)、(2,15)、(4
,5)、(3,2)、EOBであり、量子化を行う係数
の個数はQ(0,0)からQ(3,2)までの18個と
なる。 さきに述べたように一般に変換係数は低周波から高周波
成分になるに従って強度が弱くなるため、量子化した結
果の量子化係数Q (u 、 v )も高周波になるほ
ど連続して零となる確率が高い。そのため、低周波から
高周波成分の順に量子化し、零の量子化係数を計数して
いくと、閾値(111)が小さなときは比較的低周波成
分の係数において上記(II )の条件が満たされるた
め、高周波戒分の係数変換係数の量子化、符号化を打ち
切ることができ演算量、情報発生量の削減ができる。し
たがって、従来では情報発生量の制御は量子化ステップ
サイズ(109)のみにより制御され、その大小により
情報発生量が急激に変化したが、閾値設定部(9)にお
いて閾値(111)を適応的に制御することにより情報
発生量の急激な変化を押さえることができる。すなわち
、バッファ残量(108)が少ない時には閾値(111
)を小さくして係数伝送範囲を制限することにより、小
さな量子化ステップサイズ(109)における情報の発
生量を押さえることができる。逆に、バッファ残量(1
08)が大きいときには閾値(111)を大きく設定す
ることにより高周波成分の係数まで伝送し、復号画像の
画質劣化を防ぐことができる。 また、本実施例によれば必ずしもすべての変換係数につ
いて量子化を行う必要がないため、ディジタル信号プロ
セッサなどを用いて実施する場合は演算処理量が大幅に
削減でき一層の効果が得られる。 なお、上記の実施例においては2次元線形変換と量子化
の組合せについて説明したが、1次元。 3次元などの線形変換と量子化の組合せについても同様
の効果が得られる。 [発明の効果J 以上のように、この発明によれば連続する零の量子化係
数の個数により、後続する変換係数を量子化し符号化す
るかどうかを判定するようにしたので、復号画像の画質
を劣化させずに量子化に要する処理時間と情報発生量を
大幅に削減できる効果がある。
Conventional transform coefficient encoding methods are careful as described above, so not only do all coefficients have to be quantized, but the amount of information generated fluctuates greatly depending on the size of the quantization step size. The problem was that it was difficult to control the rate of change. This invention was made to solve the above-mentioned problems, and it determines the transmission range of coefficients according to the quantized coefficient sequence in the transform block, shortens the processing time required for quantization, and improves information generation. The purpose of this invention is to obtain a transform coefficient encoding method that reduces the amount of variation. [Means for Solving Problem In the quantized conversion method, means for counting the number of consecutive zero coefficients among the values of the quantized transform coefficients, and means for determining a threshold value for the number of consecutive zero coefficients to be transmitted based on the remaining amount of data in the transmission buffer. , and means for setting the quantized output of the subsequent transform coefficient to zero when the counted value of zero coefficients exceeds a determined threshold value. [Operation] The transform coding method according to the present invention linearly transforms the input signal block, quantizes it in a given order, counts the number of consecutive zero coefficients, and determines the number from the remaining amount of data in the transmission buffer. When the threshold value is exceeded, the value of the subsequent quantization coefficient is set to zero. Embodiment 1 of the Invention An embodiment of the invention will be described below with reference to FIG. In the figure, (8) is a counter that counts consecutive zero quantization coefficients, (9) is a threshold setting unit that sets a threshold value, and (10
) is a determination unit that compares the count value and a threshold value and makes a determination; (11
) is a quantization unit whose operation is changed by a determination circuit, and the other parts are the same as in FIG. 3. Next, the operation will be explained. Similar to FIG. 3, the digitized input image signal for one frame (101) is subjected to linear transformation and rearrangement of the transformation coefficients), then to the quantization unit (11).
Quantization is performed using the quantization step size (109) given by , and a quantization coefficient sequence (105) is output. The encoding control unit (7) controls the remaining buffer capacity (108
), the quantization step size (109) is determined and output to the quantization unit (11). Further, the threshold value setting section (9) similarly determines a threshold value (111) from the remaining buffer capacity (10B) and outputs it to the determination section (10). The counter (8) counts how many consecutive zero coefficient values are present in the quantized coefficient sequence (105), and the non-zero coefficient values are counted by the quantization unit (11).
), the count value (110) is reset to zero. The determination unit (10) calculates the input count value (11
0) and the threshold (111) given from the threshold setting unit (9)
The determination result (112) is sent to the quantization unit (11
). In the quantization unit (11), the determination result (112
), the process branches to the following. (1) When the determination result (112) is equal to the count value or the threshold value, the next coefficient is also quantized with the same quantization step size (109). (II) When the determination result (112) is a count value of two thresholds, no quantization is performed and the coefficients from the next coefficient to the last coefficient are output as zero coefficients. FIG. 2 shows the flow of these operations. Further, in the example of FIG. 5, for example, when the threshold value is set to 4 or 5, the events and the number of coefficients to be quantized are as follows. When the threshold is 4, the events are (0, 20), (2, 15), EO
B, and the number of coefficients to be quantized is eight, from Q(0,0) to Q(2,1). When the threshold value is 5, the events are (0, 20), (2, 15), (4
,5), (3,2), EOB, and the number of coefficients to be quantized is 18 from Q(0,0) to Q(3,2). As mentioned earlier, the intensity of the transform coefficient generally becomes weaker as it goes from low frequency to high frequency component, so the probability that the quantized coefficient Q (u, v) of the quantization result becomes zero continuously becomes higher as the frequency becomes higher. expensive. Therefore, if we quantize in order from low frequency to high frequency components and count the zero quantization coefficients, when the threshold (111) is small, the condition (II) above is satisfied for the coefficients of relatively low frequency components. , the quantization and encoding of the coefficient conversion coefficients of high-frequency precepts can be aborted, and the amount of calculations and amount of information generated can be reduced. Therefore, in the past, the amount of information generated was controlled only by the quantization step size (109), and the amount of information generated changed rapidly depending on the size of the quantization step size (109). By controlling this, it is possible to suppress rapid changes in the amount of information generated. In other words, when the remaining buffer capacity (108) is small, the threshold value (111
) by reducing the coefficient transmission range, the amount of information generated at a small quantization step size (109) can be suppressed. Conversely, the remaining buffer capacity (1
08) is large, by setting the threshold value (111) large, it is possible to transmit even the coefficients of high frequency components and prevent deterioration in the quality of the decoded image. Furthermore, according to this embodiment, it is not necessary to quantize all the transform coefficients, so when implemented using a digital signal processor or the like, the amount of arithmetic processing can be significantly reduced and further effects can be obtained. Note that in the above embodiments, a combination of two-dimensional linear transformation and quantization has been described, but the combination of two-dimensional linear transformation and quantization is only one-dimensional. A similar effect can be obtained with a combination of three-dimensional or other linear transformation and quantization. [Effect of the Invention J As described above, according to the present invention, it is determined whether or not to quantize and encode subsequent transform coefficients based on the number of consecutive zero quantization coefficients, which improves the image quality of decoded images. This has the effect of significantly reducing the processing time required for quantization and the amount of information generated without degrading the data.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例を説明するブロック図、第2
図は本発明の詳細な説明するフロー図、第3図は従来例
のブロック図、第4図は変換係数ブロックの性質を説明
するための図、第5図は符号の割当てを説明するための
図である。 (1)ブロック化部、(2)は線形変換部、(3)はス
キャン変換部、(4)、(11)は量子化部、(5)は
符号化部、(6)は送信バッファ、(7)は符号化制御
部、(8〉はカウンタ、(9)は閾値設定部、(10)
は判定部、(105)は量子化係数列、(110)は計
数値、(111)は閾値、(112)は判定結果である
。 なお図中、同一符号は同一または相当部分を示す。 代  理  人         大  岩  増  
雄第 2 図 Qつ 第4 図 変換孫数ブロック F(u、v) 一中eコ〈全
FIG. 1 is a block diagram illustrating one embodiment of the present invention, and FIG.
3 is a block diagram of a conventional example, FIG. 4 is a diagram for explaining the properties of transform coefficient blocks, and FIG. 5 is a diagram for explaining code assignment. It is a diagram. (1) Blocking unit, (2) Linear conversion unit, (3) Scan conversion unit, (4), (11) Quantization unit, (5) Encoding unit, (6) Transmission buffer, (7) is an encoding control unit, (8> is a counter, (9) is a threshold setting unit, (10)
is a determination unit, (105) is a quantized coefficient sequence, (110) is a count value, (111) is a threshold value, and (112) is a determination result. In the drawings, the same reference numerals indicate the same or corresponding parts. Agent Masu Oiwa
male 2nd diagram Q 4th diagram conversion grandchild number block F(u,v)

Claims (1)

【特許請求の範囲】  入力信号系列に対して線形変換を行い変換領域で低域
から高域へ順次変換係数を量子化し符号化する変換符号
化方式において、 量子化された変換係数の値のうち連続する零係数の個数
を計数する手段と、 送信バッファのデータ残量に基づいて伝送する連続した
零係数の個数の閾値を決定する手段と、前記計数値が前
記閾値を越えたとき後続する変換係数に対しては、それ
ら量子化出力を零とする手段とを備えたことを特徴とす
る変換符号化方式。
[Claims] In a transform encoding method that linearly transforms an input signal sequence and sequentially quantizes and encodes transform coefficients from low to high frequencies in the transform domain, among the values of the quantized transform coefficients, means for counting the number of consecutive zero coefficients; means for determining a threshold value for the number of consecutive zero coefficients to be transmitted based on the remaining amount of data in the transmission buffer; and subsequent conversion when the counted value exceeds the threshold value. 1. A transform coding method comprising means for zeroing quantized outputs of coefficients.
JP32452789A 1989-08-19 1989-12-13 Transform coding method Expired - Lifetime JP2503698B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP32452789A JP2503698B2 (en) 1989-12-13 1989-12-13 Transform coding method
US07/564,824 US5086488A (en) 1989-08-19 1990-08-09 Transform coding apparatus
DE69016880T DE69016880T2 (en) 1989-08-19 1990-08-11 Transformation coding device.
EP90115439A EP0414074B1 (en) 1989-08-19 1990-08-11 Transform coding apparatus
KR1019900012397A KR930009872B1 (en) 1989-08-19 1990-08-13 Changing coding apparatus
FI903989A FI98111C (en) 1989-08-19 1990-08-13 Transform coding apparatus
NO903624A NO303480B1 (en) 1989-08-19 1990-08-16 Transformation coding device
CA002023440A CA2023440C (en) 1989-08-19 1990-08-16 Transform coding apparatus
AU61069/90A AU622572B2 (en) 1989-08-19 1990-08-16 Transform coding apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32452789A JP2503698B2 (en) 1989-12-13 1989-12-13 Transform coding method

Publications (2)

Publication Number Publication Date
JPH03184475A true JPH03184475A (en) 1991-08-12
JP2503698B2 JP2503698B2 (en) 1996-06-05

Family

ID=18166798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32452789A Expired - Lifetime JP2503698B2 (en) 1989-08-19 1989-12-13 Transform coding method

Country Status (1)

Country Link
JP (1) JP2503698B2 (en)

Also Published As

Publication number Publication date
JP2503698B2 (en) 1996-06-05

Similar Documents

Publication Publication Date Title
KR930009872B1 (en) Changing coding apparatus
US10045034B2 (en) System and method for using pattern vectors for video and image coding and decoding
KR100914160B1 (en) Lossless intraframe encoding using golomb-rice
JPH0491587A (en) Orthogonal transformation encoder
US5742342A (en) Apparatus for encoding an image signal using vector quantization technique
JP3163880B2 (en) Image compression coding device
JPH06292019A (en) Picture data compressor and picture code compressor
JP2001217721A (en) Huffman encoding device, huffman encoding method and recording medium recorded with huffman encoding processing program
JPH03184475A (en) Transform encoding system
JP2503706B2 (en) Transform coding method
US5825422A (en) Method and apparatus for encoding a video signal based on inter-block redundancies
JPH03238970A (en) Conversion coding system
JP2836636B2 (en) Encoding device and encoding method
JP2503678B2 (en) Transform coding method
JP4041245B2 (en) Image encoding device
JPH06105297A (en) Encoder
JP3001758B2 (en) Huffman encoding device and Huffman encoding method
JPH03192878A (en) Picture data compressor
JP3191462B2 (en) High efficiency coding device
JPH07274169A (en) Coding/decoding device and method therefor
JPH04356886A (en) Image data compressor
JPH02200061A (en) Encoder
JP3016805B2 (en) Image data compression method
JPH0787490A (en) Picture data coding method
JPH08265754A (en) Encoding device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 14