JPH03184297A - Manufacture of thin film el element - Google Patents

Manufacture of thin film el element

Info

Publication number
JPH03184297A
JPH03184297A JP1325651A JP32565189A JPH03184297A JP H03184297 A JPH03184297 A JP H03184297A JP 1325651 A JP1325651 A JP 1325651A JP 32565189 A JP32565189 A JP 32565189A JP H03184297 A JPH03184297 A JP H03184297A
Authority
JP
Japan
Prior art keywords
film
fluorescent film
fluorescent
heat treatment
accumulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1325651A
Other languages
Japanese (ja)
Inventor
Kiyoaki Kojima
清明 小島
Yoshiki Nakabachi
中鉢 善樹
Kazufumi Aoyama
和史 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Faurecia Clarion Electronics Co Ltd
Original Assignee
Clarion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clarion Co Ltd filed Critical Clarion Co Ltd
Priority to JP1325651A priority Critical patent/JPH03184297A/en
Publication of JPH03184297A publication Critical patent/JPH03184297A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PURPOSE:To prevent the occurrence of a non-emission region called a dead-layer on the substrate side insulation film interface of a fluorescent film by interrupting accumulation at least one time when the film thickness of a fluorescent film becomes a given film thickness at the time of fluorescent film accumulation, applying heat treatment, and then again making the accumulation of the fluorescent film. CONSTITUTION:When a fluorescent film is accumulated on a glass substrate 2 where a transparent electrode 1 and a first insulation film 3 are accumulated in order, the accumulation is once interrupted at e.g. a film thickness of 1,000Angstrom or below, a fluorescent film part 4a is formed, and then heat treatment is made for about one hour at a given temperature in vacuum or a S2 atmosphere when the fluorescent film is sulfide. Then a fluorescent film part 4b is accumulated so as to make a desired thickness (thousands Angstrom -1mum extent), the same heat treatment is made, after that a second insulation film 5 and a metal electrode 6 are formed to obtain an EL element. Because this permits the improvement of a defect or distortion, etc., of a dead-layer part having an inferior crystallinity without diffusion to the whole fluorescent film, electron scattering or non-emission transition, etc., due to a crystalline defect can be reduced to improve element efficiency.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、薄膜EL素子の製造方法の改良に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an improvement in a method for manufacturing a thin film EL element.

[発明の概要コ 本発明は、交流駆動薄膜EL素子の製造工程の一部を変
えるだけで、蛍光体に非発光領域が生じる現象を解消な
いし低減できるようにしたものである。
[Summary of the Invention] The present invention makes it possible to eliminate or reduce the phenomenon in which a non-emissive region occurs in a phosphor by simply changing a part of the manufacturing process of an AC-driven thin film EL element.

[従来の技術] 従来の薄膜EL素子の製造方法は、一般に、第2図に示
すように、透明電極lであるITOをコーティングした
硼硅酸ガラス基板2上に、EB法、スパッタ法等で絶縁
膜3.蛍光膜4.絶縁膜5、金属電極6を数千オングス
トローム(人)ずつ順次に積層する方法が適用されてい
る。その際、蛍光膜形成時の基板温度は約200℃程度
、形成後の熱処理は真空中にて約500℃でI時間程度
行われるのが普通である。
[Prior Art] In general, as shown in FIG. 2, a conventional method for manufacturing a thin film EL device is to apply a film onto a borosilicate glass substrate 2 coated with ITO, which is a transparent electrode 1, by an EB method, a sputtering method, or the like. Insulating film 3. Fluorescent film 4. A method is used in which the insulating film 5 and the metal electrode 6 are sequentially laminated with a thickness of several thousand angstroms (layers). In this case, the substrate temperature during the formation of the fluorescent film is usually about 200° C., and the heat treatment after formation is usually carried out in a vacuum at about 500° C. for about 1 hour.

[発明が解決しようとする課題] しかしながら、上記工程で製造されたEL素子には、蛍
光膜4の基板側絶縁膜3の界面より約1000への厚さ
の層状部分7が、発光しない「デッド・レイヤー」(D
ead 1ayer)と呼ばれる部分として存在する。
[Problems to be Solved by the Invention] However, in the EL device manufactured by the above process, the layered portion 7 of the fluorescent film 4 with a thickness of approximately 1000 mm from the interface of the substrate-side insulating film 3 is a "dead" region that does not emit light.・Layer” (D
It exists as a part called ``ead 1 ayer''.

この層状部分7はTEM(透過電子顕1[)の111m
によると、結晶粒が小さく、他の部分より結晶性の劣る
部分であることが判っている。
This layered portion 7 is 111 m in TEM (transmission electron microscope 1).
According to the research, it is known that the crystal grains are small and the crystallinity of this part is inferior to that of other parts.

蛍光膜にZnS:Mnを用いたEL素子の発光機構は、
絶縁膜/蛍光膜界面の界面準位から蛍光層の伝導帯へ電
子がトンネル効果により放出され、それが電界により加
速されて、発光中心と衝突することによって、発光中心
原子(イオン)を励起し、それが緩和する際に放射する
と、一般に言われている。したがって、上記のような結
晶性の乱れた部分があると、加速される電子が、粒界や
欠陥による散乱によりエネルギを失うか1発光中心が励
起されても欠陥により生じた準位を介した非輻射遷移を
起こす等の原因により、この部分では発光が生じないと
考えられる。これはEL素子全体の効率の低下を招くこ
とになる。
The light emitting mechanism of an EL element using ZnS:Mn for the fluorescent film is as follows.
Electrons are emitted from the interface level at the insulating film/phosphor film interface to the conduction band of the fluorescent layer due to the tunnel effect, are accelerated by the electric field, and collide with the luminescent center, thereby exciting the luminescent center atom (ion). , it is generally said that it radiates when it relaxes. Therefore, if there is a region with disordered crystallinity as described above, the accelerated electrons will either lose energy due to scattering by grain boundaries or defects, or lose energy through the levels created by the defects even if one emission center is excited. It is thought that light emission does not occur in this part due to causes such as non-radiative transition. This results in a decrease in the efficiency of the entire EL element.

また、基板側の絶縁膜/蛍光膜界面近傍の蛍光膜部分の
結晶性が金属電極側の絶縁膜/g&光膜界面近傍の蛍光
膜部分より結晶性が劣る(界面近傍の欠陥準位のでき方
が異なる)ということは、界面からの電子の注入効率に
基板側と金属電極側とで差を生ずる原因となり、駆動電
圧の極性(正負)による発光強度の差となって現われる
。このような極性による発光特性の非対称性は、駆動方
法を複雑化させることになる。
In addition, the crystallinity of the fluorescent film near the insulating film/phosphor film interface on the substrate side is inferior to that of the fluorescent film near the insulating film/g & optical film interface on the metal electrode side (the formation of defect levels near the interface). This difference causes a difference in electron injection efficiency from the interface between the substrate side and the metal electrode side, which manifests as a difference in emission intensity depending on the polarity (positive or negative) of the driving voltage. Such asymmetry in light emission characteristics due to polarity complicates the driving method.

更に、従来法のように、蛍光膜全体を形成してから熱処
理をする方法では、前述した「デッド・レイヤー1部の
結晶欠陥や歪はある程度低減されるが、他の部分の結晶
性はrデッド・レイヤー1部の歪みや欠陥の拡散により
、かえって堆積直後より劣化すると考えられ、素子性能
を改善する方法として適切でない。
Furthermore, in the conventional method of forming the entire fluorescent film and then heat-treating it, the crystal defects and distortions in one part of the dead layer are reduced to some extent, but the crystallinity of other parts is It is thought that the distortion in the first part of the dead layer and the diffusion of defects will cause the layer to deteriorate even more immediately after it is deposited, and thus is not suitable as a method for improving device performance.

[発明の目的〕 本発明は、薄膜EL素子の製造過程で、蛍光膜の基板側
絶縁膜界面に「デッド・レイヤーjと呼ばれる非発光領
域が生じないようにする薄膜EL素子の製造方法を提供
することを主たる目的としているものである。
[Object of the Invention] The present invention provides a method for manufacturing a thin film EL device that prevents the formation of a non-emissive region called a “dead layer J” at the substrate-side insulating film interface of a fluorescent film during the manufacturing process of the thin film EL device. The main purpose is to

[Ia題を解決するための手段] 本発明は、ガラス基板上に透明電極を形成し、その透明
電極上に絶縁膜を形成し、その絶縁膜上に蛍光膜を形成
する工程を含む薄膜EL素子の製造方法において、前記
蛍光膜堆積時、その蛍光膜の膜厚が所定の膜厚となった
際に堆積を少なくとも1回中断し、熱処理を施した後、
再度、蛍光膜の堆積を行うことによって、上述した問題
点の解決を図ったものである。
[Means for Solving Problem Ia] The present invention provides a thin film EL including the steps of forming a transparent electrode on a glass substrate, forming an insulating film on the transparent electrode, and forming a fluorescent film on the insulating film. In the device manufacturing method, during the deposition of the fluorescent film, the deposition is interrupted at least once when the thickness of the fluorescent film reaches a predetermined thickness, and after heat treatment is performed,
The above-mentioned problems are solved by depositing the fluorescent film again.

[作用] 上記薄膜EL素子の製造方法にあっては、「デッド・レ
イヤー」部の結晶の劣る層部分を独立して熱処理するの
で、この部分の欠陥や歪み等は、その時点で緩和され、
熱処理後、欠陥や歪みが。
[Function] In the method for manufacturing a thin film EL element described above, since the "dead layer" portion of the layer with inferior crystals is independently heat-treated, defects, distortions, etc. in this portion are alleviated at that point.
After heat treatment, there are defects and distortions.

膜全体に伝播しないようになる。This prevents it from propagating throughout the membrane.

[実施例] 第1図(a)、(b)、(c)、(d)は、薄膜EL素
子の製造工程の一例を示したもので、下記工程からなる
0図面中、1は透明電極、2はガラス基板。
[Example] Figures 1 (a), (b), (c), and (d) show an example of the manufacturing process of a thin film EL element, and 1 in 0 drawings consists of the following steps, where 1 is a transparent electrode. , 2 is a glass substrate.

3は第1絶縁膜、4は蛍光膜、4a、4bは蛍光膜部分
、5は第2絶縁膜、6は金属電極である。
3 is a first insulating film, 4 is a fluorescent film, 4a and 4b are fluorescent film parts, 5 is a second insulating film, and 6 is a metal electrode.

[1]まず、第1図(a)に示すように、透明電極1お
よび第1絶縁膜3を順次に堆積したガラス基板2上に、
蛍光膜を堆積する際、1000Å以下の膜厚で堆積を一
旦中断し、蛍光膜部分4aを形成する。
[1] First, as shown in FIG. 1(a), on a glass substrate 2 on which a transparent electrode 1 and a first insulating film 3 were sequentially deposited,
When depositing the fluorescent film, the deposition is temporarily interrupted at a film thickness of 1000 Å or less to form the fluorescent film portion 4a.

[2]そのあと、第1図(b)に示すように、真空中な
いし蛍光膜が粒化物である場合にはs2雰囲気中にて、
400’C〜950’C程度の温度で熱処理を1時間程
度行う。
[2] After that, as shown in FIG. 1(b), in a vacuum or in an s2 atmosphere if the fluorescent film is a granule,
Heat treatment is performed at a temperature of about 400'C to 950'C for about 1 hour.

[3]次に、第1図(c)に示すように、所望の厚さ(
数千人〜1μm程度)になるよう、蛍光膜部分4bを堆
積し、[2]と同様の熱処理を行う。
[3] Next, as shown in Figure 1(c), the desired thickness (
The fluorescent film portion 4b is deposited to a thickness of several thousand nanometers to about 1 μm, and the same heat treatment as in [2] is performed.

[4]そのあと、第2絶縁膜5および金属電極を形成し
、EL素子を作製する。
[4] After that, a second insulating film 5 and a metal electrode are formed to produce an EL element.

なお、上記製造工程から、[11、[2]の工程は1回
以上繰り返してもよい。
Note that from the above manufacturing steps, steps [11 and [2] may be repeated one or more times.

上記の如く、蛍光膜の堆積を中断し、熱処理をする工程
を行うことにより、次のような効果が得られる。
As described above, by interrupting the deposition of the fluorescent film and performing the heat treatment process, the following effects can be obtained.

(a)「デッド・レイヤー」に相当する層部分のみを、
上に堆積する蛍光膜の束縛なしに熱処理できるため、原
子の再配列等が生じ易く、欠陥や歪みの改善上、熱処理
の効果が顕著になる。
(a) Only the layer portion corresponding to the “dead layer”,
Since heat treatment can be performed without being constrained by the fluorescent film deposited on top, rearrangement of atoms is likely to occur, and the effect of heat treatment is significant in improving defects and distortion.

(b)前記[3コで堆積する蛍光膜部分4bは、下地と
なっている蛍光膜部分4bの結晶性改善の効果を受け、
連続して成長した場合に比べて、配向性等の結晶性が向
上する。
(b) The fluorescent film portion 4b deposited in the above three steps receives the effect of improving the crystallinity of the underlying fluorescent film portion 4b,
Crystallinity such as orientation is improved compared to the case of continuous growth.

(c)連続して所望の膜厚まで堆積し、その後熱処理を
施す場合と比べ、「デッド・レイヤー」部の結晶性の劣
る層部分を独立して熱処理できるため、この部分の歪み
等が、その時点で緩和され、熱処理後、歪みが膜全体に
伝播するということがない。
(c) Compared to the case where the film is continuously deposited to the desired thickness and then subjected to heat treatment, the "dead layer" part of the layer with poor crystallinity can be heat-treated independently, so that distortion etc. in this part can be reduced. The strain is relaxed at that point, and the strain does not propagate throughout the film after the heat treatment.

したがって、上記のような工程で作製したEL素子は、
「デッド・レイヤー」を著しく低減でき、かつ、蛍光膜
全体の欠陥や歪みも改善できるため、発光効率を向上さ
せることができる。
Therefore, the EL element manufactured by the above steps is
"Dead layers" can be significantly reduced, and defects and distortions in the entire fluorescent film can also be improved, making it possible to improve luminous efficiency.

また、蛍光膜の厚さ方向の結晶性の差を低減できる。即
ち、第2絶縁膜と第1絶縁膜近傍の蛍光膜の結晶性の差
を低減できるため、EL駆動電圧の極性による発光特性
の非対称性を低減し得る。
Furthermore, the difference in crystallinity in the thickness direction of the fluorescent film can be reduced. That is, since the difference in crystallinity between the second insulating film and the fluorescent film near the first insulating film can be reduced, the asymmetry in the light emission characteristics due to the polarity of the EL drive voltage can be reduced.

[発明の効果] 本発明によれば、結晶性に劣る「デッド・レイヤー」部
の欠陥や歪み等を蛍光膜全体に拡散することなしに改善
できるため、結晶欠陥による電子散乱や非輻射遷移等を
低減でき、素子の効率向上が図れる。
[Effects of the Invention] According to the present invention, defects and distortions in "dead layer" portions with poor crystallinity can be improved without being diffused throughout the fluorescent film, so electron scattering and non-radiative transitions due to crystal defects can be improved. can be reduced, and the efficiency of the element can be improved.

また、第1絶縁膜近傍の蛍光膜の結晶性を改善できるた
め、第1および第2絶縁膜近傍の蛍光膜の結晶性の差を
低減でき、絶縁膜/蛍光膜界面からの電子注入効率の差
を低減できる。したがって、駆動電圧の極性の差による
発光特性の非対称性による駆動手段(回路)の複雑さを
低減することができる。
Furthermore, since the crystallinity of the fluorescent film near the first insulating film can be improved, the difference in crystallinity between the fluorescent films near the first and second insulating films can be reduced, and the electron injection efficiency from the insulating film/phosphor film interface can be improved. The difference can be reduced. Therefore, it is possible to reduce the complexity of the driving means (circuit) due to the asymmetry of the light emission characteristics due to the difference in the polarity of the driving voltage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す薄膜EL素子の製造工
程図、第2図は従来の薄1lIEL素子の模式的断面図
である。 1・・・・・・・・・透明電極、2・・・・・・・・・
ガラス基板、3゜5・・・・・・・・・絶縁膜、4・・
・・・・・・・蛍光膜、4a、4b・・・・・・・・・
蛍光膜部分、6・・・・・・・・・金属電極。
FIG. 1 is a manufacturing process diagram of a thin film EL device showing an embodiment of the present invention, and FIG. 2 is a schematic cross-sectional view of a conventional thin 11 IEL device. 1......Transparent electrode, 2......
Glass substrate, 3゜5...Insulating film, 4...
......Fluorescent film, 4a, 4b...
Fluorescent film part, 6...Metal electrode.

Claims (1)

【特許請求の範囲】  ガラス基板上に透明電極を形成し、その透明電極上に
絶縁膜を形成し、その絶縁膜上に蛍光膜を形成する工程
を含む薄膜EL素子の製造方法において、 前記蛍光膜堆積時、その蛍光膜の膜厚が所定の膜厚とな
つた際に堆積を少なくとも1回中断し、熱処理を施した
後、再度、蛍光膜の堆積を行うことを特徴とする薄膜E
L素子の製造方法。
[Scope of Claims] A method for manufacturing a thin film EL device comprising the steps of forming a transparent electrode on a glass substrate, forming an insulating film on the transparent electrode, and forming a fluorescent film on the insulating film, comprising: Thin film E characterized in that during film deposition, the deposition is interrupted at least once when the thickness of the fluorescent film reaches a predetermined thickness, and after heat treatment is performed, the fluorescent film is deposited again.
Method for manufacturing L element.
JP1325651A 1989-12-14 1989-12-14 Manufacture of thin film el element Pending JPH03184297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1325651A JPH03184297A (en) 1989-12-14 1989-12-14 Manufacture of thin film el element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1325651A JPH03184297A (en) 1989-12-14 1989-12-14 Manufacture of thin film el element

Publications (1)

Publication Number Publication Date
JPH03184297A true JPH03184297A (en) 1991-08-12

Family

ID=18179202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1325651A Pending JPH03184297A (en) 1989-12-14 1989-12-14 Manufacture of thin film el element

Country Status (1)

Country Link
JP (1) JPH03184297A (en)

Similar Documents

Publication Publication Date Title
JPH03184297A (en) Manufacture of thin film el element
US6819043B2 (en) Electroluminescent device and method of manufacturing the same
JP3027286B2 (en) Method for manufacturing thin film EL element
JP2555395Y2 (en) Structure of thin film EL device
JPH01130495A (en) Film type electroluminescence element
JPH03141584A (en) Electroluminescent element and its manufacture
JPH0532877B2 (en)
JPS61211992A (en) Manufacture of el panel
JPH02306591A (en) Manufacture of thin film electroluminescence element
JPH02306585A (en) Manufacture of thin film electroluminescence element
JPH0645069A (en) Thin film el element
JPH0778685A (en) Manufacture of electroluminescence element
JPH01102892A (en) Manufacture of thin film el element
JPS6141111B2 (en)
JPH08162272A (en) El element and manufacture thereof
JPH01102897A (en) Thin film el element and manufacture thereof
JPS60172196A (en) Electroluminescent element and method of producing same
JPH10261367A (en) Phosphor film forming method
JPH0645072A (en) Thin film electroluminescent element and its manufacture
JPH04101393A (en) Electroluminescence element and manufacture thereof
JPH02306581A (en) Manufacture of thin film electroluminescence element
JPH02306590A (en) Manufacture of thin film electroluminescence element
JPH01272096A (en) Structure of thin film el element
JPH04169094A (en) Manufacture of thin film electroluminescence element
JPS6180793A (en) Thin film el element