JP2503678B2 - Transform coding method - Google Patents

Transform coding method

Info

Publication number
JP2503678B2
JP2503678B2 JP21362289A JP21362289A JP2503678B2 JP 2503678 B2 JP2503678 B2 JP 2503678B2 JP 21362289 A JP21362289 A JP 21362289A JP 21362289 A JP21362289 A JP 21362289A JP 2503678 B2 JP2503678 B2 JP 2503678B2
Authority
JP
Japan
Prior art keywords
transform
coefficient
linear
threshold value
zero
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21362289A
Other languages
Japanese (ja)
Other versions
JPH0377492A (en
Inventor
嘉明 加藤
篤道 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP21362289A priority Critical patent/JP2503678B2/en
Priority to US07/564,824 priority patent/US5086488A/en
Priority to EP90115439A priority patent/EP0414074B1/en
Priority to DE69016880T priority patent/DE69016880T2/en
Priority to KR1019900012397A priority patent/KR930009872B1/en
Priority to FI903989A priority patent/FI98111C/en
Priority to CA002023440A priority patent/CA2023440C/en
Priority to AU61069/90A priority patent/AU622572B2/en
Priority to NO903624A priority patent/NO303480B1/en
Publication of JPH0377492A publication Critical patent/JPH0377492A/en
Application granted granted Critical
Publication of JP2503678B2 publication Critical patent/JP2503678B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、画像データを線形変換符号化方式を用い
て帯域圧縮を行うものに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to band compression of image data using a linear transform coding method.

〔従来の技術〕[Conventional technology]

第3図は例えば特開昭63−121373号公報に示された従
来の変換係数符号化方式を示すブロック図であり、図に
おいて(1)は入力信号をブロック化する回路、(2)
はブロック化した信号を線形変換する回路、(3)は信
号列をブロック内で並び換える回路、(4)は変換係数
伝送範囲内の変換係数だけを通過させる回路、(5)は
量子化器、(6)は符号器、(7)は変換係数としきい
値を比較する回路、(8)は変換係数伝送範囲を決定す
る回路、(9)はしきい値を設定する回路、(10)は量
子化特性としきい値を決定する回路である。
FIG. 3 is a block diagram showing a conventional transform coefficient coding system disclosed in, for example, Japanese Patent Laid-Open No. 63-121373, in which (1) is a circuit for blocking an input signal, and (2).
Is a circuit for linearly converting a blocked signal, (3) is a circuit for rearranging a signal sequence in a block, (4) is a circuit for passing only transform coefficients within a transform coefficient transmission range, and (5) is a quantizer , (6) encoder, (7) circuit for comparing transform coefficient and threshold value, (8) circuit for determining transform coefficient transmission range, (9) circuit for setting threshold value, (10) Is a circuit that determines the quantization characteristic and the threshold value.

次に動作について説明する。ディジタル化された1フ
レーム分の入力画像信号(101)に対し、(1)で水
平,垂直方向n画素(nは自然数で例えばn=4,8,16)
を1まとめにした2次元のブロックに分割する。ブロッ
ク化された画像信号(102)に対し、(2)では2次元
線形変換(例えば離散コサイン変換等の直交変換)を施
し、空間周波数領域の変換係数ブロック(103)を生成
する。ここで8×8画素ブロックf(x,y)(x,y=0,1,
…,7)に対する2次元離散コサイン変換は次式で与えら
れる。
Next, the operation will be described. With respect to the digitized input image signal (101) for one frame, in (1), horizontal and vertical n pixels (n is a natural number, for example, n = 4,8,16)
Is divided into two two-dimensional blocks. In (2), two-dimensional linear transformation (for example, orthogonal transformation such as discrete cosine transformation) is applied to the block-shaped image signal (102) to generate a transform coefficient block (103) in the spatial frequency domain. Here, the 8 × 8 pixel block f (x, y) (x, y = 0,1,
The two-dimensional discrete cosine transform for ..., 7) is given by the following equation.

ここでu,v=0,1,2,・・・,7 x,yは画素領域における空間座標、u,vは変換領域にお
ける空間座標である。
Where u, v = 0,1,2, ..., 7 x and y are spatial coordinates in the pixel area, and u and v are spatial coordinates in the conversion area.

変換係数ブロックF(u,v)(u,v=0,1,…,7)の性質
を第4図をもとに説明する。F(u,v)の値の大きさは
ブロック化された画像信号(102)に対応する空間周波
数の成分がどの程度含まれているかを示している。水平
方向の周波数はuの値が大きくなるにつれて高くなり、
垂直方向の周波数はvの値が大きくなるにつれて高くな
る。すなわちF(0,0)の値はブロック化された画像信
号(102)の直流成分の強度に対応し、F(7,7)の値は
水平垂直方向共に高い周波数をもつ交流成分の強度に対
応することになる。従って、画素の値の変化が少ない背
景などの平坦な画像ブロックに対しては低周波成分のみ
に非零の有意係数があらわれ、高周波成分はほとんど零
係数となる。逆に画素の値の変化が激しいエッジ部分な
どの画像ブロックに対しては低周波成分のほか高周波成
分にも非零の有意係数があらわれる。
The properties of the transform coefficient block F (u, v) (u, v = 0,1, ..., 7) will be described with reference to FIG. The magnitude of the value of F (u, v) indicates how much the spatial frequency component corresponding to the blocked image signal (102) is included. The horizontal frequency increases as the value of u increases,
The vertical frequency increases as the value of v increases. That is, the value of F (0,0) corresponds to the strength of the DC component of the blocked image signal (102), and the value of F (7,7) corresponds to the strength of the AC component having a high frequency both in the horizontal and vertical directions. Will correspond. Therefore, a non-zero significant coefficient appears only in the low-frequency component and a high-frequency component becomes almost zero coefficient in a flat image block such as a background in which the pixel value changes little. On the contrary, non-zero significant coefficients appear not only in the low-frequency components but also in the high-frequency components in an image block such as an edge portion where the pixel value changes drastically.

次に、変換係数ブロック(103)に対して閾値設定回
路(9)から与えられた閾値(107)とを比較器(7)
で比較し、その大小の判定結果(108)を出力する。伝
送範囲決定回路(8)では大小の判定結果(108)をブ
ロック毎に集計し、どの係数までを伝送するかを決定
し、伝送範囲(110)を出力する。すなわち、8×8ブ
ロックでは64係数に対して得られた64個の大小の判定結
果(108)を集計し、その結果閾値(107)よりも小の判
定結果が多い場合には低周波成分のみを伝送すればよい
ので伝送範囲(110)は小さい。逆に閾値(107)よりも
大の判定結果が多い場合には低周波成分のほか高周波成
分も伝送する必要があるため伝送範囲(110)は大きく
なる。並び換え回路(3)では変換係数ブロック(10
3)のブロック内で例えば第4図の矢印で示す順序で変
換係数を並び換え、変換係数列(104)を出力する。並
び換えは有意係数があらわれやすい低周波成分の変換係
数から有意係数があらわれにくい高周波成分の変換係数
へと走査することにより有意係数列をなるべく長く続か
せるために行う。次に変換係数伝送範囲内の変換係数だ
けを通過させる回路(4)は、変換係数列(104)を与
えられた伝送範囲(110)内の変換係数(105)のみ出力
する。量子化器(5)は変換係数(105)を与えられた
量子化特性(111)で量子化し、量子化係数(106)を出
力する。符号器(6)では量子化器(5)で用いた量子
化特性(111)、量子化係数(106)と伝送範囲(110)
をもとに符号の割当てを行い伝送路(112)へ符号を送
出する。また、制御回路(10)では量子化特性(11
1)、閾値(109)が入力画像の情報発生量によって適応
的に制御される。すなわち、入力画像を粗く量子化し、
情報発生量を少なくする場合には量子化特性(111)、
閾値(109)ともに大きな値が出力される。逆に入力画
像を細かく量子化し、情報発生量を多くする場合には量
子化特性(111)、閾値(109)ともに小さな値が出力さ
れる。
Next, a comparator (7) compares the transform coefficient block (103) with the threshold value (107) given by the threshold value setting circuit (9).
And outputs the determination result (108) of the magnitude. The transmission range determination circuit (8) totals the large and small determination results (108) for each block, determines up to which coefficient to transmit, and outputs the transmission range (110). That is, in the 8 × 8 block, 64 large and small judgment results (108) obtained for 64 coefficients are aggregated, and when there are many judgment results smaller than the threshold value (107), only low frequency components are included. , The transmission range (110) is small. On the contrary, when there are many judgment results larger than the threshold value (107), the high frequency component as well as the low frequency component needs to be transmitted, so that the transmission range (110) becomes large. In the rearrangement circuit (3), the conversion coefficient block (10
Within the block 3), the transform coefficients are rearranged in the order shown by the arrow in FIG. 4, for example, and the transform coefficient string (104) is output. The rearrangement is performed in order to keep the significant coefficient sequence as long as possible by scanning from the conversion coefficient of the low frequency component where the significant coefficient is likely to appear to the conversion coefficient of the high frequency component where the significant coefficient is unlikely to appear. Next, the circuit (4) for passing only the transform coefficient within the transform coefficient transmission range outputs only the transform coefficient (105) within the given transmission range (110) for the transform coefficient string (104). The quantizer (5) quantizes the transform coefficient (105) with the given quantization characteristic (111) and outputs a quantized coefficient (106). In the encoder (6), the quantization characteristic (111), the quantization coefficient (106) and the transmission range (110) used in the quantizer (5)
A code is assigned based on the above, and the code is transmitted to the transmission line (112). In addition, the control circuit (10) has quantization characteristics (11
1), the threshold value (109) is adaptively controlled according to the information generation amount of the input image. That is, the input image is roughly quantized,
To reduce the amount of information generated, quantization characteristics (111),
A large value is output as the threshold value (109). Conversely, when the input image is finely quantized and the amount of information generated is increased, a small value is output for both the quantization characteristic (111) and the threshold value (109).

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

従来の変換係数符号化方式は以上のように構成されて
いるので、符号化し伝送する非零の変換係数は限られて
いるにもかかわらず、係数伝送範囲を求めるためにすべ
ての変換係数を求める必要があり、線形変換に要する処
理時間が短縮できないという問題点があった。
Since the conventional transform coefficient coding method is configured as described above, all transform coefficients are calculated in order to obtain the coefficient transmission range, although the non-zero transform coefficients to be encoded and transmitted are limited. However, there is a problem in that the processing time required for linear conversion cannot be shortened.

この発明は上記のような問題点を解決するためになさ
れたもので、線形変換に要する処理時間が短縮できる変
換係数符号化方式を得ることを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to obtain a transform coefficient coding system that can reduce the processing time required for linear transformation.

〔課題を解決する手段〕[Means for solving the problem]

この発明に係る変換符号化方式は、入力信号に対して
線形変換をし、変換係数を求める線形変換手段と、この
変換係数を量子化する量子化手段と、この量子化係数の
うち零係数の個数を計数する計数手段と、この零係数の
個数と情報発生量に基づく閾値とを比較し、前記零係数
の個数が前記閾値を越えたとき、後続して量子化される
変換係数に対する量子化係数を零にする判定制御手段と
を備えたものである。
The transform coding method according to the present invention linearly transforms an input signal and obtains a transform coefficient, a quantizing unit that quantizes the transform coefficient, and a zero coefficient of the quantized coefficient. The counting means for counting the number and the number of zero coefficients and a threshold value based on the information generation amount are compared, and when the number of zero coefficients exceeds the threshold value, the quantization for the transform coefficient to be subsequently quantized is performed. And a determination control means for making the coefficient zero.

また、前記零係数の個数が前記閾値を越えたとき変換
手段の変換処理動作を停止するようにしたものである。
The conversion processing operation of the conversion means is stopped when the number of zero coefficients exceeds the threshold value.

〔作 用〕[Work]

この発明における変換符号化方式は連続する零の量子
化係数の個数により、次の変換係数を線形変換により求
めるか求めないかの判断を行い、求めないと判断された
ものは量子化出力の値を零とする。
The transform coding method according to the present invention determines whether or not to obtain the next transform coefficient by linear transformation based on the number of consecutive zero quantized coefficients, and the value that is not obtained is the value of the quantized output. Is zero.

〔発明の実施例〕Example of Invention

以下、この発明の一実施例を第1図をもとに説明す
る。図において(11)はあらかじめ与えられた順序でブ
ロック化された信号を線形変換する回路、(12)は連続
した零の量子化係数を計数するカウンタ、(13)は計数
値と閾値とを比較し次係数の線形変換を行うかの判定を
行う判定回路、(14)は与えられた個数の零の量子化係
数を出力する回路、(15)は閾値を設定する回路であ
り、他は第3図と同様である。
An embodiment of the present invention will be described below with reference to FIG. In the figure, (11) is a circuit for linearly converting a blocked signal in a given order, (12) is a counter for counting consecutive zero quantized coefficients, and (13) is a comparison between the count value and a threshold value. Then, a determination circuit for determining whether to perform linear conversion of the next coefficient, (14) is a circuit for outputting a given number of zero quantized coefficients, (15) is a circuit for setting a threshold value, and the other is It is similar to FIG.

次に動作について説明する。第3図と同様、ディジタ
ル化された1フレーム分の入力画像信号(101)は
(1)で2次元ブロックに分割され、ブロック化された
画像信号(102)となる。(11)ではブロック化された
画像信号(102)に対し、例えば第4図の矢印で示され
る順序で線形変換を行い、変換係数(121)を出力す
る。量子化器(5)は変換係数(121)を与えられた量
子化特性(111)で量子化し、量子化係数(106)を出力
する。カウンタ(12)は量子化係数(106)のうち値が
零のものがいくつ連続したかを計数するもので、非零の
量子化係数(106)が量子化器(5)から出力されると
計数値(122)はリセットされて零となる。判定回路(1
3)では入力された計数値(122)と閾値設定回路(15)
から与えられた閾値(123)との比較を行い、以下の処
理に分岐する。
Next, the operation will be described. As in FIG. 3, the digitized input image signal (101) for one frame is divided into two-dimensional blocks by (1), and becomes a blocked image signal (102). In (11), the block-shaped image signal (102) is linearly converted in the order shown by the arrow in FIG. 4, for example, and the conversion coefficient (121) is output. The quantizer (5) quantizes the transform coefficient (121) with the given quantization characteristic (111) and outputs a quantized coefficient (106). The counter (12) counts the number of consecutive zero-valued quantized coefficients (106). When a non-zero quantized coefficient (106) is output from the quantizer (5). The count value (122) is reset to zero. Judgment circuit (1
In 3), the input count value (122) and threshold value setting circuit (15)
The comparison with the threshold value (123) given by is performed, and the process branches to the following.

(I)計数値<閾値のとき次の係数を線形変換により求
めるよう判定結果(124)を線形変換回路(11)へ出力
し、引き続き線形変換を行う。
(I) When count value <threshold value, the determination result (124) is output to the linear conversion circuit (11) so as to obtain the next coefficient by linear conversion, and linear conversion is continuously performed.

(II)計数値=閾値のとき次の係数から最後の係数まで
は線形変換を行わないよう判定結果(124)を線形変換
回路(11)へ出力するとともに線形変換を行わない係数
の個数(125)を出力する。零の量子化係数を出力する
回路(14)では与えられた個数(125)の零の量子化係
数列(126)を符号器(6)へ出力する。
(II) When the count value = threshold value, the determination result (124) is output to the linear conversion circuit (11) so as not to perform linear conversion from the next coefficient to the last coefficient, and the number of coefficients that do not undergo linear conversion (125 ) Is output. A circuit (14) for outputting zero quantized coefficients outputs a given number (125) of zero quantized coefficient sequences (126) to the encoder (6).

第2図にこれらの動作フローを示す。 FIG. 2 shows a flow of these operations.

さきに述べたように一般に変換係数は低周波から高周
波成分になるにしたがって強度が弱くなるため、量子化
した結果の量子化係数も高周波になるほど連続して零と
なる確率が高い。そのため、低周波から高周波成分の順
に量子化し、零の量子化係数を計数していくと、閾値が
小さなときは比較的低周波成分の係数において上記(I
I)の条件が満たされるため、変換係数を求めるのに要
する処理時間が大幅に削減できる。
As described above, the transform coefficient generally weakens in intensity from a low frequency component to a high frequency component, so that the quantized coefficient as a result of quantization has a high probability of becoming zero continuously at higher frequencies. Therefore, when quantizing in order from low frequency to high frequency component and counting the quantized coefficient of zero, when the threshold value is small, the coefficient (I
Since the condition I) is satisfied, the processing time required to obtain the conversion coefficient can be significantly reduced.

符号器(6)では量子化器(5)で用いた量子化特性
(111)、量子化係数(106)と零の量以下係数列(12
6)をもとに符号の割当てを行い伝送路(112)へ符号を
送出する。また、制御回路(10)では量子化特性(11
1)、閾値(127)が入力画像の情報発生量によって適応
的に制御される。すなわち、入力画像の情報発生量を少
なくする場合には、粗く量子化する必要があるために量
子化特性(111)を大きくし、閾値(127)は小さくして
高周波成分まで伝送されないようにする。逆に情報発生
量を多くする場合には、細かく量子化する必要があるた
めに量子化特性(111)を小さくし、閾値(127)を大き
くして高周波成分まで伝送されるようにし、復号画像の
画質が劣化しないようにする。
In the encoder (6), the quantization characteristic (111) used in the quantizer (5), the quantization coefficient (106) and the coefficient sequence (12
The code is assigned based on 6) and the code is sent to the transmission line (112). In addition, the control circuit (10) has quantization characteristics (11
1), the threshold value (127) is adaptively controlled according to the information generation amount of the input image. That is, when the amount of information generated in the input image is reduced, it is necessary to roughly quantize, so that the quantization characteristic (111) is increased and the threshold value (127) is reduced so that high frequency components are not transmitted. . Conversely, when increasing the amount of information generated, it is necessary to quantize finely, so the quantization characteristic (111) is made small, and the threshold value (127) is made large so that high frequency components can be transmitted. Make sure that the image quality does not deteriorate.

なお、上記の実施例においては2次元の線形変換と量
子化の組合せについて説明したが1次元、3次元などの
線形変換と量子化の組合せについても同様の効果が得ら
れる。
In the above embodiment, the combination of two-dimensional linear transformation and quantization has been described, but the same effect can be obtained also with a combination of one-dimensional, three-dimensional, etc. linear transformation and quantization.

〔発明の効果〕〔The invention's effect〕

以上のように、この発明によれば計数手段により計数
された零係数の個数と情報発生量に基づく閾値とを比較
し、前記零係数の個数が前記閾値を越えたとき、後続し
て量子化される変換係数に対する量子化係数を零にする
ようにしたので、零係数の個数が閾値を越えた後の変換
係数に対する量子化係数が零になり、伝送する情報量が
大幅に削減できて伝送効率が向上できるとともに、後続
する変換係数に対する処理が不要になるので、処理時間
を大幅に削減できるという効果がある。
As described above, according to the present invention, the number of zero coefficients counted by the counting means is compared with the threshold value based on the information generation amount, and when the number of zero coefficients exceeds the threshold value, the subsequent quantization is performed. Since the quantized coefficient for the transformed coefficient is set to zero, the quantized coefficient for the transformed coefficient becomes zero after the number of zero coefficients exceeds the threshold value, and the amount of information to be transmitted can be significantly reduced and the transmission can be reduced. The efficiency can be improved, and the processing for the subsequent transform coefficient is not required, so that the processing time can be significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の1実施例を説明するブロック図、第2
図は本発明の動作を説明するフロー図、第3図は従来例
のブロック図、第4図は変換係数ブロックの性質を説明
するための図である。 (1)は入力信号をブロック化する回路、(2)はブロ
ック化した信号を線形変換する回路、(3)は信号をブ
ロック内で並び換える回路、(4)は変換係数伝送範囲
内の変換係数だけ通過させる回路、(5)は量子化器、
(6)は符号化器、(7)は変換係数と閾値を比較する
回路、(8)は変換係数伝送範囲を決定する回路、
(9)は閾値を設定する回路、(10)は量子化特性と閾
値を決定する回路、(11)はあらかじめ与えられた順序
でブロック化された信号を線形変換する回路、(12)は
連続した零の量子化係数を計数するカウンタ、(13)は
計数値と閾値とを比較し次係数の線形変換を行うかの判
定を行う判定回路、(14)は与えられた個数の零の量子
化係数を出力する回路、(15)は閾値を設定する回路で
ある。尚、図中、同一符号は同一または相当部分を示
す。
FIG. 1 is a block diagram illustrating one embodiment of the present invention, and FIG.
FIG. 4 is a flow chart for explaining the operation of the present invention, FIG. 3 is a block diagram of a conventional example, and FIG. 4 is a diagram for explaining the nature of the transform coefficient block. (1) is a circuit that blocks an input signal, (2) is a circuit that linearly transforms the blocked signal, (3) is a circuit that rearranges the signals in the block, and (4) is a transform within the transform coefficient transmission range A circuit that passes only the coefficient, (5) is a quantizer,
(6) is an encoder, (7) is a circuit that compares the transform coefficient with a threshold value, (8) is a circuit that determines the transform coefficient transmission range,
(9) is a circuit for setting a threshold, (10) is a circuit for determining a quantization characteristic and a threshold, (11) is a circuit for linearly converting a blocked signal in a given order, and (12) is continuous. The counter that counts the quantized zero quantized coefficient, (13) compares the count value with the threshold value and determines whether to perform the linear conversion of the next coefficient, and (14) the given number of zero quantized coefficients. (15) is a circuit for setting a threshold value. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】入力信号に対して線形変換を行いこの線形
変換で求められた変換係数を量子化して符号化する変換
符号化方式において、 前記入力信号に対して線形変換をし、変換係数を求める
線形変換手段と、 前記線形変換手段で求められた前記変換係数を量子化す
る量子化手段と、 前記量子化手段が出力する量子化係数のうち零係数の個
数を計数する計数手段と、 この計数手段により計数された零係数の個数と情報発生
量に基づく閾値とを比較し、前記零係数の個数が前記閾
値を越えたとき、後続して量子化される変換係数に対す
る量子化係数を零にする判定制御手段とを備えたことを
特徴とする変換符号化方式。
1. A transform coding method for performing a linear transform on an input signal and quantizing and coding a transform coefficient obtained by the linear transform, wherein a linear transform is performed on the input signal to obtain a transform coefficient. A linear transforming means for obtaining, a quantizing means for quantizing the transform coefficient obtained by the linear transforming means, a counting means for counting the number of zero coefficients among the quantized coefficients output by the quantizing means, The number of zero coefficients counted by the counting means is compared with a threshold value based on the amount of information generated, and when the number of zero coefficients exceeds the threshold value, the quantized coefficient for the subsequently quantized transform coefficient is set to zero. And a determination control means for controlling the conversion coding method.
【請求項2】入力信号に対して線形変換を行いこの線形
変換で求められた変換係数を量子化して符号化する変換
符号化方式において、 前記入力信号に対して線形変換をし、変換係数を求める
線形変換手段と、 前記線形変換手段で求められた前記変換係数を量子化す
る量子化手段と、 前記量子化手段が出力する量子化係数のうち零係数の個
数を計数する計数手段と、 この計数手段により計数された零係数の個数と情報発生
量に基づく閾値とを比較し、前記零係数の個数が前記閾
値を越えたとき、後続して量子化される変換係数に対す
る量子化係数を零にするとともに、前記線形変換手段の
線形変換処理動作を停止させる判定制御手段とを備えた
ことを特徴とする変換符号化方式。
2. A transform coding method for performing a linear transform on an input signal and quantizing and coding a transform coefficient obtained by the linear transform, wherein a linear transform is performed on the input signal to obtain a transform coefficient. A linear transforming means for obtaining, a quantizing means for quantizing the transform coefficient obtained by the linear transforming means, a counting means for counting the number of zero coefficients among the quantized coefficients output by the quantizing means, The number of zero coefficients counted by the counting means is compared with a threshold value based on the amount of information generated, and when the number of zero coefficients exceeds the threshold value, the quantized coefficient for the subsequently quantized transform coefficient is set to zero. And a determination control unit for stopping the linear conversion processing operation of the linear conversion unit.
JP21362289A 1989-08-19 1989-08-19 Transform coding method Expired - Lifetime JP2503678B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP21362289A JP2503678B2 (en) 1989-08-19 1989-08-19 Transform coding method
US07/564,824 US5086488A (en) 1989-08-19 1990-08-09 Transform coding apparatus
DE69016880T DE69016880T2 (en) 1989-08-19 1990-08-11 Transformation coding device.
EP90115439A EP0414074B1 (en) 1989-08-19 1990-08-11 Transform coding apparatus
KR1019900012397A KR930009872B1 (en) 1989-08-19 1990-08-13 Changing coding apparatus
FI903989A FI98111C (en) 1989-08-19 1990-08-13 Transform coding apparatus
CA002023440A CA2023440C (en) 1989-08-19 1990-08-16 Transform coding apparatus
AU61069/90A AU622572B2 (en) 1989-08-19 1990-08-16 Transform coding apparatus
NO903624A NO303480B1 (en) 1989-08-19 1990-08-16 Transformation coding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21362289A JP2503678B2 (en) 1989-08-19 1989-08-19 Transform coding method

Publications (2)

Publication Number Publication Date
JPH0377492A JPH0377492A (en) 1991-04-03
JP2503678B2 true JP2503678B2 (en) 1996-06-05

Family

ID=16642218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21362289A Expired - Lifetime JP2503678B2 (en) 1989-08-19 1989-08-19 Transform coding method

Country Status (1)

Country Link
JP (1) JP2503678B2 (en)

Also Published As

Publication number Publication date
JPH0377492A (en) 1991-04-03

Similar Documents

Publication Publication Date Title
KR930009872B1 (en) Changing coding apparatus
JP3109854B2 (en) Image coding method and apparatus
CA2389410A1 (en) Variance based adaptive block size dct image compression
JP3414681B2 (en) Lossless encoding method and image compression encoding apparatus using the same
JP2006502604A (en) Image compression method for arbitrarily shaped objects
JP3163880B2 (en) Image compression coding device
EP0734166A2 (en) Apparatus for encoding an image signal having a still object
JP2664223B2 (en) Orthogonal transform coefficient quantization circuit
US7551788B2 (en) Digital image coding device and method for noise removal using wavelet transforms
JP2503678B2 (en) Transform coding method
JP2503706B2 (en) Transform coding method
JP2841197B2 (en) Method of compressing gradation image data
JP2503698B2 (en) Transform coding method
JP2668900B2 (en) High efficiency coding device
JPH10336656A (en) Image encoding device and method
KR0171119B1 (en) Image signal encoding apparatus using a wavelet transform
JP3017510B2 (en) Compressed data amount control method
JP3347409B2 (en) Image coding apparatus and method
JP3517454B2 (en) Image encoding apparatus and image encoding method
JP2836636B2 (en) Encoding device and encoding method
JP3016805B2 (en) Image data compression method
JPH0822064B2 (en) Transform coding method
JPH07255054A (en) Image encoding device
JPH03192878A (en) Picture data compressor
JP2000333175A (en) Image coder

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 14